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ABSTRACT

This paper presents a novel relaxed CQ algorithm for solving the
multiple-sets split feasibility problem with multiple output sets (MSSF-
PMOS) in infinite-dimensional real Hilbert spaces. The proposed
method replaces the projection to half-space with the projection to the
intersection of two half-spaces, resulting in accelerated convergence by
utilizing previous half-spaces. The present study introduces a novel al-
gorithm that dynamically determines the stepsize, without any a priori
knowledge of the operator norm required. Furthermore, the algorithm
is proven to exhibit strong convergence to the minimum-norm solu-
tion of the MSSFPMOS. Finally, a number of numerical experiments
have been conducted to showcase the impressive performance of the
proposed algorithm.
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1. Introduction

Let H1 and H2 be two real Hilbert spaces. Let F : H1 → H2 be a bounded linear operator
and F ∗ : H2 → H1 be its adjoint. The split feasibility problem (SFP, for short) is to find a
point

u∗ ∈ C such that Fu∗ ∈ Q, (1.1)

where C and Q are non-empty, closed, and convex subsets of H1 and H2, respectively.

Due to it’s practical application, the SFP has received a great attention by many re-
searchers, and several generalizations of it have been studied by many authors, see, for in-
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stance, the multiple-sets split feasibility problem (MSSFP) [7], the split feasibility problem
with multiple output sets (SFPMOS)[17], the split variational inequality problem (SVIP) [5].

Let H1 and H2 be two real Hilbert spaces. Let F : H1 → H2 be a bounded linear operator
and F ∗ : H2 → H1 its adjoint. The multiple-sets split feasibility problem (MSSFP, for short)
consists of finding a point u∗ ∈ H1 such that

u∗ ∈
n⋂

i=1

Ci such that Fu∗ ∈
m⋂
j=1

Qj ,

where C1, ... , Cn and Q1, ... , Qm are non-empty, closed, and convex subsets of H1 and H2,
respectively and n ≥ 1 and m ≥ 1 are given integers.

The MSSFP, a general way to characterize various inverse problems arising in many real-
world application problems, such as medical image reconstruction and intensity-modulated
radiation therapy is to find a point in the intersection of a finite family of closed convex sets
in one space such that its image under a linear transformation belongs to the intersection of
another finite family of closed convex sets in the image space.

In the present study, we address the following problem in infinite-dimensional real Hilbert
spaces.

Let H, Hj , j = 1, 2, ... , m, be real Hilbert spaces and let Fj : H → Hj , j = 1, 2, ... , m, be
bounded linear operators. The multiple-sets split feasibility problem with multiple output sets
(MSSFPMOS, for short) is to find an element u∗ such that

u∗ ∈ Ω :=
(
∩ni=1 Ci

)
∩
(
∩mj=1 F−1

j

(
Qj

))
6= ∅ (1.2)

where Ci , i = 1, 2, ... , n, and Qj , j = 1, 2, ... , m, are non-empty, closed, and convex subsets
of H and Hj , j = 1, 2, ... , m, respectively, n, m ≥ 1 are given integers. That is, u∗ ∈ Ci for
each i = 1, 2, ... , n, and Fju

∗ ∈ Qj for each j = 1, 2, ... , m.

When considering the specific scenario where n = m = 1, the MSSFPMOS (1.2) simplifies
to the more focused SFP (1.1) [2, 3, 6].

The SFP was initially introduced by Censor and Elfving [6] as a mathematical framework
for addressing inverse problems in finite-dimensional Hilbert spaces. This problem formulation
has found applications in various areas, including phase retrievals and medical image recon-
struction, enabling the development of effective algorithms and techniques in these fields. The
SFP has also attracted significant attention, leading to the development of various iterative
methods for its solution. Several references [15, 2, 8, 16, 19, 21, 22, 23, 24, 25, 26, 30] and
others provide insights into these iterative approaches. However, the initial algorithm proposed
by Censor and Elfving [6], which relied on computing the inverse of F at each iteration, did
not gain much popularity.

A more widely adopted algorithm for solving SFP is the CQ algorithm introduced by Byrne
[2]:

ut+1 = PC (ut − λF ∗(I − PQ)Fut), (1.3)

where PC and PQ are the metric projections onto C and Q, respectively, F ∗ is the adjoint of
F , and the stepsize λ ∈

(
0, 2‖F‖−2

)
. Xu [23] proved the weak convergence of (1.3) in the

framework of infinite-dimensional Hilbert space. To acquire strong convergence, Wang and
Xu [20] presented an alternative method:

ut+1 = PC

(
(1− σt)(ut − λF ∗(I − PQ)Fut)

)
, (1.4)
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where λ ∈
(
0, 2‖F‖−2

)
and {σt} ⊂ (0, 1) such that lim

t→∞
σt = 0;

∑∞
t=0 |σt+1 − σt | < ∞.

They proved that the sequence {ut} generated by (1.4) converges strongly to the minimum-
norm solution of the SFP (1.1). Later, Yu et al. [27] proved that {ut} generated by (1.4) is
strongly convergent without the assumption

∑∞
t=0 |σt+1 − σt | <∞.

The CQ algorithm, classified as a gradient-projection method (GPM) in convex mini-
mization, gained recognition due to its ability to avoid the computation of the inverse of F .
However, implementing this algorithm requires prior knowledge of the operator norm ‖F‖,
which can be challenging to estimate accurately due to its global invariance. Additionally,
computing a projection onto a closed convex subset is generally a nontrivial task.

To overcome these challenges, Fukushima [10] proposed a method to compute the pro-
jection onto a level set of a convex function by iteratively projecting onto half-spaces that
contain the original level set. This idea was extended by Yang [24] and Lopez et al. [14]
to solve SFPs in finite- and infinite-dimensional Hilbert spaces, respectively. Their research
focused on SFPs where the sets C and Q are represented as sublevel sets of convex functions
with bounded subdifferential operators. To be specific, the sets C and Q are defined by

C = {u ∈ H1 : c(u) ≤ 0} and Q = {v ∈ H2 : q(v) ≤ 0}, (1.5)

where c : H1 → R and q : H2 → R are convex and differentiable functions. Given the iterative
point ut , Yang [24] constructed the super sets (half-spaces) Ct and Qt of the original set C
and Q, respectively. The half-spaces Ct and Qt are defined by

Ct = {u ∈ H1 : c(ut) + 〈ξt , u − ut〉 ≤ 0}, where ξt ∈ ∂c(ut), (1.6)

Qt = {v ∈ H2 : q(Fut) + 〈ηt , v − Fut〉 ≤ 0}, where ηt ∈ ∂q(Fut). (1.7)

Yang [24] introduced a relaxed CQ algorithm of the form:

ut+1 = PCt

(
ut − λF ∗(I − PQt )Fut

)
, (1.8)

where λ ∈
(
0, 2‖F‖−2

)
and a weak convergence of it is proved.

