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ABSTRACT

Within the context of Hilbert spaces, we demonstrate the robust con-
vergence of a hybrid steepest-descent approximant towards a solution
for a convex minimization problem. This problem is situated within
the space of solutions for equilibrium problems and the fixed point set
of a finite family of η-demimetric operators. Additionally, we present
numerical results that shed light on the effectiveness of the proposed
approximants, offering insights into potential applications.
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1. Introduction

Throughout this paper, we assume that H is a real Hilbert space and D ⊆ H is nonempty,
closed and convex. Let S : D → D be a nonexpansive mapping (i.e., ‖Su − Sv‖ ≤ ‖u − v‖)
and let Φ : H → R be a convex and bounded below function. The minimization problem over
the fixed point set of a mapping is defined as:

find u ∈ Fix(S) such that Φ(u) = inf Φ(Fix(S)), (1.1)

where Fix(S) = {u ∈ D; Su = u} denotes the fixed point set of S .

It is remarked that the problem (1.1) is equivalent to the following variational inequality
problem VIP(Φ́, Fix(S)) ([15]):

find u ∈ Fix(S) such that 〈v − u, Φ́(u)〉 ≥ 0, ∀v ∈ Fix(S), (1.2)
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provided that Φ is Gâteaux differentiable over an open set including Fix(S) where Φ́ denotes
the derivative of Φ.

For a slow decreasing sequence α∗k ⊂ (0, 1), the following class of hybrid steepest-descent
approximants (HSDA):

yk+1 = S(yk)− α∗k+1Φ́(S(yk)), (1.3)

is prominent for solving (1.2). The approximants (1.3) converges strongly to the set of
solutions of (1.2), involving a (quasi-)nonexpansive mapping S , under suitable set of conditions
on Φ, Φ́ and (α∗k) [28, 29]. A robust variant of HSDA, involving (asymptotically) quasi-
shrinking operators, was analyzed in [30].

In 2008, Maingé [18] studied the problem (1.1) involving a more general class of demicon-
tractive and demiclosed mapping via the following Mann-type variant of the HSDA:{

yk := xk − α∗kΦ́(xk);

xk+1 := (1− β)yk + βSyk .
(1.4)

The following compact form of (1.4) coincides with the HSDA:

yk+1 = Sβyk − α∗k+1Φ́(Sβ(yk)), (1.5)

where Sβ := (1− β)Id + βS and Id denotes the identity mapping.

In 1994, Blum and Oettli [13] proposed a systematic mathematical formulation of equilib-
rium problems to solve a diverse range of problems occurring in various branches of sciences.
Note that an equilibrium problem with respect to a (monotone) bifunction g̃ defined on a
nonempty subset C of a real Hilbert space H1 aims to find a point ū ∈ C such that

g̃ (ū, v̄) ≥ 0, for all v̄ ∈ C . (1.6)

The set of equilibrium points or the set of solutions of the problem (1.6) is denoted by EP(g̃).
The current literature provides various classical approximants to solve the equilibrium problem.
In 2006, Tada and Takahashi [23] suggested a hybrid framework for the analysis of monotone
equilibrium problem and fixed point problem in Hilbert spaces. This pioneering work drives the
mathematical research community to propose and analyze a combination of approximants to
address two or more abstract mathematical problems. On the other hand, the approximants
proposed in [23] fails for the case of pseudomonotone equilibrium problem. In order to address
this issue, Anh [1] suggested a hybrid extragradient method, based on the seminal work of
Korpelevich [17], to address pseudomonotone equilibrium problem together with the fixed
point problem (see also [2, 3, 4, 5, 6, 9, 10, 16, 8, 7, 10, 22]).

Motivated by these advancements and ongoing research, there is a natural inclination to
explore pseudomonotone EP and FPP within the realm of η-demimetric operators. Conse-
quently, we propose several variations of the classical Mann iterative algorithm [19] within
Hilbert spaces. These variants incorporate, aiming for robust strong convergence outcomes in
Hilbert spaces. Thus the following natural question arises in view of the architecture of the
approximants (1.4):

Can one modify the approximants (1.4) to solve the convex minimization problem (1.1)
over pseudomonotone equilibrium and the fixed point set of η-demimetric mapping? Answer-
ing this question in the affirmative, we propose a HSDA for the following convex minimization
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problem over the solution set of pseudomonotone equilibrium and the fixed point set of a
finite family of η-demimetric mapping in Hilbert spaces:

find ū ∈ (Fix(S) ∩ EP(g̃)) such that Φ(ū) = inf Φ((Fix(S) ∩ EP(g̃)). (1.7)

Recall that if Φ is Gâteaux differentiable over an open set including (Fix(S) ∩ EP(g̃)), with
its derivative denoted by Φ́, then (1.7) is equivalent to the variational inequality problem
VIP(Φ́, (Fix(S) ∩ EP(g̃)), that is

find ū ∈ (Fix(S) ∩ EP(g̃)) such that 〈u − ū, Φ́(ū)〉 ≥ 0, ∀u ∈ (Fix(S) ∩ EP(g̃)). (1.8)

As far as we know, such results have not so far appeared in the literature. The rest of the
paper is organized as follows: Section 2 contains some relevant preliminary concepts and
results for convex minimization problem, pseudomonotone equilibrium satisfying Lipschitz-
type continuity and fixed point problem. Section 3 comprises strong convergence results of
the proposed a HSDA whereas Section 4 provides numerical results concerning the viability
of the proposed approximants.

