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ABSTRACT

Fermatean fuzzy sets (FFS) generalized the Intuitionistic fuzzy set and
Pythagorean fuzzy set in terms of more space available to choose or-
thopairs. The manuscript provides Chi-square and Canberra divergence
measures for FFSs. Divergence measurements’ additional characteris-
tics are looked into to ensure good performance. The entropy and
dissimilarity measures from the suggested divergence measures are de-
rived. A technique is developed to transform the real or fuzzy data
into Fermatean fuzzy data. An empirically successful VIKOR method
is extended for FFSs. The Australasian New Car Assessment Program
(ANCAP) provides the star rankings from a safety point of view for
each vehicle. The VIKOR method is employed to draw safety rank-
ings of small cars tested from 2019 to 2021 by ANCAP. The numerical
examples are given to clarify each method under discussion.
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1. Introduction

The notion of fuzzy sets was developed as a way to mathematically represent the ambiguity
we often use to explain events that don’t have clearly defined boundaries. The number of
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items encountered in human reasoning that can be the subject of scientific research is enlarged
by employing the idea of partial degrees of membership to create a mathematical description
of fuzzy sets [30]. However, The negative side of information is required in real-life scenarios
and cannot only be retrieved from the positive side. For instance, the use of antibiotic
medications, while beneficial in the treatment of various diseases, has some adverse effects
on the body. Information’s positive and negative aspects can be viewed as membership
degree (MD) and non-membership degree (non-MD), respectively. A non-MD is distinct
from a MD. In particular, Atanassov pioneered the idea of taking into account both MD
and non-MDs and gave it the name intuitionistic fuzzy set (IFS) [2]. Figure 1 provides the
geometric explanation of an IFS. In Figure 1, (1, 0) and (0, 1) symbolize absolute agreement
and total disagreement, respectively, whereas (0, 0) denotes utter obscurity or ignorance of
the situation. The triangular region’s ordered pair (µ(u), ν(u)), also known as intuitionistic
fuzzy value (IFV), indicates that the individual is µ percent agrees with the circumstance u
and ν percent disagrees with it.
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Fig. 1. Geometrical exposition of an IFS

The constraint on membership and non-membership may limit the applicability of IFS,
despite the fact that it has been used to solve a variety of issues. This problem is somehow
addressed by the introduction of Pythagorean fuzzy sets (PFSs) by Yager [28]. It relaxed the
defining conditions, where sum of membership and no-MDs should be less than or equal to
one. Recently, Senapati and Yager [27] extended the idea of IFS and PFS to Fermatean fuzzy
sets (FFS). FFSs provides the larger space to choose orthopairs. In FFSs, the sum of cube of
membership and non-MDs should be less than or equal to one. Figure 2 shows the geometrical
interpretations of PFSs and FFSs. A clear picture of expanding the space for orthopairs for
FFSs can be seen in Figure 2.

As it provides the larger space to choose orthopairs for membership and non-membership
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Fig. 2. The geometrical expositions and a comparison between the spaces available for IFS,
PFS, and FFS

grades, many scholars have worked on its applications. The Fermatean fuzzy weighted average
and geometric aggregation operators were established by Senapati and Yager [25]. They
also discussed subtraction, arithmetic mean, and division operations for FFSs [26]. Garg
et al. [7] developed different aggregation operators for FFSs and applied them to Covid-
19 testing facility. Ghorabaee et al. [13] extended WASPAS for FFSs and discussed their
applications to green supplier evaluation. Fermatean fuzzy Einstein aggregation operators and
their applications were discuused by Akram et al. [1]. Liu et al. [17] introduced Fermatean
fuzzy linguistic term set and their aggregation operators. MULTIMOORA method based on
Fermatean fuzzy Einstein aggregation operators was discuused by Rani and Mishra [21]. The
interval-valued FFSs and their basic properties were established by Jeevaraj [11]. Sahoo [24]
provided new score function for FFSs and discussed fuzzy transportation problems. Fermatean
fuzzy SAW, ARAS, and VIKOR method extensions were focused by Gul [8]. The MCDM
method was developed based on Dempster–Shafer theory and entropy measure for FFSs [5].
Fermatean fuzzy Hamacher aggregation operators were established by Hadi et al. [9]. Aydemir
discussed TOPSIS method using dombi aggregation operators for FFSs [3]. CRITIC-EDAS
method for FFS and their applications to sustainable third-party reverse logistics providers
were discussed by Mishra et al. [18].

Divergence measures were first proposed in classical probability spaces as a way to compare
two probability distributions. The expression to estimate the difference between two fuzzy
sets was developed by Bhandari et al. [4]. They suggested the non-negativity, symmetry, and
identity of indiscernibles properties for the formula for divergences. Montes et al. [19] later
presented an axiomatic definition for fuzzy divergence. Divergence measures play a significant
role and are used in a variety of contexts, including image processing, image thresholding,
decision-making, edge detection, pattern recognition, clustering, figure skating, et cetera [4,



34 W. Kumam et al.

19, 20, 15]. Zhou et al. [31] established the divergence metrics for the PFS based on the
belief function. By using the divergence metric dependent VIKOR approach in a PF domain,
renewable energy technologies were evaluated [22]. The axiomatically supported divergence
measurements for the q-rung orthopair fuzzy environment were proposed by Khan et al. [14].
Riaz et al. [23] talked about correlation coefficients and how they are used in pattern analysis
and clustering. Khan et al. [16] gave the theoretical justifications for the VIKOR method’s
successful empirical use.

The Australasian New Car Assessment Program (ANCAP) provides the safety ratings for
each vehicle in a particular category. ANCAP is an Australasian-based independent vehicle
safety authority established in 1993 and issues safety ratings for thousands of new vehicle
makes models and variants. It provides relative safety ratings between vehicles of similar size.
ANCAP safety ratings are helpful for occupants and pedestrians to avoid or minimize the
effects of a crash. Although these ratings are valuable, ANCAP has not provided any specific
rankings of vehicles. An interested buyer of a vehicle has many options, if he follow NCAP
Safety Ratings. There are many vehicles with maximum (five) stars ratings. Therefore, it is
hard for a person to choose a specific vehicle based on ANCAP Safety Ratings. Therefore, a
method or technique is required to draw the rankings of vehicles that occurred in the same
category. It will surely be helpful for the buyers. For more details, we refer to Section 5.2.