However, it should be noted that the stepsize λ in equation (1.8) is dependent on the
operator norm ‖F‖ or its estimation, which is typically a complex calculation. To circumvent
this issue, numerous self-adaptive stepsizes have been developed. Specifically, López et al.
[14] introduced a relaxed version of the CQ algorithm based on Yang’s relaxed CQ algorithm
for solving the SFP, where closed convex subsets C and Q are considered as level sets of
convex functions. They proposed an adaptive approach to determine the stepsize sequence,
addressing a limitation in the original relaxed CQ algorithm proposed by Yang [24]. In the
adjusted algorithm proposed by López et al. [14], the parameter λ was substituted with a
dynamic stepsize sequence {τt} that was ingeniously defined as follows:

τt =
ρt‖(I − PQt )Fut‖2

‖F ∗(I − PQt )Fut‖2
, (1.9)

where ρt ⊂ (0, 2), ∀t ≥ 1 such that lim inf
t→∞

ρt(2 − ρt) > 0. It is imperative to acknowledge

that although their algorithm achieves weak convergence, it is limited to the framework of
infinite-dimensional Hilbert spaces. From its inception, equation (1.9) has garnered significant
attention owing to its favorable numerical efficacy and uncomplicated structure.
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In a recent publication, Yu and Wang [28] introduced a series of novel relaxed CQ al-
gorithms. The fundamental concept underlying these algorithms involves substituting the
projections onto the half-spaces Ct and Qt with the projections onto the intersection of Ct

and Ct−1, and the intersection of Qt and Qt−1, respectively. By leveraging the previous half-
spaces, the algorithms’ convergence rate is enhanced. One of the algorithms proposed by the
authors takes the following form:

ut+1 = PC 2
t

(
ut − τtF ∗(I − PQ2

t
)Fut

)
, (1.10)

where C 2
t = Ct ∩ Ct−1, Q2

t = Qt ∩ Qt−1, and τt =
ρt‖(I−PQ2

t
)Fut‖2

‖F∗(I−P
Q2
t

)Fut‖2 with ρt ⊂ (0, 2). They

proved that the algorithm (1.10) is a weakly convergent to the solution of the SFP (1.1). In
the setting of infinite-dimensional spaces, however, strong convergence is frequently prefer-
able than weak convergence for efficiently solving our problems. This naturally leads to the
following question.

Question 1.1. Can we design a strongly convergent iterative scheme for the algorithm (1.10)
and extend it for solving the MSSFPMOS (1.2) within the framework of infinite-dimensional
real Hilbert spaces?

This paper presents a comprehensive response to Question 1.1, wherein we draw inspiration
from the aforementioned works and suggest a strongly convergent relaxed CQ method for
effectively solving the MSSFPMOS (1.2) in infinite-dimensional real Hilbert spaces. Our
proposed algorithm offers several notable benefits, which are enumerated below.

(1) The algorithm we propose addresses a broader problem, namely the MSSFPMOS (1.2).

(2) The selection of the stepsize is dynamically determined and not contingent upon the
operator norm.

(3) We substitute the projection onto the half-space with the projection onto the intersection
of two half-spaces. This results in expedited convergence of the algorithm.

(4) The algorithm we propose guarantees a strong convergence to the minimum-norm solution
of the MSSFPMOS (1.2).

The subsequent sections of this document are structured as follows. Sect. 2 provides
an introduction to fundamental definitions and lemmas that will be utilized throughout the
paper. In Sect. 3, a novel iterative method is proposed and its strong convergence is proven.
Sect. 4 presents numerical experiments aimed at illustrating the effectiveness of the proposed
method.

2. Preliminaries

In this section, we recall some definitions and basic results which are needed in the sequel.

Throughout this paper, let

• H, H1 or H2 be a real Hilbert space with the inner product 〈·, ·〉, and induced norm ‖ ·‖,
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• I denote the identity operator on H, H1 or H2,

• the symbols “ ⇀ ” and “→ ”, denote the weak and strong convergence, respectively,

• for any sequence {ut} ⊆ H, ωw (ut) =
{

u ∈ H : ∃{utl} ⊆ {ut} such that utl ⇀ u
}

denotes the weak ω-limit set of {ut}.

Definition 2.1. (see [1]) Let S ⊆ H be a non-empty, closed, and convex set. An operator
F : S → H is called

(1) Lipschitz continuous with constant θ > 0 on S if

‖Fu − Fv‖ ≤ θ‖u − v‖, ∀u, v ∈ S ;

(2) nonexpansive on S if
‖Fu − Fv‖ ≤ ‖u − v‖, ∀u, v ∈ S ;

(3) firmly nonexpansive on S if

‖Fu − Fv‖2 ≤ ‖u − v‖2 − ||(I − F )u − (I − F )v‖2, ∀u, v ∈ S ,

which is equivalent to

‖Fu − Fv‖2 ≤ 〈Fu − Fv , u − v〉, ∀u, v ∈ S ;

(4) θ-inverse strongly monotone (θ − ism) on S if there is θ > 0 such that

〈Fu − Fv , u − v〉 ≥ θ‖Fu − Fv‖2, ∀u, v ∈ S .

Definition 2.2. (see [1]) Let S ⊆ H be a non-empty, closed, and convex set. For each u ∈ H,
there is a unique nearest point in S , denoted by PS(u) such that

‖u − PS(u)‖ = min{‖u − v‖ : v ∈ S}.

The operator PS : H → S is called a metric projection of H onto S .

Lemma 2.3. (see [1]) Let S ⊆ H be a non-empty, closed, and convex set. The following
assertions hold for all u, v ∈ H and w ∈ S :

(1) 〈u − PS(u), w − PS(u)〉 ≤ 0;

(2) ‖PS(u)− PS(v)‖ ≤ ‖u − v‖;

(3) ‖PS(u)− PS(v)‖2 ≤ 〈PS(u)− PS(v), u − v〉;

(4) ‖PS(u)− w‖2 ≤ ‖u − w‖2 − ‖u − PS(u)‖2.

From Lemma 2.3, we conclude that the mappings PS and I −PS are both 1− ism, firmly
nonexpansive, and nonexpansive.

Lemma 2.4. For all u, v ∈ H and for all θ ∈ R, we have



6 G.H. Taddele and S. Sriwongsa

(1) ‖u ± v‖2 ≤ ‖u‖2 ± 2〈v , u + v〉;

(2) ‖u ± v‖2 = ‖u‖2 + ‖v‖2 ± 2〈u, v〉;

(3) ‖θu + (1− θ)v‖2 = θ‖u‖2 + (1− θ)‖v‖2 − θ(1− θ)‖u − v‖2.

Definition 2.5. (see [1]) Let φ : H → (−∞, +∞] be a given function. Then,

(1) The function φ is proper if

{u ∈ H : φ(u) < +∞} 6= ∅.

(2) A proper function φ is convex if for each θ ∈ (0, 1),

φ(θu + (1− θ)y) ≤ θφ(u) + (1− θ)φ(v),∀u, v ∈ H.

Definition 2.6. Let φ : H → (−∞, +∞] be a proper function.

(1) A vector ξ ∈ H is a subgradient of φ at a point u if

φ(v) ≥ φ(u) + 〈ξ, v − u〉, ∀v ∈ H.

(2) The set of all subgradients of φ at u ∈ H, denoted by ∂φ(u), is called the subdifferential
of φ, and

∂φ(u) = {ξ ∈ H : φ(v) ≥ φ(u) + 〈ξ, v − u〉, for each v ∈ H}. (2.1)

(3) If ∂φ(u) 6= ∅, φ is said to be subdifferentiable at u. If φ is continuously differentiable,
then

∂φ(u) = {∇φ(u)}.

Definition 2.7. Let φ : H → (−∞, +∞] be a proper function. Then,

(1) φ is lower semi-continuous (lsc) at u if ut → u implies

φ(u) ≤ lim inf
t→∞

φ(ut).

(2) φ is weakly lower semi-continuous (w-lsc) at u if ut ⇀ t implies

φ(u) ≤ lim inf
t→∞

φ(ut).

(3) φ is weakly/lower semi-continuous on H if it is weakly/lower semi-continuous at every
point u ∈ H.