2. Preliminaries

For a nonempty closed and convex subset D ⊆ H, if S : D → H is an operator then
Fix(S) = {ν̄ ∈ H | ν̄ = S ν̄} represents the set of fixed points of the operator S . Recall that
the operator S is called η-demimetric (see [24]) where η ∈ (−∞, 1), if Fix(S) 6= ∅ and

〈µ̄− ν̄, µ̄− S µ̄〉 ≥ 1

2
(1− η)‖µ̄− S µ̄‖2, ∀µ̄ ∈ H and ν̄ ∈ Fix(S).

The above definition is equivalently represented as

‖S µ̄− ν̄‖2 ≤ ‖µ̄− ν̄‖2 + η‖µ̄− S µ̄‖2, ∀µ̄ ∈ H and ν̄ ∈ Fix(S).

For every point ū ∈ H, there exists a unique nearest point in D, denote by PDu, such that
‖u −PDu‖ ≤ |u − v‖ ∀u, v ∈ D. The mapping PD is called the metric projection of H onto
D. It is well known that PD is nonexpansive and satisfies 〈u −PDu, b−PDu〉 ≤ 0, ∀b ∈ D.

Asumption 2.1 ([12, 13]). Let g̃ : D × D → R ∪ {+∞} be a bifunction satisfying the
following assumptions:
(L1): g̃ is pseudomonotone, i.e., g̃(u, v) ≤ 0⇒ g(u, v) ≥ 0, for all u, v ∈ D;
(L2): g̃ is Lipschitz-type continuous, i.e., there exist two nonnegative constants d1, d2

such that

g̃(u, v) + g̃(v , n) ≥ g(u, n)− d1‖u − v‖2 − d2‖v − n‖2, for all u, v , n ∈ D;

(L3): g̃ is weakly continuous on D ×D in the sense that, if u, v ∈ D and (Θk), (bk) are two
sequences in D converge weakly to u and v respectively, then g̃(Θk , bk) converges to g̃(u, v);
(L4): For each fixed u ∈ D, g̃(u, .) is convex and subdifferentiable on D.

Now we introduce the architecture of the modified HSDA for computing the solution of
(1.7)-(1.8):
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Let g̃i : D×D → R∪{+∞}, i ∈ {1, 2, · · · , M} be a finite family of bifunctions satisfying
Assumption 2.1 and let Sj : D → H, j ∈ {1, 2, · · · , N} is a finite family of η-demimetric
mappings. Let Φ : D → R ∪ (−∞, +∞] is a proper, convex and bounded below function.

Assume that Π := (
⋂M

i=1(EP(g̃i )) ∩
⋂N

j=1 Fix(Sj)) 6= ∅. To this end, in a more general
framework, we investigate the convergence analysis of the sequence (Θk) generated with an
arbitrary Θ0 in H:

bk := Θk − αkΦ́(Θk);

pk := arg min{τ g̃i (bk , p) +
1

2
‖bk − p‖2 : p ∈ D}, i = 1, 2, · · · , M;

qk := arg min{τ g̃i (pk , p) +
1

2
‖bk − p‖2 : p ∈ D}, i = 1, 2, · · · , M;

Θk+1 :=
N∑
j=1

γj((1− βk)Id + βkSj)qk ,

(2.1)

for j = {1, 2, · · · , N}, γj ∈ (0, 1) such that
∑N

j=1 γj = 1, 0 < τ < min( 1
2d1

, 1
2d2

), αk ⊂ [0, 1)
and βk ∈ (0, 1). The following conditions are needed throughout paper:

(A1) 0 < a∗ ≤ βk ≤ min{1− η1, · · · , 1− ηN};

(A2) limk→∞ αk = 0;

(A3)
∑

k≥0 αk = +∞;

(A4) Φ́ is L-Lipschitz continuous on H (for some L ≥ 0); i.e.

‖Φ́(u)− Φ́(v)‖ ≤ L‖u − v‖, ∀u, v ∈ H.

(A5) Φ́ is Ψ-strongly monotone on H (for some Ψ > 0); i.e.

〈Φ́(u)− Φ́(v), u − v〉 ≥ Ψ‖u − v‖2, ∀u, v ∈ H.

