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ABSTRACT

The convergence of the Polak, Ribie‘re-Polyak (PRP) conjugate gradi-
ent (CG) method requires some modifications for improved theoretical
properties. In this article, we explore an optimal choice of the Perry
conjugacy condition to propose a hybrid CG parameter for solving opti-
mization and inverse problems, particularly in an image reconstruction
model. This parameter is selected to satisfy a combination of revised
version of the PRP and Dai-Yuan (DY) CG methods. The numerical
implementation includes inexact line search, showcasing the scheme’s
robustness (highest number of solved functions) compared to other
known CG algorithms. The efficiency is shown in terms of Real error
(RelErr), peak signal noise ratio (PNSR), and CPU time in seconds for
impulse noise removal while for unconstrained minimization problems,
the study evaluated the efficiency based on number of iterations, func-
tion evaluation, and CPU time in seconds. An interesting feature of the
proposed method is its ability to converges to the minimizer regardless
of the initial guess, relying on certain established assumptions.
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1. Introduction

In 1964, Fletcher and Reeves suggested the non-linear version of the CG model to minimize
an unconstrained problem:

min f (p), x ∈ Rn, (1.1)

where the gradient, q(p) = ∇f (p), exists for the smooth function f : Rn −→ R. Among the
iterative schemes existing in the literature, the CG method stands out as particularly intriguing
for addressing large-scale optimization models defined by equation (1.1). This is due to its
favorable theoretical properties and absence of matrix storage [8]. Moreover, this method has
garnered considerable attention in inverse and time-varying optimization problems, finding
applications in image restoration [37, 6], signal recovery [17, 45], and robotic motion [43, 34].
The scheme initializes guess for the solution, generating a sequence of points {pk} utilizing
the relation:

pk+1 = pk + ℓkhk , k = 0, 1, 2, ... . (1.2)

At this stage, hk signifies the search direction, while ℓk represents the step size. The line search
process during the k-th iteration determines ℓk to fulfill specific criteria [4]. The conventional
Wolfe line method involves the following set of inequalities:

f (pk + ℓkhk) ≤ f (pk) + δℓkq
T
k hk , (1.3)

q(pk + ℓkhk)
Thk ≥ σqTk hk . (1.4)

However, the convergence of certain CG methods necessitates replacing (1.4) with

|q(pk + ℓkhk)
Thk | ≤ −σqTk hk . (1.5)

This criteria, combined, is referred to as the strong Wolfe condition, where 0 < δ < 1
2 ,

δ < σ < 1, and is usually computed along the search direction hk using

h0 = −q0, hk+1 = −qk+1 + βkhk , (1.6)

the scalar parameter βk , usually refers to as the CG formula, plays a pivotal role in defining
the behavior of any CG method. While numerous options for the scalar βk exist, selecting an
appropriate one is crucial for enhancing both theoretical properties and numerical efficiency
[16]. Some popular choices for βk are provided in [15, 10, 14, 18, 32, 31, 25] along with the
following formulas:

βFR
k =

∥qk+1∥2

∥qk∥2
, βDY

k =
∥qk+1∥2

hTk rk
, βCD

k = −∥qk+1∥2

hTk qk
, (1.7)

βHS
k =

qTk+1rk

hTk rk
, βPRP

k =
qTk+1rk

∥qk∥2
, βLS

k = −
qTk+1rk

hTk qk
, (1.8)

where ∥·∥ denotes the ℓ2 norm and rk = qk+1 − qk .
The schemes outlined in (1.7) have demonstrated nice convergence properties, yet they face
numerical uncertainties due to jamming [24]. To address this issue, the two CG types have been
integrated. Particularly, combining βPRP

k and βDY
k CG schemes with the following parameters:

βPRP
k =

qTk+1rk

∥qk∥2
, (1.9)
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βDY
k =

∥qk+1∥2

hTk rk
. (1.10)

Even though the PRP scheme is acknowledged as a highly effective CG parameter, it continues
to face convergence challenges [7]. To tackle these issues, various modifications have been
proposed, including the work by Wei et al. [42], as an example:

βWLY
k =

∥qk+1∥2 − ∥qk+1∥
∥qk∥ qTk+1qk

∥qk∥2
,

where other variants of [42] have also been suggested by Zhang[46] and Dai et al. [11] as

βIWLY
k =

∥qk+1∥2 − ∥qk+1∥
∥qk∥ |qTk+1qk |

∥qk∥2
,

βDPRP
k =

∥qk+1∥2 − ∥qk+1∥
∥qk∥ |qTk+1qk |

µ|qTk+1hk |+ ∥qk∥2
,

respectively. Alternatively, in response to certain computational challenges linked to the DY
method, Jiang and Jian [23] introduced its adapted form as follows:

βIDY
k = rk

∥qk+1∥2

hTk rk
,

where rk =
|qT

k+1hk |
−qT

k hk
. Building upon the CG techniques discussed in [21, 22], [47] introduced

two modified DY CG approaches:

β
(1)
k =

∥qk+1∥2 −
(qT

k+1qk )
2

∥qk∥2

hTk rk
,

β
(2)
k =

∥qk+1∥2 − ∥qk+1∥
∥qk∥ qTk+1qk

µhTk rk
.

Following these adaptations, Zhu et al. [48] proposed the DDY1 scheme:

βDDY 1
k =


∥qk+1∥2−

µ1(q
T
k+1dk )

2

∥qk+1∥∥qk∥∥dk∥2
qT
k+1qk

hTk rk
, qTk+1qk ≥ 0,

∥qk+1∥2+
µ1(q

T
k+1dk )

2

∥qk+1∥∥qk∥∥dk∥2
qT
k+1qk

hTk rk
, qTk+1qk < 0.

These techniques introduced additional complexities to the classical PRP and DY CG methods,
potentially altering their original behavior. Moreover, these modifications often overlooked
hybrid CG techniques. Consequently, there has been an increasing need for combining two
or more CG methods to improve their overall performance [3]. The initial attempt of this
combination was proposed by Touati-Ahmed and Storey [41], merging βPRP

k and βFR
k methods.

Computational results demonstrate that this technique outperforms each of these strategies
when implemented separately. Following this idea, to ensure non-negativity of βPRP

k , Hu and
Storey [19] introduced another structure of CG parameter based on distinct combination of
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the schemes outlined in (1.7) and (1.8). However, algorithms that can automatically switch
between the methods in the two categories are highly preferable for enhancing the nature of
CG methods [39, 29]. Recent combinations exemplifying this approach include; LS and CD
procedures [38, 20], HS and DY schemes [39, 1], PRP and FR methods [28], along with LS
and DY methods [24], and PRP and DY methods [2]. Moreover, these schemes are primarily
derived from the traditional conjugacy condition described by

hTk+1rk = 0. (1.11)

This criterion plays a pivotal role in establishing the convergence of various CG methods.
However, for improved convergence and better numerical outcomes, more generalized forms
of this condition, as proposed by Perry [30] and Dai and Liao [9], are often necessary

hTk+1rk = −qTk+1sk (1.12)

hTk+1rk = −tqTk+1sk , t ≥ 0. (1.13)

Motivated by the methodologies outlined in [20, 39] and considering the practical numerical
benefits associated with the PRP method, we introduce a CG method that utilizes a hybrid
parameter calculated from:

βk = (1− θk)β
OPRP
k + θkβ

DY
k , (1.14)

where θk ∈ [0, 1] is the convex combination parameter and OPRP stands for optimal PRP
method which is inspired by the nice convergence structure of the βDY

k to modify βPRP
k as

βOPRP
k =

qTk+1rk

max{∥qk∥2, hTk rk}
. (1.15)

This modification ensures desirable convergence features and effective numerical performance
of the hybrid parameter. Thus, next section systematically suggests a new hybrid parameter
based on the generalized conjugacy condition. Section three describes the overall convergence
characteristic of the proposed. In the fourth section, the stability and competitive nature of
the proposed scheme are presented by comparing it with various known CG methods using
different benchmark optimization problems. The new hybrid algorithm is further employed to
solve an image reconstruction problem. Finally, the last section entails a brief conclusion.

2. Formulation of the Hybrid Method

To obtain the CG parameter as a revised version of the βk in (1.6) combining (1.10) and
(1.15), we define the hybrid scheme as

βk = (1− θk)β
OPRP
k + θkβ

DY
k

= βOPRP
k + θk(β

DY
k − βOPRP

k )

=
qTk+1rk

max{∥qk∥2, hTk rk}
+ θk

(
∥qk+1∥2

hTk rk
−

qTk+1rk

max{∥qk∥2, hTk rk}

)
. (2.1)
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Multiplying (1.6) by rTk and using (2.1), we get

hTk+1rk = −qTk+1rk + βkh
T
k rk

= −qTk+1rk +
qTk+1rk

max{∥qk∥2, hTk rk}
hTk rk + θk

(
∥qk+1∥2

hTk rk
−

qTk+1rk

max{∥qk∥2, hTk rk}

)
hTk rk .