Lemma 2.8. (see [1]) Let φ : H → (−∞, +∞] be a proper convex function. Then φ is lower
semi-continuous if and only if it is weakly lower semi-continuous.

Lemma 2.9. (see [23]) Let C ⊆ H1 and Q ⊆ H2 be non-empty, closed, and convex sets, and
φ : H1 → (−∞, +∞] is given by

φ(u) =
1

2
‖(I − PQ)Fu‖2,

where F : H1 → H2 is a bounded linear operator. Then, for θ > 0 and u∗ ∈ H1, the following
statements are equivalent.
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(1) The point u∗ solves the SFP (1.1).

(2) u∗ = PC (u∗ − θ∇φ(u∗)).

(3) The point u∗ solves the variational inequality problem: find a point w ∈ C such that

〈∇φ(w), u − w〉 ≥ 0, ∀u ∈ C .

Lemma 2.10. (see [3]) Let the function φ be given as in Lemma 2.9. Then,

(1) φ is convex and weakly lower semi-continuous on H1;

(2) ∇φ(u) = F ∗(I − PQ)Fu, for u ∈ H1;

(3) ∇φ is ‖F‖2-Lipschitz.

Lemma 2.11. (see [12]) Let {χt} be a non-negative real sequence, such that for all t ∈ N

χt+1 ≤ (1− %t)χt + %tµt ,
χt+1 ≤ χt − ςt + ϕt ,

(2.2)

where {%t} ⊂ (0, 1), {ςt} is a non-negative, real sequence, and {µt} and {ϕt} are real
sequences such that

(1)
∑∞

t=1 %t =∞;

(2) lim
t→∞

ϕt = 0;

(3) lim
l→∞

ςtl = 0 implies lim sup
l→∞

µtl ≤ 0 for any subsequence {tl} of {t}.

Then, lim
t→∞

χt = 0.

3. The Algorithm and its convergence analysis

For simplicity, hereafter, denote I ∗ := {1, 2, ... , n} and J∗ := {1, 2, ... , m}. We consider
the MSSFPMOS (1.2) in which the set Ci (i ∈ I ∗) and the set Qj (j ∈ J∗) are defined by

Ci = {u ∈ H : ci (u) ≤ 0} and Qj = {v ∈ Hj : qj(v) ≤ 0}, (3.1)

where ci : H → (−∞, +∞] for all i ∈ I ∗ and qj : Hj → (−∞, +∞] for all j ∈ J∗ are convex
functions. Moreover, we assume (standard assumptions) that

(1) both ci (i ∈ I ∗) and qj(j ∈ J∗) are subdifferentiable on H and Hj , respectively;

(2) for any u ∈ H and for each i ∈ I ∗, a subgradient ξi ∈ ∂ci (u) can be calculated;

(3) for any v ∈ Hj and for each j ∈ J∗, a subgradient ηj ∈ ∂qj(v) can be calculated;

(4) both ∂ci (i ∈ I ∗) and ∂qj(j ∈ J∗) are bounded operators (bounded on bounded sets).



8 G.H. Taddele and S. Sriwongsa

Based on the standard assumptions, the functions ci (i ∈ I ∗) and qj(j ∈ J∗) are clearly
lower semi-continuous. Moreover, since ci (i ∈ I ∗) and qj(j ∈ J∗) are also convex, it then
follows from Lemma 2.8 that ci (i ∈ I ∗) and qj(j ∈ J∗) are weakly lower semi-continuous.
In our algorithm, given the tth iterative point ut , we construct “n” sets C t

i (i ∈ I ∗) which
contains the original sets Ci (i ∈ I ∗) and “m” sets Qt

j (j ∈ J∗) which contains the original
sets Qj (j ∈ J∗), as follows. The set C t

i (i ∈ I ∗) is constructed as

C t
i =

{
u ∈ H : ci (ut) + 〈ξti , u − ut〉 ≤ 0}, (3.2)

where ξti ∈ ∂ci (ut) and it follows from the fact that C t
i ⊇ Ci 6= ∅ (i ∈ I ∗) the set C t

i is
non-empty (see in [29]). The set Qt

j (j ∈ J∗) is defined as

Qt
j =

{
v ∈ Hj : qj(Fjut) + 〈ηtj , v − Fjut〉 ≤ 0

}
, (3.3)

where ηtj ∈ ∂qj(Fjut). Indeed, Qt
j is non-empty because Qt

j ⊇ Qj 6= ∅ (j ∈ J∗). Therefore,
both C t

i and Qt
j are nothing but non-empty half-spaces and it is easy to verify that (see [29])

C t
i ⊇ Ci (i ∈ I ∗) and Qt

j ⊇ Qj (j ∈ J∗) hold for every t ≥ 0.

Note that in contrast to an algorithm that involves metric projections onto the given sets
Ci and Qj , which is more complex, an algorithm that utilizes metric projections onto the
half-spaces C t

i and Qt
j defined in (3.2) and (3.3) is easier to implement due to the explicit

formula for projecting onto a half-space. In this case, at each step t, the algorithm only
needs to compute a projection onto the current sets C t

i and Qt
j , rather than utilizing the

previous half-spaces in their entirety. This article draws inspiration from the works of Yu and
Wang [28]. Our proposed algorithm replaces the projections to the half-spaces C t

i and Qt
j

with the projections to the intersection of C t
i and C t−1

i , and the intersection of Qt
j and Qt−1

j ,
respectively. This modification enables us to make full use of the previous half-spaces, resulting
in a faster convergence rate of our algorithm. Furthermore, we introduce a dynamically chosen
stepsize that is not reliant on the operator norm.

We hereby introduce a highly effective self-adaptive relaxed CQ method that exhibits
strong convergence properties for solving the MSSFPMOS (1.2) within the context of infinite-
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dimensional real Hilbert spaces.

Algorithm 1: A self-adaptive approximation technique for MSSFPMOS (1.2)

Step 0. Choose two sequences {σt} ⊂ (0, 1) and {ρt} ⊂ (0, 2) and select β > 0. Let
u0 ∈ H be arbitrary initial guess and set t := 0. Take the weights αt

i (i ∈ I ∗) > 0 and
the constant parameters βj (j ∈ J∗) > 0 such that

n∑
i=1

αt
i = 1 and inf

i∈It
αt
i > α > 0, where It = {i ∈ I ∗ : αt

i > 0}, and
m∑
j=1

βj = 1.

Step 1. Given the current iterate ut , compute the next iterate ut+1 via the formula

ut+1 =
n∑

i=1

αt
i PC int

i ,t

(
(1− σt)

(
ut − τt

m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut

))

where C int
i ,t , Q int

j ,t , and τt are respectively defined as follows:

C int
i ,t = C t

i ∩ C t−1
i , for each i = 1, 2, ... , n,

Q int
j ,t = Qt

j ∩ Qt−1
j , for each j = 1, 2, ... , m,

and

τt :=
ρt
∑m

j=1 βj

∥∥∥(I − PQ int
j ,t

)
Fjut

∥∥∥2

(
max

{
β,
∥∥∥∑m

j=1 βjF
∗
j

(
I − PQ int

j ,t

)
Fjut

∥∥∥})2 . (3.4)

Step 2. If ut+1 = ut , then stop; otherwise, set t := t + 1 and return to Step 1.