It is noted that the unique existence of the solution of (1.8) is ensured by the conditions (A5)
and (A6) (see for instance [28]).

The following lemmas are helpful to prove the strong convergence results in the next
section.

Lemma 2.2. Let u, v , n ∈ H and a ∈ [0, 1] ⊂ R, then

1. ‖u + v‖2 ≤ ‖u‖2 + 2〈v , u + v〉;

2. ‖u − v‖2 = ‖u‖2 − ‖v‖2 − 2〈u − v , v〉;

3. ‖au + (1− a)v − n‖2 = a‖u − n‖2 + (1− a)‖v − n‖2 − a(1− a)‖u − v‖2.

Lemma 2.3 ([24]). Let S : D → H be an η-demimetric operator defined on a nonempty,
closed and convex subset D of a Hilbert space H with η ∈ (−∞, 1). Then Fix(S) is closed
and convex.
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Lemma 2.4 ([25]). Let S : D → H be an η-demimetric operator defined on a nonempty,
closed and convex subset D of a Hilbert space H with η ∈ (−∞, 1). Then the operator
L = (1− γ)Id + γS is quasi-nonexpansive provided that Fix(S) 6= ∅ and 0 < γ < 1− η.

Lemma 2.5 ([11]). Let S : D → D be a nonexpansive operator defined on a nonempty closed
convex subset D of a real Hilbert space H and let (Θk) be a sequence in D. If Θk ⇀ x and
if (Id − S)Θk → 0, then x ∈ Fix(S).

Lemma 2.6 ([12]). If the bifunction g satisfies Assumption 2.1, then the solution set EP(g)
is weakly closed and convex.

Lemma 2.7 ([26]). Let D be a nonempty closed and convex subset of a real Hilbert space H1

and let f : D → R be a convex and subdifferentiable function on D. Then, ū is the solution
of convex problem min{f (u) : u ∈ D}, if and only if 0 ∈ ∂~(ū) + ND(ū), where ∂f (·) denotes
the subdifferential of f and ND(ū) is the normal cone of D at ū.

Lemma 2.8 ([1, 21]). Suppose that ū ∈ EP(g̃i ), and Θk , pk , qk , i ∈ {1, 2, · · · , M} are
defined in via the approximants (2.1). Then we have

‖qk − ū‖2 ≤ ‖bk − ū‖2 − (1− 2τd1)‖pk − bk‖2 − (1− 2τd2)‖pk − qk‖2.

Lemma 2.9. Let g̃i : D×D → R∪{+∞}, i ∈ {1, 2, · · · , M} be a finite family of bifunctions
satisfying Assumption 2.1. Let Sj , j ∈ {1, 2, · · · , N} be a finite family of η-demimetric
mapping on H and Φ be a convex, bounded below and Gâteaux differentiable function on H
with derivative Φ́. Further assume that the conditions (A1)− (A2) and (A5) hold. Then the
sequence (Θk) given by (2.1) satisfies for all k ≥ 0,

Uk+1 − Uk +
1

2
(1− 2Lαk)‖Θk+1 −Θk‖2 ≤ −αk〈Θk − ū, Φ́(Θk)〉, (2.2)

where ū ∈ Fix(Sj) and

Uk :=
1

2
‖Θk − ū‖2 + αk(Φ(Θk)− inf Φ). (2.3)

Proof. Let ū ∈ Fix(Sj). Now, it follows from the approximants (2.1) and Lemma 2.4 that

‖Θk+1 − ū‖ = ‖
N∑
j=1

γj((1− βk)Id + βkSj)qk − ū‖ ≤
N∑
j=1

γj‖((1− βk)Id + βkSj)qk − ū‖

≤
N∑
j=1

γj‖qk − ū‖ = ‖qk − ū‖. (2.4)

From (2.1), we have
M∑
j=1

γj‖Θk+1 − qk‖ =
1

βk
(Θk+1 − qk).

Setting ξ := 1
βk

(1− ηj − βk), we get

‖Θk+1 − ū‖2 ≤ ‖qk − ū‖2 − ξ‖Θk+1 − qk‖2. (2.5)
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So therefore, if βk ∈ (0,
1−ηj

2 ] (so that ξ ≥ 1), we obtain

‖Θk+1 − ū‖2 ≤ ‖qk − ū‖2 − ‖Θk+1 − qk‖2. (2.6)

From the definition of (bk) and (A2)-(A3), we have

lim
k→∞

‖bk −Θk‖ = 0. (2.7)

From (2.1) and (A3), we have

‖bk − ū‖2 = ‖(Θk − ū)− αkΦ́(Θk)‖2

= ‖Θk − ū‖2 − 2αk〈Θk − ū, Φ́(Θk)〉+ α2
k‖Φ́(Θk)‖2

= ‖Θk − ū‖2. (2.8)

Thus we obtain

‖Θk+1 − ū‖ ≤ ‖Θk − ū‖.