The motivations behind the extensions of fuzzy set theory are to provide the mechanism
to deal with the uncertainty that transpires in real-life problems. Due to it, the fuzzification
of the real data is of paramount importance. There exist many techniques to fuzzify real-life
data. But there does not exist any approach for obtaining the data in Fermatean fuzzy form.
Thus we provide a new appproach to transform the data into Fermatean fuzzy form. We are
also driven to develop additional functions that extend the VIKOR technique for FFSs while
respecting the axiomatic assumptions of divergence measures. The manuscript discusses the
fuzziness and dissimilarity measures for FFSs. Lastly, we are motivated to provide the safety
rankings to small cars tested by ANCAP during 2019 to 2021.

With that in mind, the purpose of this article is to describe novel divergence functions,
uncertainty (entropy), and dissimilarity measurements for FFSs. And to provide a method of
transformation of real or fuzzy data into Fermatean fuzzy form. Also, to continue the VIKOR
approach for FFSs and to produce the safety rankings for small cars tested by ANCAP from
2019 to 2021.

The manuscript’s key contributions are:

• We suggest Canberra divergence and generalized Chi-square measures for FFSs. We
establish these measurements’ axiomatic validity.

• We examine the extra characteristics of these systems that support mathematical rea-
soning.

• We talk about the measurements of entropy and dissimilarity for FFSs.

• We present a technique to transform real or fuzzy data into Fermatean fuzzy data.

• The study provides the safety rankings of small cars tested from 2019 to 2021 by ANCAP.

• The manuscript develops the FFSs VIKOR technique.

• This paper gives examples to illustrate our suggested approach.
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The remainder of the article is structured as follows: Section 2 covers the fundamentals of
FFSs. Section 3 proposes the new divergence measurements and their additional features for
FFSs. In Sections 3.1 and 3.2, respectively, it is discussed how divergence metrics transform
into entropy and dissimilarity measures. The process of converting real data into Fermatean
fuzzy data is explained in Section 4. In Section 5.1, the divergence measure-based VIKOR
approach for FFSs is suggested. Section 5.2, it is detailing how the suggested VIKOR approach
can be used to rank the safety of small cars that have undergone ANCAP testing. The
manuscript’s concluding observations are included in Section 7.

2. Preliminaries

The fundamental definitions of FFSs are included in this section. There is mention of the
fundamental functions of FFSs. Throughout the entire manuscript, U is a finite non-empty
set called the universal set. Besides, the unit interval [0, 1] is represented by I.

Definition 2.1. [2] An IFS A over a universal set U is defined as

A = {(u,µP(u), νP(u)) | u ∈ U},

where µA : U → I and νA : U → I, with the constraint µA(u) + νA(u) ≤ 1, are the MDs
and non-MDs, respectively. The expression πA(u) = 1− (µA(u) + νA(u)) gives the hesitancy
degree of an element u ∈ U.

3. Divergence Measures for FFSs

This section provides the axiomatic definition of FFSs’ divergence measures. It investigates
several functions that are consistent with the axioms underlying the FF divergence measure.
We discuss the additional attributes of the suggested divergence measures and place special
emphasis on the entropy and dissimilarity measures for FFSs.

Definition 3.1. If a function Div : C (U) × C (U) → < satisfies the following axioms, it is
referred to as a divergence measure for FFSs: for each A1, A2, A3 ∈ C (U),

(D1) Div(A1, A2) = Div(A2, A1).

(D2) Div(A1, A2) = 0⇐⇒ A1 = A2.

(D3) Div(A1 ∪ A3, A2 ∪ A3) ≤ Div(A1, A2).

(D4) Div(A1 ∩ A3, A2 ∩ A3) ≤ Div(A1, A2).

Unless otherwise stated, in this section A1 = {(ui ,µA1 (ui ), νA1 (ui )) | i = 1, ... , n} and
A2 = {(ui ,µA2 (ui ), νA2 (ui )) | i = 1, ... , n} designate FFSs on the same set U = {u1, ... , un}.

Definition 3.2. The interpretation of the divergence functions based on chi-square distances
for FFSs is

D̄1(A1, A2) =
1

n

n∑
i=1


(
µβA1

(ui )− µβA2
(ui )

)2

λ+ µβA1
(ui ) + µβA2

(ui )
+

(
νβA1

(ui )− νβA2
(ui )

)2

λ+ νβA1
(ui ) + νβA2

(ui )

 , (3.1)

where λ > 0 and 1 ≤ β ≤ 3.
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Remark 3.3. The values of the parameters λ and β chosen empirically. For other values, the
function still remain the divergence measure for FFSs. It is better to take the minimum value
for λ.

Theorem 3.4. The mapping D̄1 : C (U)×C (U)→ < described in (3.1) satisfies the divergence
measure axioms.

Proof. We must confirm the divergence axioms for D̄1 to finish the proof.

• (D1-D2) Straightforward.

• (D3) For any FFSs A1 = (µA1 , νA1 ), A2 = (µA2 , νA2 ) and A3 = (µA3 , νA3 ), the mapping
D̄1 requires to fulfill

D̄1(A1 ∩ A3, A2 ∩ A3) ≤ D̄1(A1, A2). (3.2)

Now,

D̄1(A1 ∩ A3, A2 ∩ A3) =
1

n

n∑
i=1


(

(min{µA1 ,µA3})
β − (min{µA2 ,µA3})

β
)2

λ+ (min{µA1 ,µA3})
β + (min{µA2 ,µA3})

β

+

(
(max{νA1 , νA3})

β − (max{νA2 , νA3})
β
)2

λ+ (max{νA1 , νA3})
β + (max{νA2 , νA3})

β

 . (3.3)

From min{µA1 ,µA3}, min{µA2 ,µA3}, max{νA1 , νA3}, and max{νA2 , νA3}, the following
results are deduced,

µA1 ≤ µA3 ≤ µA2 or µA2 ≤ µA3 ≤ µA1 or (3.4)

µA3 ≤ {µA1 &µA2} or µA3 ≥ {µA1 &µA2} & (3.5)

νA1 ≤ νA3 ≤ νA2 or νA2 ≤ νA3 ≤ νA1 or (3.6)

νA3 ≤ {νA1 &νA2} or νA3 ≥ {νA1 &νA2}. (3.7)

The proof becomes straightforward for the inequalities in (3.5) and (3.7). We prove
the results for (3.4) and (3.6). If µA1 ≤ µA3 ≤ µA2 and νA2 ≤ νA3 ≤ νA1 , then (3.3)
becomes

D̄1(A1 ∩ A3, A2 ∩ A3) =
1

n

n∑
i=1


(
µβA1
− µβA3

)2

λ+ µβA1
+ µβA3

+

(
νβA1
− νβA3

)2

λ+ νβA1
+ νβA3

 .