(2.2)

Equating (1.13) with (2.2) gives

−tsTk qk+1 = −qTk+1rk+
qTk+1rk

max{∥qk∥2, hTk rk}
hTk rk+θk

(
∥qk+1∥2

hTk rk
−

qTk+1rk

max{∥qk∥2, hTk rk}

)
hTk rk .

(2.3)

There are two cases for max{∥qk∥2, hTk rk}.
Case I: When max{∥qk∥2, hTk rk} = ∥qk∥2 this follows from (2.3) that

(qTk+1rk)∥qk∥
2 − (tsTk qk+1)∥qk∥2 − (qTk+1rk)h

T
k rk

∥qk∥2
= θk

(
∥qk+1∥2

hTk rk
−

qTk+1rk

∥qk∥2

)
hTk rk .

So that after re-arranging, we obtain

θ1k =
(qTk+1rk − tsTk qk+1)∥qk∥2 − (qTk+1rk)h

T
k rk

∥qk+1∥2∥qk∥2 − (qTk+1rk)h
T
k rk

. (2.4)

Case II: When max{∥qk∥2, hTk rk} = hTk rk , then this follows directly by changing ∥qk∥2 with
hTk rk in (2.4) and after some simplifications, we obtain

θ2k =
(qTk+1rk − tsTk qk+1)− (qTk+1rk)

∥qk+1∥2 − (qTk+1rk)
. (2.5)

To make an optimal choice, we select the parameter θk in a way that if θk ≤ 0, we set
βk = βOPRP

k ; if θk ≥ 1, we set βk = βDY
k . Otherwise, when 0 < θk < 1, then βk includes

both βOPRP
k and βDY

k . Therefore, these selections of θ1k and θ2k imply that we can compute
the optimal hybrid parameter as

θ∗k =


0, if θk ≤ 0,

θ̂k , if 0 < θk < 1,

1, if θk ≥ 1,

(2.6)

with

θ̂k =

{
θ1k , if ∥qk∥2 > hTk rk ,

θ2k , otherwise.
(2.7)

Now, based on (2.1), we can represent hk+1 as a convex combination of βOPRP
k and βDY

k .
Therefore, from (1.6), we have

hk+1 = −(θkqk+1 + (1− θk)qk+1) + βkhk

= θk(−qk+1 + βDY
k hk) + (1− θk)(−qk+1 + βOPRP

k hk)

= θkh
DY
k+1 + (1− θk)h

OPRP
k+1 . (2.8)

Now, let’s describe the new CG method called the PPRPDY method as follows:



30 N. Salihu et al.

Algorithm 1: PPRPDY

Step 1: Let 0 < δ < σ < 1 and x0 ∈ Rn be given. Then h0 = −q0,
Step 2: If ∥qk∥ ≤ ϵ, then stop. Otherwise
Step 3: Compute ℓk > 0 that fulfils (1.3) and (1.5).
Step 4: Compute βk and θ∗k as in (2.1) and (2.6), respectively.
Step 5: Check the condition

|qT
k+1qk | > 0.2∥qk+1∥2, (2.9)

is satisfied, so that hk+1 is steepest descent or otherwise CG direction.
Step 6: Update the next iterate from Step 2.

Remark 2.1. It’s evident that if t = 0, the convex combination parameters θk satisfy the
pure conjugacy condition, that is, hTk+1rk = 0. However, in the PPRPDY Algorithm, if t = 1,
Perry’s condition (1.12) is satisfied. Therefore, for better numerical outcomes, we consistently
opt for t = 1 in this paper.

3. Convergence Analysis

In this section, we explore the convergence characteristics of the suggested hybrid method.
To proceed, we state the following assumptions.

Assumption 3.1. The level set η = {p ∈ Rn : f (p0) ≥ f (p)} is bounded, i.e. there exists a
constant B > 0 such that

∥p∥ ≤ B,∀p ∈ η.

Assumption 3.2. Denoting η as some neighborhood of Γ, and function f is smooth with its
gradient is Lipschitz continuous satisfying

∥q(p)− q(v)∥ ≤ L∥p − v∥, ∀p, v ∈ η, L > 0. (3.1)

Note that these assumptions, imply that

∥q(p)∥ ≤ γ, ∀p ∈ Γ, γ > 0, (3.2)

∥p − v∥ ≤ b, ∀p ∈ Γ, b > 0. (3.3)

Next, we establish the sufficient descent of PPRPDY method.