Consider the following re-arranged variant of the estimate (2.4) and by applying Lemma 2.8:

(1− 2τd1)‖pk − bk‖2 − (1− 2τd2)‖pk − qk‖2 ≤ (‖Θk − ū‖+ ‖bk − ū‖)‖Θk − bk‖.

Letting k →∞ and utilizing (2.7), we have

(1− 2τd1) lim
k→∞

‖pk − bk‖2 − (1− 2τd2) lim
k→∞

‖pk − qk‖2 = 0. (2.9)

This implies that
lim

k→∞
‖pk − bk‖2 = lim

k→∞
‖pk − qk‖2 = 0. (2.10)

Further, from (2.7), (2.10) and the following triangular inequality, we have

‖qk −Θk‖ ≤ ‖qk − pk‖+ ‖pk − bk‖+ ‖bk −Θk‖ → 0. (2.11)

From the estimate (2.6) and the following triangle inequality, we have

‖Θk+1 − qk‖ ≤ ‖Θk+1 − bk‖+ ‖bk −Θk‖+ ‖Θk − qk‖.

From the above estimate and utilizing (2.7) and (2.11), we get

‖Θk+1 − qk‖ ≤ ‖Θk+1 − bk‖.

Rearranged the estimate (2.6), we have

‖Θk+1 − ū‖2 ≤ ‖bk − ū‖2 − ‖Θk+1 − bk‖2. (2.12)

Moreover

‖bk −Θk+1‖2 = ‖(Θk+1 −Θk) + αkΦ́(Θk)‖2

= ‖Θk+1 −Θk‖2 + 2αk〈Θk+1 −Θk , Φ́(Θk)〉+ α2
k‖Φ́(Θk)‖2

= ‖Θk+1 −Θk‖2 + 2αk〈Θk+1 −Θk , Φ́(Θk)− Φ́(Θk+1)〉
+2αk〈Θk+1 −Θk , Φ́(Θk+1)〉+ α2

k‖Φ́(Θk)‖2. (2.13)
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Using the L-Lipschitz continuity of Φ́ and the convexity of Φ, we obtain

〈Θk+1 −Θk , Φ́(Θk)− Φ́(Θk+1)〉 ≥ −L‖Θk+1 −Θk‖2

and
〈Θk+1 −Θk , Φ́(Θk+1)〉 ≥ Φ(Θk+1)− Φ(Θk).

Utilizing the above estimates in (2.13), we get

‖Θk+1 − bk‖2 ≥ ‖Θk+1 −Θk‖2 − 2αkL‖Θk −Θk+1‖2 + 2αk(Φ(Θk+1)− Φ(Θk))

+α2
k‖Φ́(Θk)‖2

= (1− 2Lαk)‖Θk+1 −Θk‖2 + 2αk(Φ(Θk+1)− Φ(Θk))

+α2
k‖Φ́(Θk)‖2. (2.14)

So therefore, from (2.8), (2.12) in (2.14), we get

‖Θk+1 − ū‖2 ≤ ‖Θk − ū‖2 − 2αk〈Θk − ū, Φ́(Θk)〉
−(1− 2Lαk)‖Θk+1 −Θk‖2 − 2αk(Φ(Θk+1)− Φ(Θk)).

Rearranging the above statement, we have

‖Θk+1 − ū‖2 + 2αk+1(Φ(Θk+1)− inf Φ)

≤ ‖Θk − ū‖2 + 2αk(Φ(Θk)− inf Φ)− 2αk〈Θk − ū, Φ́(Θk)〉
− (1− 2Lαk)‖Θk+1 −Θk‖2 − 2(αk − αk+1)(Φ(Θk+1)− inf Φ).

Note that, if αk is non-increasing, we have (αk − αk+1)(Φ(Θk+1)− inf Φ) ≥ 0, that is

1

2
‖Θk+1 − ū‖2 + αk+1(Φ(Θk+1)− inf Φ)

≤ 1

2
‖Θk − ū‖2 + αk(Φ(Θk)− inf Φ)− αk〈Θk − ū, Φ́(Θk)〉

− 1

2
(1− 2Lαk)‖Θk+1 −Θk‖2.

This is the required result.

The following results can easily be adopted from [18, Lemma 2.2 & 2.3].