The divergence between the two FFSs A1 and A2 is

D̄1(A1, A2) =
1

n

n∑
i=1


(
µβA1
− µβA2

)2

λ+ µβA1
+ µβA2

+

(
νβA1
− νβA2

)2

λ+ νβA1
+ νβA2

 .
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Since β ≥ 1, therefore, µβA1
≥ µβA3

≥ µβA2
and νβA2

≥ νβA3
≥ νβA1

, we have(
µβA1
− µβA3

)2

λ+ µβA1
+ µβA3

≤

(
µβA1
− µβA2

)2

λ+ µβA1
+ µβA2

&

(
νβA1
− νβA3

)2

λ+ νβA1
+ νβA3

≤

(
νβA1
− νβA2

)2

λ+ νβA1
+ νβA2

.

This implies
D̄1(A1 ∩ A3, A2 ∩ A3) ≤ D̄1(A1, A2).

We can similarly confirm the remaining parts of axiom (D3).

• (D4) Similar to the evidence of (D3).

The metric D̄1 is a divergence metric for FFSs as a result. It is simple to prove the evidence
for U = {u1, u2, ... , un}.

Definition 3.5. The interpretation of divergence functions based on the Canberra distances
for FFSs is

D̄2(A1, A2) =
1

n

n∑
i=1

[
| µβA1

(ui )− µβA2
(ui ) |

λ+ µβA1
(ui ) + µβA2

(ui )
+
| νβA1

(ui )− νβA2
(ui ) |

λ+ νβA1
(ui ) + νβA2

(ui )

]
, (3.8)

where λ > 0 and 1 ≤ β ≤ 3.

Theorem 3.6. The expression D̄2 : C (U) × C (U) → < described in (3.8) satisfies the
divergence axioms.

Proof. The evidence resembles the evidence of Theorem 3.4.

There are further properties that the chi-square and Canberra divergence measures meet
to ensure acceptable theoretical performance. They are shown in the following result.

Theorem 3.7. The following properties are true for the divergence measures D̄k (k = 1, 2):
If A1, A2 and A3 be three FFSs, then
T1. For λ = 1, D̄k(A1, Ac

1) = 1 if and only if either µA1 = 1 or νA1 = 1.
T2. D̄k(Ac

1, A2) = D̄k(A1, Ac
2).

T3. D̄k(A1, A2) = D̄k(Ac
1, Ac

2).
T4. D̄k(A1 ∪ A2, A1 ∩ A2) = D̄k(A1, A2).
T5. D̄k(A1 ∪ A2, A3) ≤ D̄k(A1, A3) + D̄k(A2, A3).
T6. D̄k(A1 ∩ A2, A3) ≤ D̄k(A1, A3) + D̄k(A2, A3).
T7. Whenever A1 ⊆ A2 ⊆ A3, we have D̄k(A1, A3) ≥ max{D̄k(A1, A2), D̄k(A2, A3)}.

Proof. Suppose A1 = (µA1 , νA1 ), A2 = (µA2 , νA2 ) and A3 = (µA3 , νA3 ) to be three FFSs. Since

D̄1 and D̄2 includes the factors 4µ12 = µβA1
− µβA2

and 4ν12 = νβA1
− νβA2

. These variables
form the basis of the divergence measures. With the aid of these elements, we prove the
claims (T1-T7). If the related factors are identical on both sides, the proof will be considered
conclusive.
T1: If P = (µP , νP), then Pc = (νP ,µP). The metric D̄1 becomes

D̄1(P, Pc) =
2
(
µβP − ν

β
P

)2

1 + µβP + νβP
. (3.9)
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Equation (3.9) becomes one only if either µA = 1 or νA = 1.
T2: For A1 = (µA1 , νA1 ) and A2 = (µA2 , νA2 ), their complements become Ac

1 = (νA1 ,µA1 ) and

Ac
2 = (νA2 ,µA2 ). The measure D̄1(Ac

1, A2) contains 4u12 = νβA1
−µβA2

and 4v12 = µβA1
− νβA2

.

Also, the measure D̄1(A1, Ac
2) includes 4u?12 = µβA1

− νβA2
and 4v?12 = νβA1

− µβA2
. It indicates

that identical elements are present on both sides, guaranteeing that both sides are equal.
T3: Similar to the evidence from the earlier part.
T4: The side D̄1(A1∪A2, A1∩A2) comprises of the following factors4u12 = (max{µA1 ,µA2})

β−
(min{µA1 ,µA2})

β , and 4v12 = (min{νA1 , νA2})
β − (max{νA1 , νA2})

β . While D̄1(A1, A2) in-

volves 4u?12 = µβA1
− µβA2

and 4v?12 = νβA1
− νβA2

. It implies that | 4u12 |=| 4u?12 | and
| 4v12 |=| 4v?12 |, which guarantees that both sides are equal.
T5-T6: Straightforward.
T7: Similar to the Theorem 3.4 proof.

3.1. Entropy Measure for FFSs

We present the divergence-based entropy metrics for FFSs in this section.

Definition 3.8. According to the divergence measures D̄1 and D̄2, the entropy measures of
an FFS are as follows: for each A ∈ C (U),

Ēk(A) = 1− 1

Fk
D̄k(A, Ac), (3.10)

where Fk is the constant function used to normalize the values and D̄k(P, Pc) are

D̄1(A, Ac) =
2

n

n∑
i=1


(
µβA(ui )− νβA(ui )

)2

λ+ µβA(ui ) + νβA(ui )

 ,

D̄2(A, Ac) =
2

n

n∑
i=1

[
| µβA(ui )− νβA(ui ) |
λ+ µβA(ui ) + νβA(ui )

]
.

The key assertion of this section is stated in the result that follows.

Theorem 3.9. The function Ēk : C (U)→ [0, 1] expounded in (3.10) is an entropy measure.