Remark 3.1. Since C t
i , C t−1

i for each i ∈ I ∗ and Qt
j , Qt−1

j for each j ∈ J∗ are both half-

spaces, C int
i ,t and Q int

j ,t are both intersection of two half-spaces. From the subdifferentiable

inequality (2.1), it is clear that Ci ⊆ C t−1
i , Ci ⊆ C t

i for each i ∈ I ∗ and Qj ⊆ Qt−1
j , Qj ⊆ Qt

j

for each j ∈ J∗. Hence, we have Ci ⊆ C int
i ,t for each i ∈ I ∗ and Qj ⊆ Q int

j ,t for each j ∈ J∗.
Moreover, the explicit formula for projecting onto the intersection of two half-spaces can be
found in [1], making the implementation of Algorithm 1 a straightforward task.

Theorem 3.2. Assume that the set of solutions Ω of the MSSFPMOS (1.2) is non-empty
and suppose that the sequences {σt} and {ρt} in Algorithm 1 satisfy the conditions:

(a1) {σt} ⊂ (0, 1) such that lim
t→∞

σt = 0 and
∞∑
t=0

σt =∞,

(a2) {ρt} ⊂ (0, 2) such that lim inf
t→∞

ρt(2− ρt) > 0.

Then, the sequence {ut} generated by Algorithm 1 converges strongly to an element u∗ ∈ Ω,
where u∗ = PΩ0.
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Proof. Let u∗ ∈ Ω. Since Ci ⊆ C int
i ,t for each i ∈ I ∗, then u∗ = PCi u

∗ = PC int
i ,t

u∗. Let

vt = (1− σt)
(

ut − τt
m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut

)
for all i ∈ I ∗. Since PC int

i ,t
for each i ∈ I ∗ is firmly nonexpansive, we get

‖ut+1 − u∗‖2 =

∥∥∥∥ n∑
i=1

αt
i

(
PC int

i ,t
vt − u∗

)∥∥∥∥2

≤
n∑

i=1

αt
i

∥∥∥∥PC int
i ,t

vt − u∗
∥∥∥∥2

≤
n∑

i=1

αt
i

(
‖vt − u∗‖2 −

∥∥∥(I − PC int
i ,t

)vt

∥∥∥2
)

= ‖vt − u∗‖2 −
n∑

i=1

αt
i

∥∥∥(I − PC int
i ,t

)vt

∥∥∥2

=

∥∥∥∥(1− σt)
(

ut − τt
m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut

)
− u∗

∥∥∥∥2

−
n∑

i=1

αt
i

∥∥∥(I − PC int
i ,t

)vt

∥∥∥2

=

∥∥∥∥σt(−u∗) + (1− σt)
(

ut − τt
m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut − u∗

)∥∥∥∥2

−
n∑

i=1

αt
i

∥∥∥(I − PC int
i ,t

)vt

∥∥∥2

≤ σt‖u∗‖2 + (1− σt)
∥∥∥∥ut − τt

m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut − u∗

∥∥∥∥2

−
n∑

i=1

αt
i

∥∥∥(I − PC int
i ,t

)vt

∥∥∥2

. (3.5)

Since Qj ⊆ Q int
j ,t for each j ∈ J∗, then Fju

∗ = PQj Fju
∗ = PQ int

j ,t
Fju
∗. Note that for each

j ∈ J∗, I −PQ int
j ,t

is 1− ism and
∑m

j=1 βjF
∗
j

(
I −PQ int

j ,t

)
Fju
∗ = 0, it means for each j ∈ J∗ that〈

m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut , ut − u∗

〉

=
m∑
j=1

βj

〈
F ∗j

(
I − PQ int

j ,t

)
Fjut , ut − u∗

〉

=
m∑
j=1

βj

〈(
I − PQ int

j ,t

)
Fjut −

(
I − PQ int

j ,t

)
Fju
∗, Fjut − Fju

∗

〉
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≥
m∑
j=1

βj

∥∥∥∥∥(I − PQ int
j ,t

)
Fjut

∥∥∥∥∥
2

. (3.6)

Set Ξt := max

{
β,
∥∥∥∑m

j=1 βjF
∗
j

(
I−PQ int

j ,t

)
Fjut

∥∥∥}. This implies
∥∥∥∑m

j=1 βjF
∗
j

(
I−PQ int

j ,t

)
Fjut

∥∥∥ ≤
Ξt . This together with (3.6) gives that∥∥∥∥ut − τt

m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut − u∗

∥∥∥∥2

=

∥∥∥∥(ut − u∗)− τt
m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut

∥∥∥∥2

≤ ‖ut − u∗‖2 + τ 2
t

∥∥∥∥ m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut

∥∥∥∥2

−2τt

〈
m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut , ut − u∗

〉

≤ ‖ut − u∗‖2 + τ 2
t Ξ2

t − 2τt

m∑
j=1

βj

∥∥∥∥∥(I − PQ int
j ,t

)
Fjut

∥∥∥∥∥
2

= ‖ut − u∗‖2 − ρt(2− ρt)

(∑m
j=1 βj

∥∥∥∥∥(I − PQ int
j ,t

)
Fjut

∥∥∥∥∥
2)2

Ξ2
t

. (3.7)

Substituting, (3.7) into (3.5), we get

‖ut+1 − u∗‖2 ≤ σt‖u∗‖2 + (1− σt)‖ut − u∗‖2

−ρt(2− ρt)(1− σt)

(∑m
j=1 βj

∥∥∥∥∥(I − PQ int
j ,t

)
Fjut

∥∥∥∥∥
2)2

Ξ2
t

−
n∑

i=1

αt
i

∥∥∥(I − PC int
i ,t

)vt

∥∥∥2

. (3.8)

By (a1) and (a2), we obtain from (3.8) that

‖ut+1 − u∗‖2 ≤ σt‖u∗‖2 + (1− σt)‖ut − u∗‖2

≤ max
{
‖u∗‖2, ‖ut − u∗‖2

}
...

≤ max
{
‖u∗‖2, ‖u0 − u∗‖2

}
. (3.9)

For that reason, the sequence {‖ut − u∗‖}t=∞
t=0 is bounded. As a consequence, {ut}t=∞

t=0 and
{Fjut}t=∞

t=0 for each j ∈ J∗ are bounded.
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By (a2), we obtain from (3.7) that∥∥∥∥ut − τt
m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut − u∗

∥∥∥∥2

≤ ‖ut − u∗‖2. (3.10)

By Lemma 2.3, we also obtain the following estimation.

‖ut+1 − u∗‖2

=
∥∥∥ n∑

i=1

αt
i PC int

i ,t
(vt)− u∗

∥∥∥2

=
∥∥∥ n∑

i=1

αt
i PC int

i ,t
(vt)−

n∑
i=1

αt
i PC int

i ,t
(u∗)

∥∥∥2

≤
∥∥vt − u∗

∥∥2

=
∥∥∥(1− σt)

(
ut − τt

m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut

)
− u∗

∥∥∥2

=
∥∥∥(1− σt)

(
ut − τt

m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut − u∗

)
− σtu∗

∥∥∥2

≤ (1− σt)
∥∥∥ut − τt

m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut − u∗

∥∥∥2

+ σt‖u∗‖2. (3.11)

From (3.11), we also get

‖ut+1 − u∗‖2 ≤
∥∥∥(1− σt)

(
ut − τt

m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut

)
− u∗

∥∥∥2

=
∥∥∥σt(−u∗) + (1− σt)

(
ut − τt

m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut − u∗

)∥∥∥2

= σ2
t ‖u∗‖2 + (1− σt)2

∥∥∥ut − τt
m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut − u∗

∥∥∥2

+ 2σt(1− σt)

〈
ut − τt

m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut − u∗, −u∗

〉
. (3.12)

By combining (3.10) and (3.12), we obtain that

‖ut+1 − u∗‖2 ≤ σ2
t ‖u∗‖2 + (1− σt)2‖ut − u∗‖2 + 2σt(1− σt)〈ut − u∗, −u∗〉

+ 2σtτt(1− σt)
〈 m∑

j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut , u∗

〉
≤ (1− σt)‖ut − u∗‖2 + σt

[
σt‖u∗‖2 + 2(1− σt)〈ut − u∗, −u∗〉

+ 2τt(1− σt)

〈
m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut , u∗

〉]
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≤ (1− σt)‖ut − u∗‖2 + σt

[
σt‖u∗‖2 + 2(1− σt)〈ut − u∗, −u∗〉

+ 2τt(1− σt)
∥∥∥ m∑

j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut

∥∥∥‖u∗‖]. (3.13)

Subsequently, we demonstrate that the sequence {ut} produced by Algorithm 1 converges
strongly to the minimum norm element u∗ = PΩ0.