Lemma 2.10. Let g̃i : D × D → R ∪ {+∞}, i ∈ {1, 2, · · · , M} be a finite family of
bifunctions satisfying Assumption 2.1. Let Sj ,j ∈ {1, 2, · · · , N} be a finite family of η-
demimetric mappings on H and Φ be a convex, bounded below and Gâteaux differentiable
function on H with derivative Φ́. If the condition (A6) holds, then for any ū ∈ Fix(Sj) and
any ε ∈ (0, 2), then sequence (Θk) given by (2.1) satisfies for all k ≥ 0,

〈Θk − ū, Φ́(Θk)〉 ≥ 1

1 + Ψεαk
(ΨεUk − (Dε + dΨεαk)), (2.15)

where

Uk :=
1

2
‖Θk − ū‖2 + αk(Φ(Θk)− inf Φ),

d := Φ(ū)− inf Φ,

Dε :=
‖Φ́(ū)‖2

2(2− ε)Ψ
.
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Assume that the conditions (A1)-(A2) and (A5) hold and suppose (αk) ⊂ (0, 1
2L ] (when

L 6= 0). Then we have for all k ≥ 0,

Uk ≤ U0e−
Ψε

1+Ψεα0
(
∑k

r=0 αr−α0) + (Dε + dΨεα0)
1 + 2Ψεα0

Ψε
e

2Ψε
1+Ψεα0 . (2.16)

Proof. See proof in [18].

Lemma 2.11. Let g̃i : D × D → R ∪ {+∞}, i ∈ {1, 2, · · · , M} be a finite family of
bifunctions satisfying Assumption 2.1. Let Sj ,j ∈ {1, 2, · · · , N} be a finite family of η-
demimetric mapping on H and Φ be a convex, bounded below and Gâteaux differentiable
function on H with derivative Φ́. If the conditions (A1)-(A3), (A5) and (A6) hold, then the
sequence (Θk) generated by (2.1) is bounded.

Proof. This result is easily can see in consequence of Lemma 2.10.

3. Strong Convergence Analysis

In this section, we first establish the following results for the strong convergence analysis
of the approximants (2.1).

Lemma 3.1. Let g̃i : D×D → R∪{+∞}, i ∈ {1, 2, · · · , M} be a finite family of bifunctions
satisfying Assumption 2.1. Let Sj : D → H be a finite family of ηj -demimetric mappings and

Φ be a convex, bounded below and Gâteaux differentiable function on H with derivative Φ́.
Assume that Π :=

⋂M
i=1(EP(g̃i )) ∩

⋂N
j=1 Fix(Sj) 6= ∅. Suppose that the demiclosed principle,

(A3) and (A5) hold and assume the sequence (Θk) generated by (2.1) is bounded and satisfies
‖Θk+1 −Θk‖ → 0. Then Θk ⇀ ū, ū ∈ Π and we have

lim inf
k→∞

〈Θk − ū, Φ́(ū)〉 ≥ 0,

where ū is the solution of (1.7) or (1.8).

Proof. Let (xkm) be a subsequence of (Θk) which converges weakly to an element x∗ in H.
Assume that ‖Θk+1 − Θk‖ → 0, αk → 0 and (Θk) is bounded, consequently, Θkm is weakly
converges to x∗ and ykm := Θkm − αkmΦ́(Θkm) converges weakly to x∗. Utilizing (A4) and
boundedness of Φ́(Θkm), we have αkm‖Φ́(Θkm)‖ → 0. From (2.1), we get

N∑
j=1

γj‖Sjqkm − qkm‖ = ‖Θkm+1 − qkm‖ → 0, j = 1, 2, · · · , N.

From the demiclosed principle of Sj , we obtain x∗ = Sjx
∗, j ∈ {1, 2, · · · , N}. Next, we show

that x∗ ∈
⋂M

i=1 EP(g̃i ).
Note that

pk = arg min{τ g̃i (Θk , p) +
1

2
‖Θk − p‖2 : p ∈ D}.

Using Lemma 2.7, we get

0 ∈ ∂2

{
τ g̃i (Θk , p) +

1

2
‖Θk − p‖2

}
(pk) + ND(pk).
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Then, there exist s ∈ ∂2g̃i (Θk , pk) and s̄ ∈ ND(pk) such that

τs + Θk − pk + s̄. (3.1)

Since s̄ ∈ ND(pk) and 〈s̄, p − pk〉 ≤ 0 for all p ∈ D. So, by using (3.1), we have

τ〈s, p − pk〉 ≥ 〈pk −Θk , p − pk〉, ∀p ∈ D. (3.2)

Since s ∈ ∂2g̃i (Θk , pk), therefore we have

g̃i (Θk , p)− g̃i (Θk , pk) ≥ 〈s, p − pk〉, ∀p ∈ D. (3.3)

Utilizing (3.2) and (3.3), we obtain

τ(g̃i (Θk , p)− g̃i (Θk , pk)) ≥ 〈pk −Θk , p − pk〉, ∀p ∈ D. (3.4)

Since Θkm ⇀ x∗ ∈ H as m→∞, therefore we have Θkm+1 ⇀ x∗ and Θkm ⇀ x∗ as m→∞.
Moreover, from bk ⇀ x∗ and ‖bk − pk‖ → 0 as k →∞ imply that pk ⇀ x∗. By using (L3)
and from (3.4), letting k →∞, we deduce that g̃i (x∗, p) ≥ 0 for all p ∈ D, i ∈ {1, 2, · · · , M}.
Therefore, x∗ ∈

⋂M
i=1 EP(g̃i ). Hence x∗ ∈ Π.