Proof. Straightforward.

3.2. Dissimilarity Measure for IFSs

The research that has already been done on intuitionistic fuzzy divergences attests to the
fact that they are the proper subset of the IF dissimilarity measures [20]. We do, however,
confirm that the outcome holds true for FFSs. In other words, the axioms of dissimilarity
measures are satisfied by the divergence measures D̄1 and D̄2.

Definition 3.10. If a mapping Diss : C (U) × C (U) → < abides by the following axioms, it
is referred to as a dissimilarity measure for FFSs: for each A1, A2, A3 ∈ C (U),

(D1) Diss(A1, A2) = Diss(A2, A1).
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(D2) Diss(A1, A2) = 0⇐⇒ A1 = A2.

(D3) Whenever A1 ⊆ A2 ⊆ A3, we have D̄k(A1, A3) ≥ max{D̄k(A1, A2), D̄k(A2, A3)}.

Theorem 3.11. The mappings D̄1&D̄2 : C (U) × C (U) → I abides the axioms of Definition
3.10.

Proof. It is directed by reasoning’s of Theorems 3.4-3.7.

The next result confirms how well the recommended divergence measures D̄1 and D̄2

perform in comparison to the strict inclusion relation.

Theorem 3.12. Let A1, A2 and A3 be three FFSs on U. If A1 ⊆ A2 ⊆ A3 with µA1 ≤ µA2 ≤ µA3

and νA1 > νA2 > νA3 or µA1 < µA2 < µA3 and νA1 ≥ νA2 ≥ νA3 , or µA1 < µA2 < µA3 and
νA1 > νA2 > νA3 . Then D̄1 and D̄2 satisfies

D̄k(A1, A3) > max{D̄k(A1, A2), D̄k(A2, A3)}.

Proof. It is directed by reasoning’s of Theorems 3.4-3.7.

4. Transformation of Real Data into Fermatean Fuzzy Data

The motivations behind the extensions of fuzzy set theory are to provide the mechanism
to deal with the uncertainty occurred in real-life problems. Due to it, the fuzzification of
the real data is of paramount importance. There exist many techniques to fuzzify the data.
But there does not exist a technique for obtaining the data in Fermatean fuzzy form. Thus
we provide a new technique to transform the data into Fermatean fuzzy form. Before going
into the main discussion, let L∗ denote the set of all ordered pairs such that L∗ = {(M, N) |
(M, N) ∈ [0, 1]× [0, 1] & M + N ≤ 1}.

Definition 4.1. The mapping F : [0, 1]3 → L∗ given by

F (µ, c , t) = (M(µ, c , t), N(µ, c , t)) ,

where

M(µ, c , t) = ((1− tc)µ)
1
3 ,

N(µ, c , t) = (1− (1− tc)µ− tc)
1
3 ,

satisfies that

1. If c1 > c2, then π (F (µ, c1, t)) > π (F (µ, c2, t)).

2. If t1 > t2, then M(µ, c , t1) < M(µ, c , t2) and N(µ, c , t1) < N(µ, c , t2), for all µ, c ∈
[0, 1].

3. F (0, c , t) =
(

0, (1− tc)
1
3

)
, for all c , t ∈ [0, 1].

4. F (µ, 0, t) =
(
µ

1
3 , (1− µ)

1
3

)
, for all µ, t ∈ [0, 1].
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5. F (µ, c , 0) =
(
µ

1
3 , (1− µ)

1
3

)
, for all µ, c ∈ [0, 1].

6. π (F (µ, c , t)) = (tc)
1
3 .

Theorem 4.2. Let B = { (µ(y)) | y ∈ Y } is the real data (or in the form of fuzzy set) and
let π, t : Y → [0, 1] be two mappings. Then

A = {F (µ(y),π(y), t(y)) | y ∈ Y }
= {(M(µ(y),π(y), t(y)), N(µ(y),π(y), t(y))) | y ∈ Y }

=
{(

((1− t(y)π(y))µ(y))
1
3 , (1− (1− t(y)π(y))µ(y)− t(y)π(y))

1
3

)
| y ∈ Y

}
(4.1)

is a Fermatean fuzzy set.

To show A is a FFS, we need to prove that (M(µ(y), c(y), t(y)))3+(N(µ(y), c(y), t(y)))3 ≤
1 or (M(µ(y), c(y), t(y)))3 + (N(µ(y), c(y), t(y)))3 + π3(y) = 1. For simplifications, we
write µ, c , and t instead of µ(y), c(y), and t(y). From (4.1), we have

(M(µ, c , t))3 + (N(µ, c , t))3 =
(

((1− tc)µ)
1
3

)3

+
(

(1− (1− tc)µ− tc)
1
3

)3

= (1− tc)µ+ 1− (1− tc)µ− tc

= 1− tc

≤ 1.

Remark 4.3. It is important to note that the parameter t in Definition 4.1 work as a control
parameter which control the values of membership and non-MDs. For lesser values of t, we
obtain higher values for the MDs and non-MDs.

Remark 4.4. We are motivated from Jurio et al. [12] work of transferring the fuzzy data
into Intuitionistic fuzzy data. He used different parameters to construct Intuitionistic fuzzy
sets (IFSs). But his proposed technique does not work for FFSs. Thus we have proposed a
refined technique to construct FFSs from real or fuzzy data. Also, we control the values of
MDs and non-MDs by controlling the values of the parameter t.

Example 4.5. Let U = {u1, u2, u3} be the set of universe and let B = {(u1, 0.5), (u2, 0.2),
(u3, 0.8)}. We fix parameters c and t as 0.2 and 0.3, respectively. The resultant FFS is
obtained which is

A = {(u1, 0.7775, 0.7775), (u2, 0.5729, 0.9094), (u3, 0.9094, 0.5729)} .

We change the values of the parameter t over its range and further observe the behavior of
membership and non-membership values. We represent the resultant FFS correspond to t as
At , that is, A0 for t = 0 and so on.