Let u∗ = PΩ0. Based on (al) and (a2), without loss of generality, we can assume that
∃κ > 0 such that ρt(2− ρt)(1− σt) ≥ κ for all t ∈ N. Hence, we obtain from (3.8) that

‖ut+1 − u∗‖2 ≤ σt‖u∗‖2 + ‖ut − u∗‖2 − κ

(∑m
j=1 βj

∥∥∥∥∥(I − PQ int
j ,t

)
Fjut

∥∥∥∥∥
2)2

Ξ2
t

−
n∑

i=1

αt
i

∥∥∥(I − PC int
i ,t

)vt

∥∥∥2

. (3.14)

Using (3.13) and (3.14), for all t ∈ N, we derive the two inequalities in (3.15):

‖ut+1 − u∗‖2 ≤ (1− σt)‖ut − u∗‖2 + σtµt ,
‖ut+1 − u∗‖2 ≤ ‖ut − u∗‖2 − ςt + σt‖u∗‖2.

(3.15)

Now, relating (3.15) to (2.2), we obtain the following settings for all positive integer t:

χt = ‖ut − u∗‖2;

µt = σt‖u∗‖2 + 2(1− σt)〈ut − u∗, −u∗〉+ 2τt(1− σt)
∥∥∥∑m

j=1 βjF
∗
j

(
I − PQ int

j ,t

)
Fjut

∥∥∥‖u∗‖;
ςt := κ

(∑m
j=1 βj

∥∥∥∥∥(I−PQint
j ,t

)
Fjut

∥∥∥∥∥
2)2

Ξ2
t

+
∑n

i=1 α
t
i

∥∥∥(I − PC int
i ,t

)vt

∥∥∥2

(3.16)

Furthermore, set %t := σt , ϕt := σt‖u∗‖2 and thus {%t} ⊂ (0, 1), lim
t→∞

%t = 0,
∞∑
t=0

%t = ∞,

lim
t→∞

ϕt = 0.

To utilize Lemma 2.11 for the convergence analysis of the sequence {χt}, it suffices to
illustrate that for any subsequence {tl} of {t}

lim
l→∞

ςtl = 0 implies lim sup
l→∞

µtl ≤ 0.

Let {tl} be a subsequence of {t} and suppose lim
l→∞

ςtl = 0. Then, we have

lim
l→∞

[
κ

(∑m
j=1 βj

∥∥∥∥∥(I − PQ int
j ,tl

)
Fjutl

∥∥∥∥∥
2)2

Ξ2
tl

+
n∑

i=1

αt
i

∥∥∥(I − PC int
i ,tt

)vtl

∥∥∥2
]

= 0. (3.17)
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Since κ > 0, (3.17) implies that

lim
l→∞

(∑m
j=1 βj

∥∥∥∥∥(I − PQ int
j ,tl

)
Fjutl

∥∥∥∥∥
2)2

Ξ2
tl

= 0, (3.18)

and

lim
l→∞

∥∥∥(I − PC int
i ,tl

)vtl

∥∥∥2

= 0. (3.19)

Since I − PQ int
j ,tl

for each j ∈ J∗ is nonexpansive, {utl} is bounded, and Fj for each j ∈ J∗ is a

bounded linear operator, the sequence {
∥∥(I − PQ int

j ,tl

)
Fjutl

∥∥} for each j ∈ J∗ is bounded, and

thus the sequence {Ξtl} is bounded. Hence, we obtain from (3.18) that

lim
l→∞

m∑
j=1

βj

∥∥∥∥(I − PQ int
j ,tl

)
Fjutl

∥∥∥∥ = 0. (3.20)

Next, we prove that each weak cluster point of {utl} belongs to Ω, that is ωw (utl ) ⊆ Ω.
Let ū ∈ H be a weak cluster point of {utl}. Since {utl} is bounded, we may assume that
there exists a subsequence {utlr

} of {utl} that weakly convergent to ū. Furthermore, since
each Fj for each j ∈ J∗ is linear and bounded, this yields that {Fjutlr

} weakly converges to
Fj ū. We claim here that ū ∈ Ω. To show this, it suffices to show that ū ∈ Ci for all i ∈ I ∗

and Fj ū ∈ Qj for all j ∈ J∗.

Firstly, we show that Fj ū ∈ Qj for all j ∈ J∗. Since ∂qj for each j ∈ J∗ is bounded

on bounded set, we may assume that there is a constant η̊ > 0 such that ‖ηtlrj ‖ ≤ η̊,

where η
tlr
j ∈ ∂qj(Fjutlr

) for each j ∈ J∗. That is the sequence {ηtlrj } is bounded. Since

PQ int
j ,tlr

(Fjutlr
) ∈ Q int

j ,tlr
⊆ Q

tlr
j for each j ∈ J∗, it follows from (3.3) and (3.20) for all j ∈ J∗

and as r →∞ that

qj

(
Fjutlr

)
≤
〈
η
tlr
j , Fjutlr

− PQ int
j ,tlr

(Fjutlr
)
〉
≤

∥∥∥ηtlrj ∥∥∥∥∥∥(I − PQ int
j ,tlr

)
Fjutlr

∥∥∥
≤ η̊

∥∥∥(I − PQ int
j ,tlr

)
Fjutlr

∥∥∥→ 0. (3.21)

The weakly lower semi-continuity of qj together with (3.21) implies for all j ∈ J∗ that

qj(Fj ū) ≤ lim inf
r→∞

qj

(
Fjutlr

)
≤ lim

r→∞
η̊
∥∥∥(I − PQ int

j ,tlr

)
Fjutlr

∥∥∥ = 0. (3.22)

It turns out that, Fj ū ∈ Qj , for all j ∈ J∗.