The term 〈Θk − ū, Φ́(ū)〉 is bounded, as (Θk) is bounded. So there exists a subsequence
(Θkm) weakly converges to a point x∗ ∈ H, so therefore x∗ ∈ Π and such that

lim inf
k→∞

〈Θk − ū, Φ́(ū)〉 = lim
m→∞

〈Θkm − ū, Φ́(ū)〉,

hence lim infk→∞〈Θk − ū, Φ́(ū)〉 = 〈x∗ − ū, Φ́(ū)〉. As ū is a solution of (1.8), we have
〈x∗ − ū, Φ́(ū)〉 ≥ 0. This is the required result.

Lemma 3.2. Let g̃i : D×D → R∪{+∞}, i ∈ {1, 2, · · · , M} be a finite family of bifunctions
satisfying Assumption 2.1. Let Sj : D → H is a finite family of ηj -demimetric mappings and

Φ be a convex, bounded below and Gâteaux differentiable function on H with derivative Φ́.
Assume that Π :=

⋂M
i=1(EP(g̃i )) ∩

⋂N
j=1 Fix(Sj) 6= ∅. Suppose that the demiclosed principle,

(A3), (A5) and (A6) hold and let the sequence (Θk) generated by (2.1) has a subsequence
(Θkm) such that:

(I) (Θkm) ⊂ Γ := {x ∈ H : 〈x − ū, Φ́(x)〉 ≤ 0}, where ū is the solution of (1.7) or (1.8).

(II) ‖Θkm+1 −Θkm‖ → 0 as k →∞.

Then (Θkm) converges strongly to ū.

Proof. It is observed that using (A6), we have Ψ‖Θkm − ū‖2 ≤ 〈Θkm − ū, Φ́(Θkm) − Φ́(ū)〉.
So (I ) implies that

Ψ‖Θkm − ū‖2 ≤ −〈Θkm − ū, Φ́(ū)〉. (3.5)

From (3.5), we obtain ‖Θkm − ū‖ ≤ Φ́(ū)
Ψ . So therefore, (Θkm) and as well Γ are bounded.

Consequently, a subsequence (Θkm) ∈ H converges weakly to a point x∗ ∈ H and utilizing
(II ), we obtain ‖Θkm −Θkm+1‖ → 0 as k →∞. Moreover, from (2.1), we have

βk‖qkm −
N∑
j=1

γjw
(j)
km
‖ ≤ βk

N∑
j=1

γj‖qkm − w
(j)
km
‖ (3.6)

=
1

βk
‖Θkm+1 − qkm‖ → 0, as k →∞.
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By using (A5) and since (αk)→ 0, qkm converges weakly to ū. Note that, x∗ ∈ Π, (as proved
in Lemma 3.1) and utilizing (3.5) and (1.7) entails

lim sup
k→+∞

‖Θkm − ū‖2 ≤ −(
1

Ψ
)〈x∗ − ū, Φ́(ū)〉 ≤ 0,

hence limm→+∞ ‖Θkm − ū‖ = 0. This is the required result.

Lemma 3.3. Let g̃i : D×D → R∪{+∞}, i ∈ {1, 2, · · · , M} be a finite family of bifunctions
satisfying Assumption 2.1. Let Sj : D → H is a finite family of η-demimetric mappings and

Φ be a convex, bounded below and Gâteaux differentiable function on H with derivative Φ́.
Assume that Π :=

⋂M
i=1(EP(g̃i )) ∩

⋂N
j=1 Fix(Sj) 6= ∅. Suppose that the demiclosed principle

and (A1)-(A6) hold and let the sequence (Θk) given by (2.1) satisfies:

(I) ‖Θk+1 −Θk‖ → 0.

(II) limk→∞ ‖Θk − ū‖ exists,

where ū is the solution of (1.7) or (1.8). Then (Θk) converges strongly to ū.

Proof. It is observed that from Lemma 2.11, (Θk) is a bounded sequence. Suppose that
limk→∞ ‖Θk − ū‖ = µ > 0 and utilizing Lemma 3.1, we have lim infk→∞〈Θk − ū, Φ́(ū)〉 ≥ 0
and also from (A6), we get

〈Θk − ū, Φ́(Θk)〉 ≥ Ψ‖Θk − ū‖2 + 〈Θk − ū, Φ́(ū)〉.

After simplification, we obtain

lim inf
k→
〈Θk − ū, Φ́(Θk)〉 ≥ Ψµ2.

It deduced from Lemma 2.9 that there exists k0 ≥ 0 such that for k ≥ k0,

Vk+1 − Vk ≤ −αk(
1

2
Ψµ2),

where Vk := 1
2‖Θk − ū‖2 + αk(Φ(Θk)− inf Φ). It yields

(
1

2
Ψµ2)

k∑
m=k0

αk ≤ Vk0 − Vk+1.