A0 = {(u1, 0.7937, 0.7937), (u2, 0.5848, 0.9283), (u3, 0.9283, 0.5848)}
A0.2 = {(u1, 0.7830, 0.7830), (u2, 0.5769, 0.9158), (u3, 0.9158, 0.5769)}
A0.4 = {(u1, 0.7719, 0.7719), (u2, 0.5688, 0.9029), (u3, 0.9029, 0.5688)}
A0.6 = {(u1, 0.7606, 0.7606), (u2, 0.5604, 0.8896), (u3, 0.8896, 0.5604)}
A0.8 = {(u1, 0.7489, 0.7489), (u2, 0.5518, 0.8759), (u3, 0.8759, 0.5518)}

A1 = {(u1, 0.7368, 0.7368), (u2, 0.5429, 0.8618), (u3, 0.8618, 0.5429)}
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Using this data, we draw MDs and non-MDs in Figures 3 and 4, respectively. Figure
3 consist of six lines and each line connecting three points. The six lines draw against the
membership values of A0, A0.2, A0.4, A0.6, A0.8, and A1. The lowest line in the graph generated
against A1 and upper one against A0. Figure 3 provides the graphical verification that the
variations in the values of parameter t result different MDs. Similarly, we observe the behavior
of non-MDs in Figures 4, where the lowest and highest lines generated against A1 and A0,
respectively.
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Fig. 3. Change in membership values for different values of t
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Fig. 4. Change in non-membership values for different values of t
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5. Applications

The applications of the suggested divergence measures are included in this section. There
are two subsections in it: In Section 5.1, the VIKOR strategy for FFSs is expanded. The
ranking of small cars subjected to ANCAP safety testing from 2019 to 2021 is presented in
Section 5.2.

5.1. Fermatean Fuzzy VIKOR Method

In this section, the VIKOR approach is expanded to include FFSs. This approach is
created using the suggested divergence measurements. It accepts input in the form of FFS
and linguistic variables.

1. The list of options is evaluated by the experts Ek , k = {1, 2, ... , `} using the suggested
criteria. To depict the assessments, they can either directly input FFSs or use lan-
guage variables. Fermatean fuzzy (FF) data are created from the linguistic matrix data.
Thus, we get ` FF matrices

(
Mk =

[
χk
ij

]
=
[(
µk
ij , ν

k
ij

)]
, k ∈ {1, 2, ... , `}

)
from ` decision

makers.

2. Any aggregation operator specified in [25] can be used to aggregate the data in the FF
matrices.

3. The weight of the criterion varies in MCDM problems that are encountered in real
life. For this reason, the weight vector ω = {ω1,ω2, ... ,ωn} is affixed to the list of

requirements, where 0 ≤ ωj ≤ 1 and
n∑

j=1

ωj = 1. Using divergence metrics on a

combined FF matrix, we can construct the weight vector as follows:

ωj =

1
m−1

(
m∑
i=1

m∑
k=1

D̄k (χij ,χkj)

)
n∑

j=1

[
1

m−1

(
m∑
i=1

m∑
k=1

D̄k (χij ,χkj)

)] , j = 1, 2, ... , n. (5.1)

4. Calculate the positive ideal (PI) and negative ideal (NI) FFVs for each attribute. These
characteristics direct us toward the best option and away from the least desirable one.
The PI and NI FFVs are discovered using Equations (5.2) and (5.3), respectively.

PIj =

{(
m

max
i=1

(µij),
m

min
i=1

(νij)

)}
, (5.2)

NIj =

{(
m

min
i=1

(µij),
m

max
i=1

(νij)

)}
, j = 1, 2, ... , n. (5.3)

5. Using D̄1 and D̄2, the divergence between each FFV and PI FFV, as well as PI and NI
FFVs, is estimated.

6. Equations (5.4), (5.5), and (5.6), respectively, construct the group utility index S̄ ,
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individual regret index R̄, and compromise index Q̄, where

S̄(ui ) =
n∑

j=1

ωj ·
D̄k(PIj ,χij)

D̄k(PIj , NIj)
, (5.4)

R̄(ui ) =
n

max
j=1

ωj ·
D̄k(PIj ,χij)

D̄k(PIj , NIj)
, (5.5)

Q̄(ui ) = λ ·
S̄(ui )−

m
min
i ′=1

S̄(ui ′ )

m
max
i ′=1

S̄(ui ′ )−
m

min
i ′=1

S̄(ui ′ )
+ (1− λ) ·

R̄(ui )−
m

min
i ′=1

R̄(ui ′ )

m
max
i ′=1

R̄(ui ′ )−minm
i ′=1 R̄(ui ′ )

, (5.6)

where χij is the FFV for i th alternative against j th criterion.

7. By placing S̄ , R̄, and Q̄ in increasing order, three ranking lists are created. If the
following two conditions hold true, the option ui associated with the smallest value
(u1 = minm

i=1 Q̄(ui )) of Q̄ is ranked best (compromise solution):

C1. The ideal option found with “acceptable advantage” if

u2 − u1 ≥ 1

m − 1
,

where u2 is the next-to-last minimum in the Q̄ list.

C2. If the best option appears on both the S̄ and R̄ lists, it is come with “acceptable
stability” (that is, minimum in both lists).

If one of the aforementioned requirements is violated, a collection of compromise solu-
tions is procured.

– If C2 violates, the compromise solution is composed of the equivalent u1 and u2

options.

– A compromise solution set has L members as a result of the C1 violation, where L
is the maximum for which

uL − u1 <
1

m − 1
.

5.2. Selection of Small Car Based on ANCAP Safety Ratings

The application of the suggested method is provided in this section. The information was
obtained from the ANCAP’s official website. ANCAP is an independent automotive safety
organization with a base in Australasia that was founded in 1993 and has rated the safety
of tens of thousands of new vehicle makes models and variants. It offers comparisons of the
relative levels of safety of various-sized automobiles. In the case of a collision, ANCAP safety
ratings offer protection for passengers and pedestrians as well as the vehicle’s technological
capacity to prevent or lessen the impacts of a collision.

On there official website, we have searched the data with the following parameters: Cat-
egory: Small cars, Safety Ratings (All), Ratings years 2019-21, and Fuel type: Conventional.
The thirteen vehicles lie in the above mentioned search, that is, we obtained the data of 13
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small cars tested from 2019 to 2021 and their fuel type is conventional. It includes the Citroen
C4, Audi A3, SEAT Leon, Cupra Leon, Kia Cerato (S & sport variant), Kia Cerato, BMW 2
Series Gran Coupé, Volkswagen Golf, Skoda Scala, BMW 1 Series, Ford Focus, Mercedes-Benz
B-Class, and Mazda 3. All of the small cars included in the search has five stars safety rating
except Kia Cerato (S & sport variant). Kia Cerato (S & sport variant) has four star safety
ratings. Their rating is based on the set of following criteria: Adult Occupant Protection,
Child Occupant Protection, Vulnerable Road User Protection and Safety Assist. The details
about the each criterion is provided in Figure 5. We have collected the data of thirteen small
cars from their official website.