Theorem 3.3. Assume that assumptions (3.1)-(3.2) hold. Suppose that the PPRPDY Al-
gorithm generates sequences {qk} and {hk} and let strong Wolfe rules (1.3)-(1.5) hold with
σ < 1

2 . Then

hTk+1qk+1 ≤ −c∥qk+1∥2, ∀k ≥ 0. (3.4)

Proof. Pre-multiply (2.8) by qTk+1, we have

qTk+1hk+1 = θkq
T
k+1h

DY
k+1 + (1− θk)q

T
k+1h

OPRP
k+1 . (3.5)

Case I: When θk ≤ 0, we set θk = 0, which means βk = βOPRP
k .

If the restart criterion of Powell [33], as expressed in condition (2.9), does not hold, then the
following inequalities arise:

|qTk+1qk | ≤ 0.2∥qk+1∥2. (3.6)
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Since rk = qk+1 − qk , using (3.6), we get

|qTk+1rk | ≤ 1.2∥qk+1∥2.

And
hTk rk = hTk qk+1 − hTk qk ≥ −(1− σ)hTk qk ≥ 0.

So that (1.5) gives
|qTk+1hk | ≤ −σhTk qk . (3.7)

Now, by combining the aforementioned inequalities with equations (1.15) and (3.5), we obtain

qTk+1hk+1 = −∥qk+1∥2 + βOPRP
k dT

k qk+1

≤ −∥qk+1∥2 +
|qTk+1rk |

max{∥qk∥2, hTk rk}
|hTk qk+1|

≤ −∥qk+1∥2 −
1.2σ∥qk+1∥2

max{∥qk∥2, hTk rk}
qTk hk

= −∥qk+1∥2 −
1.2σ∥qk+1∥2

hTk rk
qTk hk

≤ −∥qk+1∥2 +
1.2σ∥qk+1∥2

(1− σ)qTk hk
qTk hk

≤ −∥qk+1∥2 +
1.2σ

1− σ
∥qk+1∥2

= −τ1∥qk+1∥2, (3.8)

where τ1 = (1− 1.2σ
1−σ ).

Case II: Now, when θk ≥ 1, we set βk = βDY
k , so that from (1.10) and (3.5), we obtain

qTk+1hk+1 ≤ −∥qk+1∥2 +
∥qk+1∥2

dT
k rk

|hTk qk+1|

≤ − (1− 2σ)

1− σ
∥qk+1∥2

≤ −τ2∥qk+1∥2, (3.9)

where τ2 =
(1−2σ)
1−σ .

Case III: When θk ∈ (0, 1), that is, there exists some constants µ1,µ2 such that 0 < µ1 ≤
θk ≤ µ2 < 1, then from (3.5), (3.8) and (3.9), we get

qTk+1hk+1 = µ1q
T
k+1h

DY
k+1 + (1− µ2)q

T
k+1h

OPRP
k+1 .

In consequence, denoting c = µ1τ2 + (1− µ2)τ1, we end-up getting

qTk+1hk+1 ≤ −c∥qk+1∥2, (3.10)

which shows that (3.4) holds for k + 1.
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Lemma 3.4. Consider the CG methods (1.2)-(1.3), where dk is sufficiently descent, and ℓk
satisfies the strong Wolfe condition. Then

∞∑
k=0

∥qk∥4

∥hk∥2
< +∞. (3.11)

Theorem 3.5. Suppose that the PPRPDY Algorithm generated sequences {pk} and {hk} ,
where its search direction hk is descending, and ℓk satisfies strong Wolfe conditions. Then

lim inf
k→∞

∥qk∥ = 0. (3.12)

Proof. Suppose by contradiction that (3.12) is false. Then there exists ω > 0 such that

∥qk∥ ≥ ω, ∀k ≥ 0. (3.13)

Next, we claim that the direction set by equation (1.6) is lower bounded by a constant F > 0,
i.e.

∥hk+1∥ ≤ F , ∀k ≥ 0. (3.14)

We prove this claim by induction. Now, from (3.1) and (3.3) , we can write ∥rk∥ =
∥qk+1 − qk∥ ≤ L∥pk+1 − pk∥ ≤ Lb.

