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ABSTRACT
In this article, an implicit scheme for approximating fixed points of
enriched nonexpansive mappings is proposed and analyzed. The scheme
is structured based on the implicit midpoint rule of certain ordinary
differential equation due to stiffness. Convergence properties of the
scheme are analyzed, and the scheme is shown to iteratively approach
a fixed point of the underlined mapping. Numerical illustrations are
given to show the implementation of the scheme with respect to certain
enriched mappings. 
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1. Introduction
Physical phenomena are mostly modeled as differential equations or inclusions problems.

Such differential problems may have exact solutions that are tedious to obtain or may not even
have an exact solution. Thus the need for numerical methods that yield results exhibiting the
structure of the solutions. The implicit midpoint scheme is very promising for handling such
differential equations, especially when stiffness is involved [1–5].
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Given a boundary value problem of the form

u′ = g(u), u(0) = u1, (1.1)

the implicit midpoint scheme generates a sequence {un} by solving the recursive form

un+1 = un + ηg
(

un + un+1
2

)
, n ≥ 1, (1.2)

to find the updated iterate, where η is known as step-size. If g : Rm → Rm is sufficiently
smooth and lipschitz, then {un} converges uniformly to a solution of (1.1) over t ∈ [0, s] for
any fixed s > 0 with η → 0.

Let f ≡ Id − g , that is, f (u) = u − g(u) for all u ∈ Rm. Then (1.1) reduces to

u′ = u − f (u), u(0) = u1, (1.3)

which can be handled numerically as in (1.2) by

un+1 = un + η

[
un + un+1

2 − g
(

un + un+1
2

)]
, n ≥ 1. (1.4)

The equilibrium stage associated with the problem in (1.3) seeks u such that

u = f (u). (1.5)

When a point u satisfies (1.5) then is called a fixed point of f . This motivates the approxi-
mation of fixed point of a nonlinear mapping using the implicit midpoint scheme, which can
be traced to [6].

Given a linear space H and u1 ∈ H, the scheme

un+1 = un + ηn

[
un + un+1

2 − T
(

un + un+1
2

)]
, n ≥ 1

where ηn ∈ (0, 1), is equivalent to

un+1 = (1 − βn)un + βnT
(

un + un+1
2

)
, n ≥ 1, (1.6)

where βn = 2ηn
2 + ηn

. When H is a Hilbert space and T : H → H is nonexpansive mapping,
that is,

∥Tu − Tw | ≤ ∥u − w∥ , ∀ u, w ∈ H,

then the sequence generated by (1.6) is shown in [7] to converge to a fixed point of T provided
such a point exists and {βn} satisfied the following conditions:

1. lim inf
n→∞

βn > 0,

2. βn+1 ≤ αβn for all n ≥ 1 and some α > 0.
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On the other hands, Berinde introduced the class of enriched nonexpansive mappings as
a superclass of the class of nonexpansive mappings in [8]. Let

(
H, ∥ · ∥

)
be a normed linear

space and a mapping T : H → H is said to be an α-enriched nonexpansive if there exist
α ≥ 0 such that

∥α(u − w) + Tu − Tw∥ ≤ (α + 1)∥u − w∥, ∀u, w ∈ H. (1.7)

For recent development of enriched nonexpansive mappings, see for example, [9, 10] and the
references therein. Following this development, we can deduce the Mann scheme involving
α-enriched nonexpansive mapping in linear cases as follows:

un+1 =
(

1 − βn
α + 1

)
un + βn

α + 1Gun, n ≥ 1. (1.8)

Motivated by the aforementioned discoveries, the purpose of this paper is to propose an
implicit midpoint scheme for approximating fixed points of enriched nonexpansive mappings
and to analyze the convergence properties of the proposed scheme. It is worth noting that
fixed points of enriched nonexpansive mappings have applications in many practical problems
as they incorporate certain Lipschitz mappings with constants greater than 1. We shall give
two numerical examples of this type Lipschitz mappings and use them to show the explicit
reduction of the scheme and the numerical implementations.

2. Preliminaries
In the sequel, unless otherwise stated, E stands for a nonempty closed convex subset of a

real Hilbert space H. Given a mapping G : E → H, we call a sequence {un} an approximate
fixed point sequence for G if

∥un − Gun∥ → 0 as n → ∞.

Recall that Hilbert spaces possess Opial property, that is, for a sequence {un} ⊂ H that
converges weakly to u∗,

lim inf
n→∞

∥un − u∗∥ < lim inf
n→∞

∥un − y∥ , ∀ y ∈ H\{u∗}.