The available data is in the form of percentage, we have converted it into decimal form
and present in Table 1. We have transformed the real data of Table 1 into FF data using the
method discussed in Section 4. We have taken the values of parameters c and t equal to 0.2
and 1, respectively. The obtained FFS is displayed in Table 2.

Fig. 5. Criteria explanations

Table 1. ANCAP Safety Ratings

Model Adult OP Child OP VRUP Safety Assist

Citroen C4 (u1) 0.76 0.81 0.57 0.62
Audi A3 (u2) 0.89 0.81 0.68 0.73
SEAT Leon (u3) 0.92 0.88 0.71 0.80
Cupra Leon (u4) 0.91 0.88 0.71 0.80
Kia Cerato (S & sport variant) (u5) 0.90 0.83 0.55 0.71
Kia Cerato (u6) 0.90 0.83 0.72 0.73
BMW 2 Series Gran Coupé (u7) 0.94 0.89 0.76 0.73
Volkswagen Golf (u8) 0.95 0.89 0.76 0.80
Skoda Scala (u9) 0.97 0.87 0.81 0.76
BMW 1 Series (u10) 0.83 0.89 0.76 0.73
Ford Focus (u11) 0.96 0.87 0.72 0.72
Mercedes-Benz B-Class (u12) 0.96 0.92 0.78 0.77
Mazda 3 (u13) 0.98 0.89 0.81 0.76

OP = Occupant Protection, VRUP = Vulnerable road user protection
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Table 2. ANCAP Safety Ratings in FFSs for parameters c = 0.2

Model Adult OP Child OP VRUP Safety Assist

u1 (0.8472, 0.5769) (0.8653, 0.5337) (0.7697, 0.7007) (0.7916, 0.6724)
u2 (0.8929, 0.4448) (0.8653, 0.5337) (0.8163, 0.6350) (0.8359, 0.6000)
u3 (0.9029, 0.4000) (0.8896, 0.4579) (0.8282, 0.6145) (0.8618, 0.5429)
u4 (0.8996, 0.4160) (0.8896, 0.4579) (0.8282, 0.6145) (0.8618, 0.5429)
u5 (0.8963, 0.4309) (0.8724, 0.5143) (0.7606, 0.7114) (0.8282, 0.6145)
u6 (0.8963, 0.4309) (0.8724, 0.5143) (0.8320, 0.6073) (0.8359, 0.6000)
u7 (0.9094, 0.3634) (0.8929, 0.4448) (0.8472, 0.5769) (0.8359, 0.6000)
u8 (0.9126, 0.3420) (0.8929, 0.4448) (0.8472, 0.5769) (0.8618, 0.5429)
u9 (0.9189, 0.2884) (0.8862, 0.4703) (0.8653, 0.5337) (0.8472, 0.5769)
u10 (0.8724, 0.5143) (0.8929, 0.4448) (0.8472, 0.5769) (0.8359, 0.6000)
u11 (0.9158, 0.3175) (0.8862, 0.4703) (0.8320, 0.6073) (0.8320, 0.6073)
u12 (0.9158, 0.3175) (0.9029, 0.4000) (0.8545, 0.5604) (0.8509, 0.5688)
u13 (0.9221, 0.2520) (0.8929, 0.4448) (0.8653, 0.5337) (0.8472, 0.5769)

OP = Occupant Protection, VRUP = Vulnerable road user protection

Next, we apply the proposed VIKOR method to the FF data. The details steps of VIKOR
method for FF data are explained in Section 5.1. We have acquire the FF data or FF matrix,
therefore, we start the process from Step 3. ω = {ω1 = 0.2,ω2 = 0.3,ω3 = 0.25,ω4 = 0.25} is
taken as weight vector to distinguish the importance of criteria. The interested candidate alter
the weight vector according to his need and experience. Also, there are different subjective
and objective methods to get the criteria weights. It’s depend on the person who want the
ranking of small cars. He can choose any method to assign the criteria weights.

In the next step (Step 4), the PI and NI FFVs are determined by Equations (5.2) and
(5.3). We employ these equations on Table 2 to get PI and NI FFVs.

PI = {PI1 = (0.9221, 0.2520), PI2 = (0.9029, 0.4000), PI3 = (0.8653, 0.5337),

PI4 = (0.8618, 0.5429)}
NI = {NI1 = (0.8472, 0.5769), NI2 = (0.8653, 0.5337), NI3 = (0.7606, 0.7114),

NI4 = (0.7916, 0.6724)}.

In Step 5, the divergence between each FFV (Table 2) and PI FFV is calculated by the
measure D̄2 presented in (3.8). Also, the divergence between PI and NI FFVs are calculated.
We have taken λ = 0.1 and β = 2 for D̄2 in (3.8). The results are presented in matrix
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D = [dij ]13×4, (5.7), where dij = D̄2(PIj ,χij).

D =



0.6221 0.2690 0.3439 0.2649
0.4021 0.2690 0.2046 0.1150
0.3182 0.1197 0.1627 0
0.3489 0.1197 0.1627 0
0.3767 0.2314 0.3677 0.1444
0.3767 0.2314 0.1482 0.1150
0.2451 0.0931 0.0868 0.1150
0.2004 0.0931 0.0868 0
0.0831 0.1446 0 0.0684
0.5217 0.0931 0.0868 0.1150
0.1476 0.1446 0.1482 0.1299
0.1476 0 0.0536 0.0520

0 0.0931 0 0.0684



(5.7)

The divergence measures between PI and NI FFVs are presented in (5.8).

E = [0.6221 0.2690 0.3677 0.2649] (5.8)

Matrix F in (5.9) is obtained by dividing the Matrix D by E and then multiplying with weight

vector, that is, F = ω × D
E = ω × D̄2(PIj ,χij )

D̄2(PIj ,NIj )
.