It is observe from the above estimate, if
∑
αk =∞, then the last inequality is inappropriate

as k →∞, because (Θk) is bounded, so its right hand side is supposed to be bounded, while
the left hand side approaches to +∞. Hence, as consequence µ = 0. This is the required
result.

Theorem 3.4. Let g̃i : D×D → R∪{+∞}, i ∈ {1, 2, · · · , M} be a finite family of bifunctions
satisfying Assumption 2.1. Let Sj : D → H is a finite family of ηj -demimetric mappings and

Φ be a convex, bounded below and Gâteaux differentiable function on H with derivative Φ́.
Assume that Π :=

⋂M
i=1(EP(g̃i )) ∩

⋂N
j=1 Fix(Sj) 6= ∅. Suppose that (A1)-(A6) hold then the

sequence (Θk) given by (2.1) converges strongly to ū, where ū is the unique solution of (1.7)
or (1.8).
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Proof. It follows from Lemma 2.10 that if Vk = 1
2‖Θk − ū‖2 + α∗k(Φ(Θk) − inf Φ), then

both (Vk) and (Θk) are bounded. Hence, there exists a constant M ≥ 0 such that ‖〈Θk −
ū, Φ́(Θk)〉‖ ≤ M for all k ≥ 0. Utilizing Lemma 2.9, it yields

Vk+1 − Vk +
1

2
(1− 2Lα∗k)‖Θk+1 −Θk‖2 ≤ Mα∗k . (3.7)

For simplification, we consider the following two cases:

Case A. In the first instance, we assume that (Vk) is monotone, i.e., for large enough
k0, (Vk)k≥k0 is either non-increasing or non-decreasing. In addition, (Vk) is bounded and
hence it is convergent. Using (C2), that limk→+∞ ‖Θk − ū‖ exists. Utilizing (3.7) and
limk→∞ ‖Vk+1 − Vk‖ = 0, we have

lim
k→∞

‖Θk+1 −Θk‖ = 0. (3.8)

Now, consider the re-arranged version of the estimate (2.4) and using (A1), we have

βk(1− ηj − βk)
M∑
j=1

γj‖qk − Sjqk‖2 ≤ ‖Θk − ū‖2 − ‖Θk+1 − ū‖2

≤ (‖Θk − ū‖+ ‖Θk+1 − ū‖)‖Θk −Θk+1‖.

Letting k →∞ and utilizing (3.8), we have

βk(1− ηj − βk)
M∑
j=1

γj‖bk − Sjqk‖2 = 0. (3.9)

It is observed that

N∑
j=1

γj‖Sjqk − qk‖ =
1

βk
‖Θk+1 − qk‖ → 0, j = 1, 2, · · · , N.

The above estimate implies that

lim
k→∞

‖qk −Θk+1‖ = 0. (3.10)

From (3.8), (3.10) and the following triangular inequality:

‖qk −Θk‖ ≤ ‖qk −Θk+1‖+ ‖Θk+1 −Θk‖,

we get
lim

k→∞
‖qk −Θk‖ = 0. (3.11)

Hence from Lemma 3.3, we deduce that ū ∈ Π.

Case B. Conversely, suppose (Vk) is not monotone sequence and for all k ≥ k0 (for some
k0 large enough). Let a mapping ω : N→ N defined by

ω(k) := max{m ∈ N; m ≤ k, Vk ≤ Vk+1}. (3.12)
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Note that, ω is a non-decreasing sequence imply that ω(k) → +∞ as k → +∞ and Vωk
≤

Vω(k)+1 for k ≥ k0, so therefor by using (3.7), it yields

1

2
(1− 2Lαω(k))‖Θω(k)+1 −Θω(k)‖2 ≤ Mαωk

→ 0, (3.13)

hence, ‖Θω(k)+1−Θω(k)‖ → 0. Utilizing Lemma 2.9, for any n ≥ 0, the inequality Vn+1 < Vn

holds provided that Θn /∈ Γ := {Θ ∈ H; 〈Θ − ū, Φ́(Θ)〉 ≤ 0}. Consequently, we have
Θω(k) ∈ Γ for all k ≥ k0 (since Vω(k) ≤ Vω(k)+1). By using Lemma 3.2, we conclude that
‖Θω(k) − ū‖ → 0 and it follows that

lim
k→∞

Vω(k) = lim
k→∞

Vω(k)+1 = 0.

Moreover, for k ≥ k0, it is mention that Vk ≤ Vω(k)+1 if k 6= ω(k), that is, ω(k) < k,
because we have Vn > Vn+1 for ω(k) + 1 ≤ n ≤ k − 1. It follows that for all k ≥ k0,
0 ≤ Vk ≤ max{Vω(k), Vω(k)+1} → 0, hence limk→∞ Vk = 0. This completes the proof.