Therefore, using (1.10), (1.15), (2.1) and (3.2), we have

|βk | = |(1− θk)β
OPRP
k + θkβ

DY
k |

=

∣∣∣∣(1− θk)
qTk+1rk

max{∥qk∥2, hTk rk}
+ θk

∥qk+1∥2

∥qk∥2

∣∣∣∣
≤

∣∣∣∣ qTk+1rk

max{∥qk∥2, hTk rk}
+

∥qk+1∥2

∥qk∥2

∣∣∣∣
≤ ∥qk+1∥∥rk∥

∥qk∥2
+

∥qk+1∥2

∥qk∥2

≤ Lb∥qk+1∥+ ∥qk+1∥2

∥qk∥2

≤ Lb∥qk+1∥+ γ2

∥qk∥2

≤ γLb + γ2

ω2
= G . (3.15)

From step 1 of the PPRPDY algorithm, we have, h1 = −q1 + β1h0, implying that h1 =
−q1 − β1q0, since h0 = −q0, we have

∥h1∥ ≤ ∥q1∥+ |β1|∥q0∥
≤ γ + Gγ = γ∗.

By assuming that the claim (3.14) hold for k , we can show for k + 1 from relation (1.6)

hk+1 = −qk+1 + βkhk .
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Using (3.2) together with (3.15) gives

∥hk+1∥ ≤ ∥qk+1∥+ |βk |∥hk∥
≤ γ + GF .

This shows that the claim holds but from (3.4), we have (hTk+1qk+1)
2 ≥ c2∥qk+1∥4, dividing

by ∥hk+1∥2 and summing gives

c2
∞∑
k=0

∥qk+1∥4

∥hk+1∥2
≥

∞∑
k=0

c2ω4

(γ + GF )2
≥ c2ω4

(γ + GF )2

∞∑
k=0

1 = +∞. (3.16)

Clearly, this presents a contradiction since equations (3.11) and (3.16) cannot hold simulta-
neously. Hence, the proof is complete.

4. Numerical Results

This section demonstrates the experimentation of the PPRPDY method in comparison to
the HYB [20], HLSDY[24] and HLSFR [12] methods using 121 test problems considered in [5]
and [27]. To exhibit the method’s stability, the implemented test problems range in dimensions
from 2 to 100, 000, as outlined in Table 1. The codes are implemented in MATLAB 9.12
(R2022a) on an Intel(R) Core i7-1195G7 PC with 16 GB RAM and a 2.90 GHz CPU. During
the code execution, parameters δ = 10−3 and σ = 10−6 are set in relations (1.3) and (1.5).
The termination condition for all schemes is set as ∥qk∥ ≤ 10−6 to halt the code executions.
Regarding the numerical results of the PPRPDY, HYB, HLSDY, and HLSFR methods, we
interpreted the results in figures based on three metric consisting; number of iterations ,
number of function evaluations and central processing unit. Moreover, the interpretation of
the results is facilitated by a tool introduced by Dolan and Moré[13] known as a performance
profile. Let P represent the collection of np test problems and S denote the set of ns solvers
used in the comparison. This profile serves as a measurement for each problem p ∈ P and
solver s ∈ S , representing the three metrics required to solve any problem. The measure of
the performance ratio used to compare and evaluate the solvers’ performance is given by

rp,s =
fp,s

min fp,s : s ∈ S
.

Consequently, the best method is indicated by the top curve on the performance profile
plot. The experiments are interpreted graphically through Figures 1–3, demonstrating that
the PPRPDY method is efficient and preferable over other methods across the three metrics.
Specifically, the PPRPDY method exhibits the best performance by successfully solving an
average of 68% of 78% of the problems. This establishes it as the superior solver against HYB,
HLSDY, and HLSFR methods, which respectively achieve 11% of 72%, 18% of 68% and 10%
of 72%, as observed in Figures 1–2. Similarly, in Figure 3, the PPRPDY prevails in 20% of
60%, compared to HYB, HLSDY, and HLSFR methods, which secure 20% of 60% and 20%
of 65% respectively as the best methods. Thus, the curve representing the PPRPDY method
consistently remains at the top when compared to other methods, affirming its effectiveness.
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Table 1. List of test problems