Equivalently, we have

lim sup
n→∞

∥un − u∗∥ < lim sup
n→∞

∥un − y∥ , ∀ y ∈ H\{u∗}.

Following the Opial property, we can easily deduce the demiclosedness principle of some
generalised nonexpansive mappings as follows.

Lemma 2.1. Let G : E → E be an α-enriched nonexpansive mapping. Suppose that {un} is
an approximate fixed point sequence for G and also {un} weakly converges to u∗. Then u∗ is
a fixed point of G .

Proof. Consider a mapping from E into itself defined by Gαu = α

α + 1u + 1
α + 1Gu for all

u ∈ E . Then observe that

∥un − Gαu∗∥ ≤ ∥un − Gαun∥ + ∥Gαun − Gαu∗∥
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= 1
α + 1 ∥un − Gun∥ + 1

α + 1 ∥α(un − u∗) + Gun − Gu∗∥

≤ ∥un − Gun∥ + 1
α + 1 ∥α(un − u∗) + Gun − Gu∗∥ .

This and the fact that G is α-enriched nonexpansive mapping imply

∥un − Gαu∗∥ ≤ ∥un − Gun∥ + ∥un − u∗∥ .

Consequently we get

lim sup
n→∞

∥un − Gαu∗∥ ≤ lim sup
n→∞

∥un − u∗∥ ,

which by Opial property implies that Gαu∗ = u∗. Therefore, we have Gu∗ = u∗

Some identities involving two points in real Hilbert spaces are very crucial in obtaining our
main results.

Lemma 2.2. Let u, w ∈ H and a ∈ R. Then

(i) ∥u + w∥2 = ∥u∥2 + ∥w∥2 + 2⟨u, w⟩;

(ii) ∥u − w∥2 = ∥u∥2 + ∥w∥2 − 2⟨u, w⟩;

(iii) ∥au + (1 − a)w∥2 = a∥u∥2 + (1 − a)∥w∥2 − a(1 − a)∥u − w∥2.

3. The Implicit Midpoint Scheme and Its Convergence
In this section, we state the scheme and analyzed its convergence properties.

Algorithm 3.1. Initialize u1 ∈ H arbitrary and find un+1 such that

un+1 =
(

1 − 2βn
α (2 − βn) + 2

)
un + 2βn

α (2 − βn) + 2G
(

un + un+1
2

)
, n ≥ 1, (3.1)

where βn ∈ (0, 1) for all natural number n, α ≥ 0 and G : H → H is a mapping.

Remark 3.2. It is easy to see that setting α = 0, Algorithm 3.1 reduces to (1.6). This is
interesting since (1.7) implies that every nonexpansive mapping is 0-enriched nonexpansive.

Remark 3.3. observe that

un+1 =
(

1 − 2βn
α (2 − βn) + 2

)
un + 2βn

α (2 − βn) + 2G
(

un + un+1
2

)
if and only if

[α (2 − βn) + 2] un+1 = [α (2 − βn) + 2 − 2βn] un + 2βnG
(

un + un+1
2

)
if and only if

[2 (α + 1) − αβn] un+1 = [2(α + 1) (1 − βn) + αβn] un + 2βnG
(

un + un+1
2

)
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if and only if

2 (α + 1)un+1 = 2(α + 1) (1 − βn) un + αβn (un + un+1) + 2βnG
(

un + un+1
2

)
if and only if

un+1 = (1 − βn) un + αβn
α + 1

(
un + un+1

2

)
+ βn

α + 1G
(

un + un+1
2

)
(3.2)

Lemma 3.4. Let {un} be a sequence generated by Algorithm 3.1. Then the sequence pos-
sesses the following properties:

(P1) ∥un+1 − u∗∥ ≤ ∥un − u∗∥ for all u∗ ∈ F(G) and n ≥ 1.

(P2)
∞∑

n=1
βn ∥un − un+1∥2

< ∞.