F =



0.2000 0.3000 0.2338 0.2500
0.1293 0.3000 0.1391 0.1086
0.1023 0.1335 0.1106 0
0.1122 0.1335 0.1106 0
0.1211 0.2581 0.2500 0.1363
0.1211 0.2581 0.1008 0.1086
0.0788 0.1038 0.0590 0.1086
0.0644 0.1038 0.0590 0
0.0267 0.1613 0 0.0645
0.1677 0.1038 0.0590 0.1086
0.0475 0.1613 0.1008 0.1226
0.0475 0 0.0365 0.0491

0 0.1038 0 0.0645



(5.9)

In Step 6, the S̄ , R̄, and Q̄ are calculated by (5.4), (5.5), and (5.6), respectively.

u1 u2 u3 u4 u5 u6 u7



S̄ 0.984 0.677 0.346 0.356 0.766 0.589 0.350
R̄ 0.300 0.300 0.134 0.134 0.258 0.258 0.109
Q̄ 1.000 0.820 0.294 0.299 0.788 0.684 0.246

u8 u9 u10 u11 u12 u13

S̄ 0.227 0.253 0.439 0.432 0.133 0.168
R̄ 0.104 0.161 0.168 0.161 0.049 0.104
Q̄ 0.164 0.294 0.416 0.399 0 0.130

(5.10)
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In Step 7, three ranking arrangements are acquired by classifying S̄ , R̄, and Q̄ from (5.10).
Preference given to the minimum values of S̄ , R̄, and Q̄. S̄ , R̄, and Q̄ has minimum values
for the alternative u12 (Mercedes-Benz B-Class). It ensures that the small car Mercedes-Benz
B-Class acquired with acceptable stability. Also, by sorting Q̄, the last two minimum values
are Q̄(u12) = 0 and Q̄(u13) = 0.130. Since Q̄(u13)− Q̄(u12) = 0.130− 0 = 0.130 > 1

m−1 =
1

13−1 = 0.0833, that is, acceptable advantage achieved. Thus, the optimum alternative u12

acquire with acceptable stability and acceptable advantage.[ ]S̄ u12 � u13 � u8 � u9 � u3 � u7 � u4 � u11 � u10 � u6 � u2 � u5 � u1

R̄ u12 � u13 � u8 � u7 � u3 � u4 � u9 � u11 � u10 � u6 � u5 � u2 � u1

Q̄ u12 � u13 � u8 � u7 � u3 � u9 � u4 � u11 � u10 � u6 � u5 � u2 � u1

(5.11)

The final ranking of the small cars based on ANCAP Safety Ratings is obtained from
(5.11) and given as

u12 � u13 � u8 � u7 � u3 � u9 � u4 � u11 � u10 � u6 � u5 � u2 � u1.

Remark 5.1. It is important to note that by changing the value of the parameter t to
transform the data into FF data does not effect the ranking of small cars. Please kept in
mind, we are using D̄2 to calculate divergence measures. Also, the different values of β and
δ in (3.8) do not alter the ranking of small cars.

Remark 5.2. We have solved the problem discussed in Section 5.2 by the divergence measure
D̄1 defined in (3.1). After calculations, we obtain the small car u12 with acceptable stability,
but lack the acceptable advantage. Thus, the set of compromise solution is obtained and
written as

{u12 � u13 � u8} � u7 � u3 � u4 � u9 � u11 � u10 � u6 � u5 � u2 � u1.

6. Comparison

In this section, we compare the suggested MCDM method with the MCDM techniques
that have already been published. We choose the FF environment for comparison and the
comparison details are shown in Table 3. It shows the author’s details, their proposed methods,
and rankings. We have seen small changes in the rankings of small cars using different methods
in Table 3. The abbreviations used in Table 3 come from the cited papers.

6.1. Comparison in pattern recognition problems

The classification of an unfamiliar pattern into some recognized patterns is known as
pattern recognition. When working in a fuzzy environment, compatibility measurements like
divergence, distance, correlation, similarity, accuracy, etc. are used to accomplish pattern
recognition. Here, for pattern identification, we use some of the existing distance measures
with the suggested divergence measures. Senapati and Yager [27] extended Euclidean distance
(D̄3), and Deng and Wang [6] proposed Hellinger (D̄4) and triangular (D̄5) distances for FFSs.
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Table 3. Comparison with existing MCDMs Methods

Authors & Methods Rankings

Senapati & Yager [25]
u13 � u12 � u9 � u8 � u7 � u3 � u4 � u11 � u10 � u6 � u2 � u5 � u1FFWA operator

Senapati & Yager [25]
u13 � u12 � u9 � u8 � u7 � u11 � u3 � u4 � u10 � u6 � u2 � u5 � u1FFWG operator

Senapati & Yager [25]
u13 � u12 � u9 � u8 � u7 � u3 � u4 � u11 � u10 � u6 � u2 � u5 � u1FFWPA operator

Senapati & Yager [25]
u13 � u12 � u9 � u8 � u7 � u3 � u4 � u11 � u10 � u6 � u2 � u5 � u1FFWPG operator

Akram et al. [7]
u13 � u12 � u9 � u8 � u7 � u3 � u4 � u11 � u10 � u6 � u2 � u5 � u1FFYWA operator

Akram et al. [7]
u13 � u12 � u9 � u8 � u7 � u3 � u4 � u11 � u10 � u6 � u2 � u5 � u1FFYOWA operator

Akram et al. [7]
u12 � u13 � u9 � u8 � u7 � u3 � u4 � u11 � u10 � u6 � u2 � u5 � u1FFYWG operator

Akram et al. [7]
u12 � u13 � u9 � u8 � u7 � u3 � u4 � u11 � u10 � u6 � u2 � u5 � u1FFYOWG operator

Ghorabaee et al. [13]
u13 � u12 � u9 � u8 � u7 � u3 � u4 � u11 � u10 � u6 � u2 � u5 � u1WASPAS method

Akram et al. [1]
u13 � u12 � u9 � u8 � u7 � u11 � u3 � u4 � u10 � u6 � u2 � u5 � u1FFEWA operator

Akram et al. [1]
u12 � u13 � u9 � u8 � u7 � u3 � u4 � u11 � u10 � u6 � u2 � u5 � u1FFEOWA operator

Akram et al. [1]
u13 � u12 � u9 � u8 � u7 � u11 � u3 � u4 � u10 � u6 � u2 � u5 � u1GFFEWA operator