Problem Function Dimension Initial Point

1 Arwhead 10 (7,7,. . . ,7)
2 Denschn A 100 (6,6,. . . ,6)
3 Denschn A 500 (6,6,. . . ,6)
4 Denschn A 1000 (6,6,. . . ,6)
5 Denschn A 3000 (6,6,. . . ,6)
6 Denschn A 15000 (6,6,. . . ,6)
7 Denschn C 100 (100,100,. . . ,100)
8 Denschn C 500 (100,100,. . . ,100)
9 Denschn C 1000 (100,100,. . . ,100)
10 Denschn F 2 (0.001,0.001,. . . ,0.001)
11 Denschn F 500 (0.001,0.001,. . . ,0.001)
12 Denschn F 5000 (0.001,0.001,. . . ,0.001)
13 Denschn F 10000 (0.001,0.001,. . . ,0.001)
14 Denschn F 50000 (0.001,0.001,. . . ,0.001)
15 Diagonal 5 10 (1.1,1.1,. . . ,1.1)
16 Diagonal 5 5000 (1.1,1.1,. . . ,1.1)
17 Diagonal 5 50000 (1.1,1.1,. . . ,1.1)
18 Diagonal 1 4 (-33,-33,-33,-33)
19 Diagonal 1 10 (-33,-33,...,-33)
20 Diagonal 1 10 (-21,-21,...-12)
21 Diagonal 2 1000 (0.0010,0.0010,. . . ,0.0010)
22 Diagonal 2 10000 (0.0010,0.0010,. . . ,0.0010)
23 Diagonal 2 50000 (0.0010,0.0010,. . . ,0.0010)
24 Diagonal 2 100000 (0.0010,0.0010,. . . ,0.0010)
25 Diagonal 3 2 (11,11)
26 Diagonal 3 4 (13,13,13,13)
27 Diagonal 3 10 (13,13,. . . ,13)
28 Diagonal 3 10 (11,11,. . . ,11)
29 Diagonal 4 100 (1,1,...,1)
30 Diagonal 4 500 (1,1,...,1)
31 Diagonal 4 1000 (1,1,...,1)
32 Diagonal 4 10000 (1,1,...,1)
33 Diagonal 4 100000 (1,1,...,1)
34 Diagonal 6 100 (-1.01,-1.01,. . . ,-1.01)
35 Diagonal 6 500 (-1.01,-1.01,. . . ,-1.01)
36 Diagonal 7 50 (1,1,...,1)
37 Diagonal 7 100 (1,1,...,1)
38 Diagonal 9 10 (-7,-7,. . . ,-7)
39 Diagonal 9 100 (-7,-7,. . . ,-7)
40 Dqdrtic 10 (11,11,. . . ,11)
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Problem Function Dimension Initial Point

41 Dqdrtic 100 (2,2,. . . ,2)
42 Dqdrtic 200 (2,2,. . . ,2)
43 Dqdrtic 1000 (2,2,. . . ,2)
44 Dqdrtic 2000 (2,2,. . . ,2)
45 Dqdrtic 10000 (2,2,. . . ,2)
46 El-Attar-Vidyasagar-Dutta 2 (11,11)
47 Engval 1 2 (-1.01,-1.01)
48 Engval 1 2 (-1.03,-1.03)
49 Engval 8 2 (0.003,0.003)
50 Engval 8 4 (0.003,0.003,. . . ,0.003)
51 Ext Denschnb 200 (-0.03,-0.03,...-0.03)
52 Ext Denschnb 500 (-0.03,-0.03,...-0.03)
53 Ext Denschnb 1000 (-0.03,-0.03,...-0.03)
54 Ext Denschnb 2000 (-0.03,-0.03,...-0.03)
55 Extended Denschn B 100 (0.03,0.03,. . . ,0.03)
56 Extended Denschn B 5000 (0.03,0.03,. . . ,0.03)
57 Extended Denschn B 10000 (0.03,0.03,. . . ,0.03)
58 Extended Himmelblau 100 (-8,-8,. . . ,-8)
59 Extended Himmelblau 500 (-8,-8,. . . ,-8)
60 Extended Himmelblau 1000 (-8,-8,. . . ,-8)
61 Extended Himmelblau 2000 (-8,-8,. . . ,-8)
62 Extended Maratos 2 (21,21)
63 Extended Maratos 30 (21,21,...,21)
64 Extended Tridiagonal 1 2 (-11,-11)
65 Extended Tridiagonal 1 10 (-11,-11,. . . ,-11)
66 Extended Tridiagonal 1 100 (-11,-11,. . . ,-11)
67 Extended Tridiagonal 1 500 (-11,-11,. . . ,-11)
68 Fletchcer 1000 (0.99,0.99,. . . ,0.99)
69 Himmelblau 1000 (0.03,0.03,. . . ,0.03)
70 Himmelblau 10000 (0.03,0.03,. . . ,0.03)
71 Himmelblau 10000 (0.2,0.2,. . . ,0.2)
72 Himmelblau 50000 (0.2,0.2,. . . ,0.2)
73 Linear Perturbed 1000 (13,13,. . . ,13)
74 Linear Perturbed 2000 (13,13,. . . ,13)
75 Matyas 2 (11,11)
76 Matyas 2 (0.5,0.5)
77 Power 2 (1,1)
78 Power 2 (15,15)
79 Price4 2 (-0.03,-0.03)
80 Price4 2 (-0.01,-0.01)
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Problem Function Dimension Initial Point