Next, we prove that ū ∈ Ci for all i ∈ I ∗. By (a1) and (3.18), we obtain that

‖vtlr − utlr
‖2 ≤

∥∥∥(1− σtlr )
(

utlr
− τtlr

m∑
j=1

βjF
∗
j

(
I − PQ int

j ,tlr

)
Fjutlr

)
− utlr

∥∥∥2

=
∥∥∥σtlr (−utlr

) + (1− σt)
(

utlr
− τtlr

m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjutlr

− utlr

)∥∥∥2
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≤ σtlr

∥∥∥utlr

∥∥∥2

+ (1− σtlr )τ 2
tlr

∥∥∥ m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjutlr

∥∥∥2

≤ σtlr

∥∥∥utlr

∥∥∥2

+ (1− σtlr )ρ2
tlr

(∑m
j=1 βj

∥∥∥∥∥(I − PQ int
j ,tlr

)
Fjutlr

∥∥∥∥∥
2)2

Ξ2
tlr

→ 0(3.23)

as r →∞, that is
lim
r→∞

∥∥vtlr − utlr

∥∥ = 0. (3.24)

In fact, since PC int
i ,tlr

(utlr
) ∈ C int

i ,tlr
⊆ C

tlr
i for each i ∈ I ∗, it follows from (3.3) for all i ∈ I ∗ that

ci (utlr
) ≤

〈
ξ
tlr
i , utlr

− PC int
i ,tlr

(vtlr )
〉

=
〈
ξ
tlr
i , (utlr

− vtlr ) +
(

I − PC int
i ,tlr

)
vtlr

〉
=

〈
ξ
tlr
i , (utlr

− vtlr )
〉

+
〈
ξ
tlr
i ,

(
I − PC int

i ,tlr

)
vtlr

〉
≤

∥∥∥ξtlri ∥∥∥
[∥∥∥utlr

− vtlr

∥∥∥+
∥∥∥(I − PC int

i ,tlr

)
vtlr

∥∥∥]. (3.25)

Since ∂ci for each i ∈ I ∗ is bounded on bounded set, we may again assume that for all tlr ≥ 0,

there is a constant ξ̊ > 0 such that ‖ξtlri ‖ ≤ ξ̊, where ξ
tlr
i ∈ ∂ci (utlr

) for each i ∈ I ∗. Hence,
it follows from (3.19), (3.24), and (3.25) for all i ∈ I ∗ as r →∞ that

ci (utlr
) ≤

∥∥∥ξtlri ∥∥∥
[∥∥∥utlr

− vtlr

∥∥∥+
∥∥∥(I − PC int

i ,tlr

)
vtlr

∥∥∥]

≤ ξ̊

[∥∥∥utlr
− vtlr

∥∥∥+
∥∥∥(I − PC int

i ,tlr

)
vtlr

∥∥∥]→ 0. (3.26)

The weakly lower semi-continuity of ci together with (3.26) implies for all i ∈ I ∗ that

ci (ū) ≤ lim inf
r→∞

ci (utlr
) ≤ 0, (3.27)

consequently, ū ∈ Ci , ∀i ∈ I ∗. Altogether, we conclude that ū ∈ Ω. Since ū is arbitrary,
we conclude that each weak cluster point of {utl} belongs to Ω. That is wω(utl ) ⊆ Ω. This
implies there exists a subsequence {utlr

} of {utl} such that utlr
⇀ ū.

In addition, from Lemma 2.3 (1) and (a1), we obtain that

lim sup
r→∞

µtlr
= lim sup

r→∞

[
σtlr ‖u

∗‖2 + 2(1− σtlr )〈utlr
− u∗, −u∗〉

+ 2τtlr (1− σtlr )
∥∥∥ m∑

j=1

βjF
∗
j

(
I − PQ int

j ,tlr

)
Fjutlr

∥∥∥‖u∗‖]
= 2 lim sup

r→∞
〈utlr
− u∗, −u∗〉
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= 2 max
ū∈ωw (utlr

)
〈ū − u∗, −u∗〉

≤ 0. (3.28)

Therefore, from Lemma 2.11, we conclude that any sequence {ut} generated by Algorithm 1
converges strongly to the minimum-norm element u∗ = PΩ0. The proof is complete.

3.1. Corollaries

It is readily seen that, for the case where n = 1, the MSSFPMOS (1.2) reduced to the
following problem: introduced and studied by Reich et al. [17] in infinite-dimensional Hilbert
spaces.

Let H, Hj , j = 1, 2, ... , m, be real Hilbert spaces and let Fj : H → Hj , j = 1, 2, ... , m, be
bounded linear operators. The split feasibility problem with multiple output sets (SFPMOS,
for short) is to find a point u∗ such that

u∗ ∈ Γ := C ∩
(
∩mj=1 F−1

j (Qj)
)
6= ∅, (3.29)

where C and Qj , j = 1, 2, ... , m, are non-empty, closed and convex subsets of H and Hj , j =
1, 2, ... , m, respectively.

Reich et al. [17] introduced the following two approximation iterative methods for solving
the SFPMOS (3.29). For any given point u0 ∈ H, {ut} is a sequence generated by

ut+1 := PC

(
ut − τt

m∑
j=1

F ∗j (I − PQj )Fjut

)
(3.30)

and for any initial point v0 ∈ H, {vt} is a sequence generated by

vt+1 := σt f (vt) + (1− σt)PC

(
vt − τt

m∑
j=1

F ∗j (I − PQj )Fjvt
)

, (3.31)

where f : C → C is a θ ∈ [0, 1)-strict contraction mapping of H into itself, τt ∈ (0,∞) and
{σt} ⊂ (0, 1). It was proved that, if the sequence {τt} satisfies the condition:

0 < a ≤ τt ≤ b <
2

m maxj=1,2,...,m{‖Fj‖2}

for all t ≥ 1, then the sequence {ut} generated by (3.30) converges weakly to a solution point
u∗ ∈ Γ of the SFPMOS (3.29). Furthermore, if the sequence {σt} satisfies the conditions:

lim
t→∞

σt = 0 and
∞∑
t=1

σt =∞,

then the sequence {vt} generated by (3.31) converges strongly to a solution point u∗ ∈ Γ of
the SFPMOS (3.29), which is a unique solution of the variational inequality

〈(I − f )u∗, u − u∗〉 ≥ 0 ∀u ∈ Γ.
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Note that the iterative methods given by (3.30) and (3.31) require to compute the metric
projections on to the sets C and Qj and need to compute the operator norm, in which is
difficult to do so.

If n = 1 in the MSSFPMOS (1.2), accordingly in Algorithm 1, as an immediate conse-
quence of Theorem 3.2, we obtain the following result which solves the SFPMOS (3.29).

Corollary 3.3. Assume that the set of solutions Γ of the SFPMOS (3.29) is non-empty and
suppose that the sequences {σt} and {ρt} in Algorithm 2 satisfy the assumptions (a1) and
(a2) in Theorem 3.2. Then, the sequence {ut} generated by Algorithm 2 converges strongly
to an element u∗ ∈ Γ, where u∗ = PΓ0.

Algorithm 2: A self-adaptive approximation technique for SFPMOS (3.29)

Step 0. Choose two sequences {σt} ⊂ (0, 1) and {ρt} ⊂ (0, 2) and select β > 0. Let
u0 ∈ H be arbitrary initial guess and set t := 0. Take the constant parameters βj
(j = 1, 2, ... , m) > 0 such that

∑m
j=1 βj = 1.

Step 1. Given the current iterate ut , compute the next iterate ut+1 via the formula

ut+1 = PC 2
t

(
(1− σt)

(
ut − τt

m∑
j=1

βjF
∗
j

(
I − PQ int

j ,t

)
Fjut

))
,

where C 2
t = Ct ∩ Ct−1, Q int

j ,t = Qt
j ∩ Qt−1

j for each j = 1, 2, ... , m, and

τt :=
ρt
∑m

j=1 βj
∥∥(I − PQ int

j ,t

)
Fjut

∥∥2(
max

{
β,
∥∥∑m

j=1 βjF
∗
j

(
I − PQ int

j ,t

)
Fjut

∥∥})2 .

Step 2. If ut+1 = ut , then stop; otherwise, set t := t + 1 and return to Step 1.

It is readily seen that, for the case where n = 1 = m, in the MSSFPMOS (1.2), accordingly
in Algorithm 1, as an immediate consequence of Theorem 3.2, we obtain the following result
which solves the SFP (1.1).