4. Numerical Experiment and Results

This section provides effective viability of our approximants supported by a suitable exam-
ple.

Example 4.1. Let H = R , D ⊂ H the set of all real numbers, with the inner product defined
by 〈x , y〉 = xy , for all x , y ∈ R and induced usual norm | · |. For each i ∈ {1, 2, 3, ..., M},
let g̃i : H1 → H1 be a finite family of bifunctions satisfying Assumption 2.1, and let the
bifunctions g̃i (x , y) : R→ R be defined by g̃i (x , y) = Ei (x)(y − x), where

Ei (x) = 0, if 0 ≤ x ≤ τi ,
and
Ei (x) = sin(x − τi ) + exp(x − τi )− 1, if τi ≤ x ≤ 1,

where 0 < τ1 < τ2 < · · · < τM < 1. Suppose Φ : R → (−∞,∞] is defined as Φ(x) =
1
2 |Ãx− ε|2, with Ãx = 0 = ε. Then Φ is a proper, convex and lower semicontinuous mapping,

since Ã is a continuous linear mapping (see[20]). For each j ∈ {1, 2, · · · , N}, let the family
of operators Sj : R→ R be defined by

Sj(s) =

{
− 3s

j , s ∈ [0,∞);

s, s ∈ (−∞, 0).

Clearly, Sj defines a finite family of η-demimetric operators with
⋂N

j=1 Fix(Sj) = {0}. Hence

Γ = (
⋂M

i=1 EP(gi )) ∩ (
⋂N

j=1 Fix(Sj)) = 0.

It is easy to prove that the conditions (L3) and (L4) for the bifunctions g̃i are satisfied.
Since Ei (x) is nondecreasing on [0, 1], we have

g̃i (x , y) + g̃i (y , x) = (x − y)(Ei (y)− Ei (x)) ≤ 0.

It is noted that every monotone function is also pseudomonotone, so g̃i is monotone and it
also pseudomonotone. Furthermore, Ei (x) is 4-Lipschitz continuous. After simple calculation,
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it yields,

g̃i (x , y) + g̃i (y , z)− g̃i (x , z) = (y − z)(Ei (x)− Ei (y))

≥ −4|x − y ||y − z |
≥ −2(x − y)2 − 2(y − z)2,

which shows that the Lipschitz-type continuity of g̃i with d1 = d2 = 2. Thus, we have

g̃i (x , y) = Ei (x)(y − x) ≥ 0,

for all y ∈ [0, 1], if and only if 0 ≤ x ≤ τi , i.e., EP(g̃i ) = [0, τi ]. It is noted that
⋂M

i=1 EP(g̃i ) =

[0, τ1]. Hence Γ = Ω∩
⋂M

i=1 EP(gi ) = 0. In order to compute Θk+1, for each j ∈ {1, 2, · · · , N},
take Sj = S . We know that S is η-demimetric mapping with a constant η = 96

121 . Choose
Sjqk = −5qk , βk = 1

1+100k , γ = 1
7 , M = 2 × 105, and N = 3 × 104. For the numerical

experiment of the HSDA 2.1, the stopping criteria is defined as Error = Ek = ‖Θk −Θk−1‖ <
10−5. The different cases of x0 are giving as following:
Case I: x0 = 2,
Case II: x0 = −3.7.

Table 1. Computations of the approximants 2.1 with different values of αk .

No. of Iterations CPU Time

Case I Case II Case I Case II

Thm. 3.4 (α = 0.95) 10 30 0.043279 0.048213
Thm. 3.4 (α = 0.75) 29 41 0.046856 0.054741
Thm. 3.4 (α = 0.50) 37 51 0.051886 0.061019
Thm. 3.4 (α = 0.25) 45 69 0.064893 0.089532

The error plotting ‖Θk −Θk−1‖ against the approximants 2.1 for each case in Table 1 has
shown in Figure 1.

Remark 4.2.

1. The example presented above elaborate the impact of different values of αk on our
proposed approximants.

2. The numerical results presented in Table 1 and Figures 1 indicate that our proposed
approximants is efficient, easy to implement and does well for any values of α 6= 0 in
both number of iterations and CPU time required.

3. We observe that the CPU time of the approximants 2.1 increases, but the number of
iterations decreases when the parameter α approaches 1.
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Fig. 1. Computations of No. of Iterations and Error for iterative schemce 2.1

5. Conclusions

In this paper, we have devised a modified HSDA for computing the convex minimization
problems over the solution set of pseudomontone equilibrium problem and the set of fixed point
set of a finite family of ηj -demimetric mappings in Hilbert space. The theoretical framework
of the algorithm has been strengthened with an appropriate numerical example. As far as
we know, such results have not so far appeared in the literature and as a consequence, our
theoretical framework constitutes an important topic of future research.
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