81 Quadratic Function 1 10 (1,1,. . . ,1)
82 Quadratic Function 1 200 (1,1,. . . ,1)
83 Quadratic Function 2 100 (1,1,. . . ,1)
84 Quadratic Function 2 500 (1,1,. . . ,1)
85 Quadratic Penalty 1 4 (-1,-1,-1,-1)
86 Quadratic Penalty 1 100 (-1,-1,...,-1)
87 Quadratic Penalty 1 100 (1,1,. . . ,1)
88 Quadratic Penalty 1 1000 (-1,-1,. . . ,-1)
89 Quadratic Penalty 1 2000 (-1,-1,. . . ,-1)
90 Quadratic Penalty 1 5000 (-1,-1,. . . ,-1)
91 Quadratic Penalty 1 10000 (-1,-1,...,-1)
92 Quadratic Penalty 2 100 (10,10,. . . ,10)
93 Quadratic Penalty 2 500 (10,10,. . . ,10)
94 Quartic 500 (0.15,0.15,. . . ,0.15)
95 Quartic 1000 (0.15,0.15,. . . ,0.15)
96 Raydan 1 10 (1,1,. . . ,1)
97 Raydan 1 10 (-0.5,-0.5,. . . ,-0.5)
98 Raydan 1 50 (1,1,. . . ,1)
99 Raydan 1 50 (-0.5,-0.5,. . . ,-0.5)
100 Raydan 1 100 (1,1,. . . ,1)
101 Raydan 2 10000 (0.3,0.3,. . . ,0.3)
102 Raydan 2 100000 (0.3,0.3,. . . ,0.3)
103 Ref 2 (0.03,0.03)
104 Shallow 100 (10,10,. . . ,10)
105 Shallow 200 (10,10,. . . ,10)
106 Shallow 500 (10,10,. . . ,10)
107 Shallow 1000 (10,10,. . . ,10)
108 Shallow 10000 (10,10,. . . ,10)
109 Six Hump 2 (19,19)
110 Six Hump 2 (0.01,0.01)
111 Test 3 (10,10,10)
112 Test 3 (7,7,7)
113 Thump 2 (0.001,0.001)
114 Trecanni 2 (0.5,0.5)
115 Trecanni 2 (1.05,1.05)
116 Twh 2 (-15,-15)
117 Twh 2 (-25,0.25)
118 Zettl 2 (13,-0.013)
119 Zirilli 2 (0.30,0.03)
120 Zirilli 2 (0.31,0.31)
121 Zirilli 2 (0.29,0.29)
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Fig. 1. Performance of the methods based on iterations
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Fig. 2. Performance of the methods based on function evaluation
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Fig. 3. Performance of the methods based on time

5. Application of PPRPDY in Image Restoration Problem

Image restoration is the process of estimating original and clean images from noisy or cor-
rupted images. This corruption could result from camera mis-focus, motion blur, or impulse
noise, and can be corrected by imaging the point sources. Using the point source images
helps restore information lost in the blurring process for all images. This problem of restoring
corrupted images is currently gaining attention from researchers due to its importance in the
fields of security, health, sciences, and engineering [26, 36]. Recent studies on this problem
have considered gradient-based algorithms to restore original images previously corrupted by
salt-and-pepper impulse noise [45, 44]. Gradient-based methods are characterized by simplic-
ity, low memory requirements, and favorable convergence results [16, 40, 35].

In this section, we investigate the performance of the proposed PPRPDY gradient-based
algorithm on the image restoration problem to illustrate its efficiency and applicability in
handling a broader range of practical real-life problems. For this study, we restore the following
images: Building (512 × 512) and Forest (512 × 512), which have been corrupted by salt-and-
pepper impulse noise. We measure the quality of the restored images using peak signal-to-noise
ratio (PSNR), relative error (RelErr), and CPU time.

5.1. Image Restoration Problem

Consider the following index set of noise candidates for true image x :

G = {(i , j) ∈ Q|ξ̄ij ̸= ξij , ξij = smin or smax}, (5.1)

with M × N pixels, where i , j ∈ Q = {1, 2, ·,M} × {1, 2, ·,N} and the neighborhood of (i , j)
is defined as

Ti j = {(i , j − 1), (i , j + 1), (i − 1, j), (i + 1, j)}. (5.2)

From (5.1),

• ξ denotes the observed noisy image corrupted image,

• ξ̄ defines the adaptive median filter to the noisy image ξ,

• smin represents the minimum of a noisy pixel,
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• smax is the maximum of a noisy pixel.