(P3)
∞∑

n=1
βn (1 − βn) ∥un − Gα (wn)∥2

< ∞,

where wn = un + un+1
2 and Gα is α-relaxation mapping of G defined by

Gα : x → α

α + 1x + 1
α + 1Gx ∀ x ∈ Dom(G). (3.3)

Proof. Let u∗ ∈ F(T ) and set wn = un + un+1
2 . Then it follows from (3.2) and Lemma

2.2(iii) that

∥un+1 − u∗∥2 =
∥∥∥∥(1 − βn) un + αβn

α + 1

(
un + un+1

2

)
+ βn

α + 1G
(

un + un+1
2

)
− u∗

∥∥∥∥2

=
∥∥∥∥(1 − βn) un + αβn

α + 1wn + βn
α + 1G (wn) − u∗

∥∥∥∥2

=
∥∥∥∥(1 − βn) (un − u∗) + βn

(
α

α + 1wn + 1
α + 1G (wn) − u∗

)∥∥∥∥2

= (1 − βn) ∥un − u∗∥2 + βn

∥∥∥∥ α

α + 1wn + 1
α + 1G (wn) − u∗

∥∥∥∥2

− βn (1 − βn)
∥∥∥∥ α

α + 1wn + 1
α + 1G (wn) − un

∥∥∥∥2

= (1 − βn) ∥un − u∗∥2 + βn
(α + 1)2 ∥α (wn − u∗) + G (wn) − G (u∗)∥2

− βn (1 − βn) ∥un − Gα (wn)∥2 .

Since G is enriched nonexpansive mapping then

∥α (wn − u∗) + G (wn) − G (u∗)∥ ≤ ∥un − u∗∥ .
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Consequently, we get

∥un+1 − u∗∥2 ≤ (1 − βn) ∥un − u∗∥2 + βn ∥wn − u∗∥2 − βn (1 − βn) ∥un − Gα (wn)∥2 .

Applying Lemma 2.2(iii), we get

∥un+1 − u∗∥2 ≤ (1 − βn) ∥un − u∗∥2 + βn

∥∥∥∥1
2 (un − u∗) + 1

2 (un+1 − u∗)
∥∥∥∥2

− βn (1 − βn) ∥un − Gα (wn)∥2

≤ (1 − βn) ∥un − u∗∥2 + βn
2 ∥un − u∗∥2 + βn

2 ∥un+1 − u∗∥2

− βn
4 ∥un+1 − un∥2 − βn (1 − βn) ∥un − Gα (wn)∥2 .

This implies that(
1 − βn

2

)
∥un+1 − u∗∥2 ≤

(
1 − βn

2

)
∥un − u∗∥2 − βn

4 ∥un+1 − un∥2

− βn (1 − βn) ∥un − Gα (wn)∥2 .

Thus

∥un+1 − u∗∥2 ≤ ∥un − u∗∥2 − βn
2(2 − βn) ∥un+1 − un∥2

− βn (1 − βn)
2(2 − βn) ∥un − Gα (wn)∥2 . (3.4)

Clearly, (P1) holds. Moreover, {∥un − u∗∥} converges. Furthermore, (3.4) implies that

∥un+1 − u∗∥2 ≤ ∥un − u∗∥2 − βn
2(2 − βn) ∥un+1 − un∥2 .

So,

βn ∥un+1 − un∥2 ≤ 2(2 − βn)
(
∥un − u∗∥2 − ∥un+1 − u∗∥2

)
≤ 4

(
∥un − u∗∥2 − ∥un+1 − u∗∥2

)
.

Taking sum up to m > 1, we have
m∑

n=1
βn ∥un+1 − un∥2 ≤ 4

(
∥u1 − u∗∥2 − ∥un+1 − u∗∥2

)
≤ 4 ∥u1 − u∗∥2 .

Taking limit as m → ∞, we get (P2). From (3.4), we get

∥un+1 − u∗∥2 ≤ ∥un − u∗∥2 − βn (1 − βn)
2(2 − βn) ∥un − Gα (wn)∥2

which consequently resulted to

βn (1 − βn) ∥un − Gα (wn)∥2 ≤ 2(2 − βn)
(
∥un − u∗∥2 − ∥un+1 − u∗∥2

)
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≤ 4
(
∥un − u∗∥2 − ∥un+1 − u∗∥2

)
.

It turns out that
m∑

n=1
βn (1 − βn) ∥un − Gα (wn)∥2 ≤ 2(2 − βn)

(
∥un − u∗∥2 − ∥un+1 − u∗∥2

)
≤ 4 ∥u1 − u∗∥2 .

Consequently (P3) holds and the proof is achieved.

Lemma 3.5. Suppose that {un} is a sequence generated through Algorithm 3.1 with {βn}
such that βn+1 ≤ ηβn for all n ≥ 1 and some η > 0. Then

∥un+1 − un∥ → 0 as n → ∞.