Corollary 3.4. Assume that the set of solutions Π = C ∩ F−1(Q) of the SFP (1.1) is non-
empty and suppose that the sequences {σt} and {ρt} in Algorithm 3 satisfy the assumptions
(a1) and (a2) in Theorem 3.2. Then, the sequence {ut} generated by Algorithm 3 converges
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strongly to an element u∗ ∈ Π, where u∗ = PΠ0.

Algorithm 3: A self-adaptive approximation technique for SFP (1.1)

Step 0. Choose two sequences {σt} ⊂ (0, 1) and {ρt} ⊂ (0, 2) and select β > 0. Let
u0 ∈ H1 be arbitrary initial guess and set t := 0.
Step 1. Given the current iterate ut , compute the next iterate ut+1 via the formula

ut+1 = PC 2
t

(
(1− σt)

(
ut − τtF ∗

(
I − PQ2

t

)
Fut

))
,

where C 2
t = Ct ∩ Ct−1, Q2

t = Qt ∩Qt−1, and the stepsize τt is self-adaptively defined
by

τt :=
ρt
∥∥(I − PQ2

t

)
Fut

∥∥2(
max

{
β,
∥∥F ∗

(
I − PQ2

t

)
Fut

∥∥})2 .

Step 2. If ut+1 = ut , then stop; otherwise, set t := t + 1 and return to Step 1.

4. Numerical Experiments

In this section, we perform some computational tests to illustrate the implementation and
efficiency of our proposed algorithm and we compare it with several existing methods in the
literature.

The numerical results are completed on a standard TOSHIBA laptop with Intel(R) Core(TM)
i5-2450M CPU@2.5GHz 2.5GHz with memory 4GB. The code is implemented in MATLAB
R2020a.

Example 4.1. Let H = R3, H1 = R6, H2 = R9, H3 = R12 and H4 = R15. Find a point
u∗ ∈ R3 such that

u∗ ∈ Ω := C1 ∩
(
∩4
j=1 F−1

j

(
Qj

))
6= ∅, (4.1)

where
C1 = {u ∈ R3 : ‖u − o1‖2 ≤ r 2

1 },
Q1 = {F1u ∈ R6 : ‖F1u − O1‖2 ≤ R2

1},
Q2 = {F2u ∈ R9 : ‖F2u − O2‖2 ≤ R2

2},
Q3 = {F3u ∈ R12 : ‖F3u − O3‖2 ≤ R2

3},
Q4 = {F4u ∈ R15 : ‖F4u − O4‖2 ≤ R2

4},

where o1, O1 ∈ R6, O2 ∈ R9, O3 ∈ R12, O4 ∈ R15, r1, R1, R2, R3, R4 ∈ R, and F1 : R3 → R6,
F2 : R3 → R9, F3 : R3 → R12, and F4 : R3 → R15.

For any u ∈ R3, we have c1(u) = ‖u − o1‖2 − r 2
1 and qj(Fju) = ‖Fju − Oj‖2 − R2

j

for j = 1, 2, 3, 4. In what follows the subgradients ξt1 and ηtj of respectively c1(ut) and
qj(Fjut) can be calculated respectively at the points ut and Tjut by ξt1(ut) = 2(ut − o1) and
ηtj (Fjut) = 2(Fjut − Oj). Thus, according to (3.2) and (3.3), the half-spaces C t

1 and Qt
j

(j = 1, 2, 3, 4), respectively of the sets C1 and Qj can be easily determined at a point ut and
Fjut , respectively, and the metric projections onto the half-paces C 2

1 and Q int
j ,t (j = 1, 2, 3, 4),

can be easily computed.
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Now, we take, the radii r1 = 4, R1 = 8, R2 = 15, R3 = 22, R4 = 18, the elements of the
representing matrices Fj are randomly generated in the closed interval [−5, 5], and the centers

o1 = (0.4, 0.6, 0.6)T , O1 = (0.1,−0.5, 0.4,−0.5,−0.1,−0.2)T ,
O2 = (0.1, 1.0, 0.5, 1.0,−0.5, 0.1,−0.9, 0.5, 0.2)T ,
O3 = (0.7, 1.0, 0.9,−0.2,−1.0, 0.1,−0.6,−0.6,−0.3,−0.9, 0.5, 0.5)T ,
O4 = (0.1,−0.3, 0.7, 0.1, 0.9, 0.8,−0.3, 0.1,−0.3, 0.26, 0.6, 0.5,−0.7, 0.6,−0.9)T .

In example 4.1, we examine the convergence of the sequence {ut} generated by Algorithm
1 compared to the iterative methods given by Algorithm (3.30) and Algorithm (3.31). For
this purpose, we consider the values of the parameters appeared in the methods as follows.
We take β = 0.3, ρt = t

2t+1 , σt = 1
10t , αt

1 = 1, βj = j
10 (j = 1, 2, 3, 4), x0 = (−1, 3,−2)T .

Moreover, in Algorithms (3.30) and (3.31), we take τt = 0.0005 and f (u) = 0.975u in
Algorithm (3.31).

In this experiment, we use Et = ‖ut+1 − ut‖2 < ε for small enough ε > 0 as a stopping
criteria. In Table 1 and Figure 1, we report the numerical results of the compared methods
for different values of ε.

Table 1. Numerical results of compared methods for different values of ε.

Algorithm 1 Algorithm (3.30) Algorithm (3.31)

Iter. (t) 23 27 41
ε = 10−4 cpu(s) 0.001590 0.016056 0.007037

Iter. (t) 49 60 105
ε = 10−6 cpu(s) 0.001393 0.001567 0.001662

Iter. (t) 72 115 168
ε = 10−8 cpu(s) 0.015945 0.011189 0.017034

Iter. (t) 190 212 245
ε = 10−10 cpu(s) 0.032656 0.041615 0.062844

It is readily apparent from Table 1 and Figure 1 that Algorithm 1 exhibits superior perfor-
mance compared to the other algorithms, as evidenced by its lower number of iterations and
shorter runtime in seconds.
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Fig. 1. Iter. (t) against Error, experimental results of compared methods for different values
of ε.

Example 4.2. Let H1 = H2 = L2([0, 1]) with the inner product 〈·, ·〉 and induced norm ‖ · ‖
defined by

〈u, v〉 =

∫ 1

0

u(s)v(s)ds, ∀u, v ∈ L2([0, 1]),

‖u||2 :=

√∫ 1

0

|u(s)|2ds, ∀u ∈ L2([0, 1]).

Furthermore, we consider the following half-spaces

C :=

{
u ∈ L2([0, 1]) : 〈u(s), 3s2〉 = 0

}
and

Q :=

{
v ∈ L2([0, 1]) : 〈v ,

s

3
〉 ≥ −1

}
.

In addition, we consider a linear continuous operator F : L2([0, 1]) → L2([0, 1]), where
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(Fu)(s) = u(s). Then, (F ∗u)(s) = u(s) and ‖F‖ = 1. That is, F is an identity opera-
tor. The metric projection onto an half-space has an explicit formula [4]. Now, we solve the
following problem

find u∗ ∈ C such that Fu∗ ∈ Q. (4.2)

In Example 4.2, we examine the numerical behaviour of our proposed method: Algorithm
3 and compare it with the following strongly convergent iterative algorithms, repesctively
introduced by López et al. [14] and He et al. [13] by solving problem (4.2). For u, u0 ∈ H1;

ut+1 := σtu + (1− σt)PCt

(
ut − τtF ∗(I − PQt )Fut

)
,∀t ≥ 1, (4.3)

ut+1 := PCt

(
σtu + (1− σt)

(
ut − τtF ∗(I − PQt )Fut

))
, (4.4)

where Ct and Qt are given as in (1.6) and (1.7), respectively, {σt} ⊂ (0, 1), and τt =
ρt‖(I−PQt )Fut‖2

‖F∗(I−PQt )Fut‖2 with ρt ⊂ (0, 2).