The image restoration problem is modeled into the following optimization problem [44]:

minH(u),

where

H(u) =
∑

(i ,j)∈G

 ∑
(m,n)∈Ti ,j/G

ϕα(ui ,j − ξm,n) +
1

2

∑
(m,n)∈Ti ,j∩G

ϕα(ui ,j − um,n)

 .

The function ϕα represent an edge-preserving potential function whose value is obtained as
follows: ϕα(t) =

√
t2 + α with the value of α = 1.

The results of the computational experiments are presented in Tables 2, 3, and 4 below. To
ascertain the efficiency and robustness of the proposed method, the performance results were
compared with other classical CG algorithms, including HYB [20], HLSDY[24] and HLSFR
[12] using strong Wolfe Powell line search. For each corrupted image, the noise degrees used
for the restoration are set as 30, 50, and 80, respectively.

Table 2. Image restoration outputs for PPRPDY, HYB, HLSDY, and HLSFR based on CPUT

METHOD PPRPDY HYB HLSDY HLSFR

IMAGE NOISE CPUT CPUT CPUT CPUT

BUILDING

30% 62.4159 62.6282 62.4700 62.4270
50% 102.0279 101.9619 104.0741 103.6416
80% 194.3993 193.8164 232.6671 231.2071

FOREST

30% 63.4620 63.0381 63.2526 63.4626
50% 110.6644 145.0043 106.2185 112.4114
80% 161.4432 161.2821 193.7045 193.5787

Table 3. Image restoration outputs for PPRPDY, HYB, HLSDY, and HLSFR based on RelErr

METHOD PPRPDY HYB HLSDY HLSFR

IMAGE NOISE RelErr RelErr RelErr RelErr

BUILDING

30% 1.4104 1.4329 1.4783 1.4414
50% 2.5548 2.6700 2.5230 2.5761
80% 4.8313 4.8461 5.0861 4.8323

FOREST

30% 1.0936 1.0979 1.1496 1.1285
50% 1.6217 1.6243 1.6532 1.6647
80% 2.5026 2.5598 2.7502 2.7449
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Table 4. Image restoration outputs for PPRPDY, HYB, HLSDY, and HLSFR based on PSNR

METHOD PPRPDY HYB HLSDY HLSFR

IMAGE NOISE PSNR PSNR PSNR PSNR

BUILDING

30% 29.6317 29.7734 29.7463 29.9338
50% 26.2685 26.0247 26.5364 26.5825
80% 22.4042 22.4246 22.3326 22.5295

FOREST

30% 28.4333 28.5001 28.3767 28.4810
50% 25.4001 25.4312 25.5076 25.3647
80% 22.1955 21.9519 21.7812 21.8414
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Fig. 4. Building image corrupted by 30, 50, and 80 % salt-and-pepper noise: (a,b,c), the
restored images using PPRPDY: (d,e,f), HYB: (g,h,i), HLSDY: (j,k,l), HLSFR (m,n,o)
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Fig. 5. Forest image corrupted by 30, 50, and 80 % salt-and-pepper noise: (a,b,c), the
restored images using PPRPDY: (d,e,f), HYB: (g,h,i), HLSDY: (j,k,l), HLSFR (m,n,o)
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Table 2 demonstrates the performance of all the methods on the restored Building and
Forest (512 × 512) grayscale images based on CPU time, Table 3 based on RelErr, and 4
based on PSNR as defined by [26]. Figures 4 and 5 further illustrate the graphical performance
of the methods on restoring the images based on 30%, 50%, and 80% noise degrees. Upon
analyzing the outcome, it is observed that the proposed PPRPDY restored all the corrupted
images with better accuracy compared to the HYB, HLSDY, and HLSFR methods.

6. Conclusion

In this paper, considering Perry’s [30] conjugacy condition, we propose a hybrid conjugate
gradient method. The method utilizes a revised PRP and DY methods in a convex combi-
nation to introduce a new CG parameter. By applying Powell’s restart technique [33], we
achieve the sufficient descent property and, consequently, a convergence result. Numerical
tests on standard nonlinear problems and an image restoration problem indicate the efficiency
of the proposed method compared to earlier CG methods. Moreover, robust numerical results
are obtained for the proposed scheme when t = 1.
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