Proof. Set wn = un + un+1
2 and Gα be the mapping defined in (3.3). Then Algorithm 3.1

and (3.2) yield that

∥un+2 − un+1∥ = βn+1 ∥un+1 − Gαwn+1∥
≤ βn+1 ∥un+1 − Gαwn∥ + βn+1 ∥Gαwn − Gαwn+1∥
≤ βn+1(1 − βn) ∥un − Gαwn∥ + βn+1 ∥Gαwn − Gαwn+1∥
= βn+1(1 − βn) ∥un − Gαwn∥

+ βn
α + 1 ∥α(wn − wn+1) + Gwn − Gwn+1∥ .

This and the asssumption that G is α-enriched nonexpansive mapping yield

∥un+2 − un+1∥ = βn+1(1 − βn) ∥un − Gαwn∥ + βn+1 ∥wn − wn+1∥

= βn+1(1 − βn) ∥un − Gαwn∥ + βn+1

∥∥∥∥un + un+1
2 − un+1 + un+2

2

∥∥∥∥
= βn+1(1 − βn) ∥un − Gαwn∥ + βn+1

2 ∥un − un+1∥

+ βn+1
2 ∥un+1 − un+2∥ .

This yields

∥un+2 − un+1∥ ≤ 2βn+1(1 − βn)
2 − βn+1

∥un − Gαwn∥ + βn+1
2 − βn+1

∥un − un+1∥

≤ 2βn+1(1 − βn) ∥un − Gαwn∥ + βn+1 ∥un − un+1∥ .

Using the fact that (a + b)2 ≤ 2a2 + 2b2 for all a, b ≥ 0, we have

∥un+2 − un+1∥2 ≤ 4β2
n+1(1 − βn)2 ∥un − Gαwn∥2 + 2β2

n+1 ∥un − un+1∥2 .

Since βn+1 ≤ ηβn then we have

∥un+2 − un+1∥2 ≤ 4ηβn(1 − βn) ∥un − Gαwn∥2 + 2ηβn ∥un − un+1∥2 .

This and Lemma 3.4 complete the proof.
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Lemma 3.6. Let {un} be as in Lemma 3.5. Suppose in addition lim inf
n→∞

βn > 0. Then {un}
is an approximate fixed point sequence for G .

Proof. From (3.2), we get that

∥un+1 − un∥ = βn ∥un − Gαwn∥ ,

where wn = un + un+1
2 . It follows from the assumption that lim inf

n→∞
βn > 0 and Lemma 3.5

that

∥un − Gαwn∥ → 0. (3.5)

We obtain the following from the hypothesis that G is α-enriched nonexpansive mapping.

∥un − Gun∥ = (α + 1) ∥un − Gαun∥
≤ (α + 1) (∥un − Gαwn∥ + ∥Gαwn − Gαun∥)
= (α + 1) ∥un − Gαwn∥ + ∥α (wn − un) + Gwn − Gun∥
≤ (α + 1) ∥un − Gαwn∥ + ∥un − wn∥

= (α + 1) ∥un − Gαwn∥ + 1
2 ∥un+1 − un∥ .

This, (3.5) and Lemma 3.5 imply that

∥un − Gun∥ → 0 as n → ∞.

Theorem 3.7. Let G : E → E be an α-enriched nonexpansive mapping with a fixed point.
Suppose that {un} is a sequence generated through Algorithm 3.1 with {βn} satisfying

1. lim inf
n→∞

βn > 0;

2. βn+1 ≤ ηβn for all n ≥ 1 and some η > 0.

Then {un} converges weakly to a fixed point of G .

Proof. It follows from Lemma 3.4 (P1) that {un} is bounded. Then there exists a subsequence
{unk} of {un} that converges weakly to u∗ ∈ E . Consequently, we obtain from Lemma 3.6
and Lemma 2.1 that u∗ ∈ F(G). Suppose there exists another subsequent of {un}, say

{
unj

}
that converges weakly to uo . Then, similarly to u∗, we have that uo ∈ F(G). Lemma 3.4
(P1) implies that lim

n→∞
∥un − u∗∥ and lim

n→∞
∥un − uo∥ exist. Now, following Lemma 2.2(ii),

we have that

lim
n→∞

∥un − u∗∥2 = lim
j→∞

∥∥unj − u∗∥∥2

= lim
j→∞

∥∥(unj − uo) + (uo − u∗)
∥∥2

= ∥u∗ − uo∥2 + lim
j→∞

∥∥unj − uo∥∥2
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= ∥u∗ − uo∥2 + lim
k→∞

∥unk − uo∥2

= 2 ∥u∗ − uo∥2 + lim
k→∞

∥unk − u∗∥2

= 2 ∥u∗ − uo∥2 + lim
n→∞

∥un − u∗∥2 .