Akram et al. [1]
u12 � u13 � u9 � u8 � u7 � u3 � u4 � u11 � u10 � u6 � u2 � u5 � u1GFFEOWA operator

Gul [8]
u12 � u13 � u8 � u7 � u3 � u9 � u4 � u11 � u10 � u6 � u5 � u2 � u1SAW method

Gul [8]
u13 � u12 � u8 � u7 � u3 � u4 � u9 � u11 � u10 � u6 � u5 � u2 � u1ARAS method

Gul [8]
u12 � u13 � u8 � u7 � u3 � u4 � u9 � u11 � u10 � u6 � u5 � u2 � u1VIKOR method

Deng & Wang [5]
u12 � u13 � u8 � u7 � u3 � u9 � u4 � u11 � u10 � u6 � u5 � u2 � u1EFF method

Hadi et al. [9]
u13 � u12 � u9 � u8 � u7 � u11 � u3 � u4 � u10 � u6 � u2 � u5 � u1FFHWA operator

Hadi et al. [9]
u13 � u12 � u9 � u8 � u7 � u3 � u4 � u11 � u10 � u6 � u2 � u5 � u1FFHOWA operator

Hadi et al. [9]
u13 � u12 � u9 � u8 � u7 � u11 � u3 � u4 � u10 � u6 � u2 � u5 � u1FFHHWA operator

Mishra et al. [18]
u13 � u12 � u9 � u8 � u7 � u11 � u3 � u4 � u10 � u6 � u2 � u5 � u1CRITIC-EDAS method

Proposed VIKOR {u12 � u13 � u8} � u7 � u3 � u4 � u9 � u11 � u10 � u6 � u5 � u2 � u1method by D̄1

Proposed VIKOR
u12 � u13 � u8 � u7 � u3 � u9 � u4 � u11 � u10 � u6 � u5 � u2 � u1method by D̄2
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D̄3(A1,A2) =
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The question arises, what will be the final decision when various measures categorize
unidentified patterns into various classes? How do we choose the metrics when they yield
disparate results? We will see that the divergence measure D̄2 is a more certain and reliable
measure in this regard. The example that follows demonstrates our findings.

Example 6.1. Let Q1, Q2, Q3, Q4, and P be the five patterns given in the form of FFSs:

P = {(u1, 0.8, 0.3), (u2, 0.6, 0.2), (u3, 0.7, 0.5), (u4, 0.6, 0.1)},
Q1 = {(u1, 0.7, 0.4), (u2, 0.5, 0.2), (u3, 0.7, 0.3), (u4, 0.4, 0.2)},
Q2 = {(u1, 0.8, 0.2), (u2, 0.6, 0.1), (u3, 0.6, 0.1), (u4, 0.6, 0.1)},
Q3 = {(u1, 0.5, 0.1), (u2, 0.4, 0.3), (u3, 0.5, 0.2), (u4, 0.8, 0.3)},
Q4 = {(u1, 0.6, 0.4), (u2, 0.7, 0.2), (u3, 0.3, 0.4), (u4, 0.6, 0.1)}.

We can determine whether P and Qi , i = 1, ... , 4 are similar. If there is a minimum
divergence between P and Qi , the pattern P belongs to Qj . Table 4 and Figure 6 both display
the calculated values of divergence between P and Qi using the various divergence metrics.
Labels 1, ... , 4 on X -axis in Figure 6 represents the FFSs Q1 to Q4, respectively.

Now, according to Table 4, P is nearest to Q1 from the views of D̄1 and D̄4, but P is
closest to Q2 from the perspectives of D̄2, D̄3, and D̄5. So what will be our final decision?
Also from Figure 6, the graph of divergence between P and Q1 remains below for measures
D̄1 and D̄4, and the minimum value of divergence is attained between P and Q2 by D̄2, D̄3,
and D̄5. In order to evaluate the effectiveness of the divergence metric, Hatzimichailidis et al.
[10] defined the Degree of Confidence (DoC). For a divergence metric, the higher the value of
DoC, the more reliable the measure is. A divergence measure’s DoC is determined as follows:

DoC i∗ =
n∑

i=1,i 6=i∗

∣∣D̄k(P, Qi∗)− D̄k(P, Qi )
∣∣ ,

where i∗ corresponds to the FFS Qi having minimum divergence from unknown pattern P.

Thus, we have calculated the DoC for each divergence measure and written it in Table 4.
It can be seen that the DoC of D̄2 is much higher than other measures. This guarantee that
the pattern recognition by D̄2 is much more confident than others.
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Table 4. Divergence measures calculation for Example 6.1

(P, Q1) (P, Q2) (P, Q3) (P, Q4) Result DoC

D̄1 0.0196 0.0471 0.0687 0.0275 Q1 0.0844
D̄2 0.3286 0.2471 0.4749 0.3515 Q2 0.4139
D̄3 0.1261 0.1092 0.3016 0.2329 Q2 0.3332
D̄4 0.1230 0.1261 0.2245 0.1847 Q1 0.1662
D̄5 0.1673 0.1443 0.2960 0.2382 Q2 0.2685

Fig. 6. Divergence between the known and unknown patterns

7. Conclusion

The study established the generalized chi-square and generalized Canberra distances-based
divergence measures for FFSs. The hypotheses have been constructed to determine whether
a function is a divergence measure. The proposed divergence functions’ axiomatic qualities
have been confirmed. Divergence measures other characteristics have been looked at to ensure
their effectiveness. Additionally, research has been done on the C-IF entropy and dissimilarity
metrics. Multi-criteria decision-making problems have been solved by extending and utilizing
the divergence-measure-based VIKOR approach for FFSs. A method to transform the real
data into FF data has been presented and justified by numerical examples. In the end, the
proposed method has been employed to rank the small cars tested from 2019 to 2021 by
ANCAP. ANCAP provides the safety ratings for the vehicles tested in a particular year. But
it is hard for someone to choose the vehicle based on their provided rankings. Thus, the
proposed MCDM method has been used to rank the thirteen small cars with conventional
fuel types tested from 2019 to 2021. The suggested divergence measurements will be used
in various fields, including pattern recognition, classification, and image processing. We shall
define the knowledge, entropy, similarity, and dissimilarity measures for FFSs.
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