For comparison purpose, we take the following data: In all methods, ρt = t
2t+1 and

σt = 0.5. Moreover, we take β = 0.3 in Algorithm 3 and fix u = cos(s) in Algorithms (4.3)
and (4.4).

Now, using Et = ‖ut+1 − ut‖ < 10−4 as stopping criteria for all methods, for different
choices of the initial point u0, the outcomes of the numerical experiments of the compared
methods are reported in Table 2 and Figure 2.

Table 2. Comparison of Algorithm 3 with Algorithms (4.3) and (4.4) for different choices of
u0

Algorithm 3 Algorithm (4.3) Algorithm (4.4)
Iter. (t) 18 21 20

u0 = s3 cpu(s) 0.178345 0.337353 0.468288
Iter. (t) 18 20 20

u0 = s cpu(s) 0.176935 0.322715 0.458368
Iter. (t) 17 21 20

u0 = ses cpu(s) 0.164977 0.319452 0.446301
Iter. (n) 18 20 20

u0 = sin(s) cpu(s) 0.165513 0.306389 0.447171
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Fig. 2. Comparison of Algorithm 3 with Algorithms (4.3) and (4.4) for different choices of
u0

It can be observed from Table 2 and Figure 2 that for each choices of u0, Algorithm 3 is
faster in terms of less number of iterations (Iter. (t)) and cpu-run time in seconds (cpu(s))
than the compared algorithms.

Example 4.3. In this Example, we consider numerical experiments to illustrate the application
of the proposed algorithm to inverse problems arising from signal processing. Compressed
sensing is a very active domain of research and applications, based on the fact that an N-
sample signal u with exactly K nonzero components can be recovered from K � M <
N measurements as long as the number of measurements is smaller than the number of
signal samples and at the same time much larger than the sparsity level of u. Likewise, the
measurements are required to be incoherent, which means that the information contained in
the signal is spread out in the domain. Since M < N, the problem of recovering u from M
measurements is ill conditioned because we encounter an underdeterminated system of linear
equations. But, using a sparsity prior, it turns out that reconstructing u from b is possible
as long as the number of nonzero elements is small enough (see [18]). More specifically,
compressed sensing can be formulated as inverting the equation system
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b = Fu + Σ, (4.5)

where u ∈ RN is a vector with K nonzero components to be recovered, b ∈ RM is the vector
of noisy observations or measurements (the measured data) with noisy Σ (when Σ = 0,
it means that there is no noise to the observed data), and F : RN → RM is a bounded
linear observation operator, often ill-conditioned because it models a process with loss of
information. A powerful approach for problem (4.5) consists in considering a solution u
represented by a sparse expansion, that is, represented by a series expansion with respect to
an orthonormal basis that has only a small number of large coefficients. When attempting to
find sparse solutions to linear inverse problems of type (4.5), successful model is the convex
unconstrained minimization problem

min
u∈RN

1

2
‖Fu − b‖2

2 + %‖u‖1, (4.6)

where % is positive parameter and ‖.‖1 is the `1 norm. Problem (4.6) consists in minimizing an
objective function, which includes a quadratic error term combined with a sparseness-including
`1 regularization term, which is to make small component of u to become zero. Problem (4.5)
can be seen as the following least absolute shrinkage and selection operator (LASSO), which
is commonly used in the theory of signal processing (see [11])

min
u∈RN

1

2
‖Fu − b‖2

2 subject to ‖u‖1 ≤ $, (4.7)

where $ > 0 is a given constant. By the theory of convex analysis, one is able to show that a
solution to the LASSO problem (4.7), for appropriate choices $ > 0, is a minimizer of (4.6)
(see [9]). It can be observed that (4.7) indicates the potential of finding a sparse solution of
the SFP (1.1) due to the `1 constraint. More precisely, it is readily seen that problem (4.7)
is a particular case of the SFP (1.1) with C := {u : ‖u‖1 ≤ $} and Q = {b}, and thus can
be solved by Algorithm 3 and the iterative methods given by Algorithms (4.3) and (4.4). We
define the convex function c(u) = ‖u‖1 −$, and according (1.6), the level set Ct is defined
by

Ct = {u ∈ RN : c(ut) + 〈ξt , u − ut〉 ≤ 0},

where ξt ∈ ∂c(ut). Observe that the metric projection onto Ct can be computed by the
following manner,

PCt (v)) =

{
v , if c(ut) + 〈ξt , v − ut〉 ≤ 0,

v − 〈c(ut)+〈ξt ,v−ut〉
‖ξt‖2

L2
ξt , otherwise.

We choose a subgradient ξt ∈ ∂c(ut) as

(ξt)i =


1 if (ξt)i > 0,

0 if (ξt)i = 0,

−1 if (ξt)i < 0.

In a special case where Q = Qt = {b}, Algorithm 3 converges to the solution of (4.7).
Moreover, Algorithm 3 can be implemented easily, because the projection onto the level set
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has an explicit formula. In order to show the efficiency of Algorithm 3, a comparative sparse
signal recovery experiments were carried-out with Algorithms (4.3) and (4.4).

The vector u is a K sparse signal with non-zero K elements that are generated from uniform
distribution within an interval of [−2, 2], F is a matrix generated from normal distribution
with mean zero and variance of one and b is an observation generated by white Gaussian noise
with signal-to-noise ratio SNR = 40. The process of sparse signal recovery start by randomly
generating $ = K and the anchor (in Algorithms (4.3) and (4.4)) and initial point u0 are
N × 1 vectors. The main target is then to recover the K sparse signal by solving (4.7) for u.
The restoration accuracy is then measured by mean squared error (MSE) as follows:

MSE =
‖ut+1 − u‖

N
≤ ε, (4.8)

where ut is an estimated signal of u, and ε > 0 is a given small constant. We choose
the parameters σt = 1

10t+1 , ρt = 0.5, β = 0.3. In our numerical experiments, for u =
ones ([N, 1]) and u0 = ones ([N, 1]), we consider the following four choices.

Data 1: K = 20, N = 214, M = 212;

Data 2: K = 40, N = 214, M = 212;

Data 3: K = 20, N = 216, M = 214;

Data 4: K = 40, N = 216, M = 214.

We use MSE < ε = 10−4 as stopping criterion for all methods. The results of the numerical
experiments interms of number of iterations (Iter. (t)) and the cpu-run time in seconds
(cpu(s)) are reported in Table 3 and Figures 3-6.



An Approximation Technique for General Split Feasibility Problems... 25

Table 3. The experiments of compressed sensing via Algorithm 3, Algorithm (4.3), and
Algorithm (4.4)
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Fig. 3. Original K -sparse vs recovered sparse signals by compared methods for Data 1

Fig. 4. Original K -sparse vs recovered sparse signals by compared methods for Data 2
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Fig. 5. Original K -sparse vs recovered sparse signals by compared methods for Data 3

Fig. 6. Original K -sparse vs recovered sparse signals by compared methods for Data 4
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It can be observed from Table 3 and Figures 3-6 that the recovered signal by the proposed
method has less number of iterations and small cpu(s) time to converge than by the compared
methods.
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