Thus we have 2 ∥u∗ − uo∥2 = 0 which implies that u∗ = uo . Therefore {un} converges weakly
to a fixed point of G .

4. Numerical Illustrations
Our aim in this part is to show that the implementation of the implicit methods can

be achieved explicitly just by solving for the next iteration once. Furthermore, we show the
impact of the methods on solving a stiff equation involving enriched nonexpansive mapping.

Example 4.1. Let H = R be endowed with the usual norm and take E =
[

1
2 , 2

]
. Let

G : E → E be defined by Gu = 1
u , for all u ∈ E . Then G is 3

2 -enriched nonexpansive mapping
with 1 as fixed point but not nonexpansive [8]. For this example, Algorithm 3.1 gives

un+1 =
(

1 − 2βn
α (2 − βn) + 2

)
un + 2βn

α (2 − βn) + 2

(
2

un + un+1

)
, n ≥ 1.

Solving for un+1, we get

un+1 =
−tnun +

√
t2
nu2

n − 4(−2tn + tnu2
n − u2

n)
2 , n ≥ 1, (4.1)

where tn = 2βn
α (2 − βn) + 2 .

To show the numerical patterns of the scheme for this example, we set βn = n + 1
n + 2 and

generate the results up to n = 15 as given in Table 1. The table is generated using (4.1) for
six distinct initial points.
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Table 1. Numerical results for Algorithm 3.1

n un

1 2 1.9 1.8 1.65 0.8 0.75 0.5
2 1.522588 1.464797 1.407825 1.324153 0.920759 0.945322 0.833333
3 1.215907 1.189459 1.163901 1.127378 0.973123 0.988545 0.945884
4 1.072012 1.062566 1.053593 1.041042 0.991928 0.997775 0.983973
5 1.020381 1.017626 1.01503 1.011437 0.997808 0.999596 0.995667
6 1.005156 1.004452 1.00379 1.002878 0.999453 0.999931 0.99892
7 1.001205 1.00104 1.000885 1.000672 0.999873 0.999989 0.999749
8 1.000265 1.000228 1.000194 1.000147 0.999972 0.999998 0.999945
9 1.000055 1.000048 1.000041 1.000031 0.999994 1 0.999988
10 1.000011 1.00001 1.000008 1.000006 0.999999 1 0.999998
11 1.000002 1.000002 1.000002 1.000001 1 1 1
12 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1

Remark 4.2. Note that the table shows the numbers obtained by the scheme up to six digits
for six different initial points. Moreover, the iteration converges to 1, which is the only fixed
point of the underline mapping.

Example 4.3. Consider the initial value problem
du
dt = −5u(t), u(0) = u1 = 1, t ≥ 0.

This problem usually arise from disease and population model, logistic model and many phys-
ical phenomena due to science and engineering. This problem has the solution

u(t) = e−5t , u(t) → 0, as t → ∞.

However, finding exact solution of differential equations is very tedious in most cases or even
impossible. So engineers may want to handle problem discretely by seeking for a numerical
pattern that exhibits the same behaviour with the exact solution. Now, let G be a mapping
such that u 7→ −6u. Then G is obviously not nonexpansive mapping. However G is 5/2-
enriched nonexpansive mapping since∥∥∥∥5

2(u − w) + Gu − Gw
∥∥∥∥ =

∥∥∥∥5
2(u − w) − 6u + 6w

∥∥∥∥
=

∥∥∥∥(5
2 − 6

)
(u − w)

∥∥∥∥
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= 7
2∥u − w∥

=
(

5
2 + 1

)
∥u − w∥.

For this example, Algorithm 3.1 gives

un+1 =
(

1 − 2βn
α (2 − βn) + 2

)
un + 2βn

α (2 − βn) + 2 (−3 (un + un+1)) , n ≥ 1.

Solving for un+1, we get

un+1 = (α (2 − βn) + 2 − 8βn) un
α (2 − βn) + 2 + 6βn

, n ≥ 1. (4.2)

To investigate the numerical stability of our method using the given stiff equation, we
consider 4 cases. Case1 is for for βn = n + 1

n + 2 , Case 2 for βn = 4
5 , Case 3 for βn = n(n + 2)

(n + 1)2

and Case 4 for βn = 2
3 . The generated results are shown in Table 2 and Figure 1. For

the representations, EXC stands for the exact solution, IMS stands for our proposed method
(Implicit Midpoint Scheme) and MNN is for the Mann method in (1.8). The table shows, at
each n, how far the value of the iterate un is from the value of the exact solution e−5n.
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Table 2. Numerical values for
∣∣un − e−5n

∣∣
Case 1 Case 2 Case 3 Case 4

n IMS MNN IMS MNN IMS MNN IMS MNN
1 0.993262 0.993262 0.993262 0.993262 0.993262 0.993262 0.993262 0.993262
2 4.54E-05 0.333379 0.142903 0.600045 0.090954 0.500045 4.54E-05 0.333379
3 3.06E-07 0.166666 0.020408 0.36 0.020979 0.388889 3.06E-07 0.111111
4 2.06E-09 0.1 0.002915 0.216 0.005803 0.340278 2.06E-09 0.037037
5 1.39E-11 0.066667 0.000416 0.1296 0.001725 0.313056 1.39E-11 0.012346
6 9.36E-14 0.047619 5.95E-05 0.07776 0.000532 0.295664 9.36E-14 0.004115
7 6.31E-16 0.035714 8.50E-06 0.046656 0.000168 0.283596 6.31E-16 0.001372
8 4.25E-18 0.027778 1.21E-06 0.027994 5.35E-05 0.274733 4.25E-18 0.000457
9 2.92E-20 0.022222 1.73E-07 0.016796 1.73E-05 0.26795 2.86E-20 0.000152
10 6.08E-23 0.018182 2.48E-08 0.010078 5.60E-06 0.262591 1.93E-22 5.08E-05
11 3.53E-23 0.015152 3.54E-09 0.006047 1.82E-06 0.25825 1.30E-24 1.69E-05
12 8.93E-24 0.012821 5.06E-10 0.003628 5.97E-07 0.254664 8.76E-27 5.65E-06
13 2.40E-24 0.010989 7.22E-11 0.002177 1.96E-07 0.25165 5.90E-29 1.88E-06
14 6.54E-25 0.009524 1.03E-11 0.001306 6.44E-08 0.249082 3.98E-31 6.27E-07
15 1.81E-25 0.008333 1.47E-12 0.000784 2.12E-08 0.246868 2.68E-33 2.09E-07
16 5.06E-26 0.007353 2.11E-13 0.00047 7.00E-09 0.244939 1.80E-35 6.97E-08
17 1.43E-26 0.006536 3.01E-14 0.000282 2.31E-09 0.243244 1.22E-37 2.32E-08
18 4.09E-27 0.005848 4.30E-15 0.000169 7.64E-10 0.241743 8.19E-40 7.74E-09
19 1.18E-27 0.005263 6.14E-16 0.000102 2.53E-10 0.240403 5.52E-42 2.58E-09
20 3.43E-28 0.004762 8.77E-17 6.09E-05 8.37E-11 0.239201 3.72E-44 8.60E-10
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(a) Numerical stability due to Case 1
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(b) Numerical stability due to Case 2
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(c) Numerical stability due to Case 3
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(d) Numerical stability due to Case 4

Fig. 1. Numerical Stability of Implicit Midpoint Rule

5. Conclusion Remarks
In this work, we studied the implicit midpoint scheme for getting a fixed point of an

enriched nonexpansive mapping in the framework of Hilbert spaces. We established that the
sequence generated converges weakly to a fixed point of the underlined mapping. Note that
in finite-dimensional spaces, the convergence is strong (thanks to the Bolzano-Weierstrass
theorem). We gave two examples where the mappings are not nonexpansive and solved for
the explicit form of the proposed scheme. The numerical results due to the scheme are
shown, and the distance between the iterate of the proposed scheme and that of the exact
solution is shown in comparison to the well-known Krasnoselskii-Mann iteration. Despite
the computational expansiveness and tediousness of the implementation of implicit methods,
our numerical data shows that, for the example considered, the proposed scheme achieves a
significant stage of numerical stability earlier than the Krasnoselskii-Mann scheme.

For further studies, this method can also be considered in the framework of geodesically
connected spaces since most of these spaces appear to be like nonlinear versions of Hilbert
spaces [11,12].
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