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1. Introduction

The aim of this paper is to study finite dimensional fractional or weighted Laurentiev regular-
ization method (WLR) (cf. [1-6]) to approximate the solution X of the linear ill-posed equation

Ax =y, (1.1)

where A : H — H is a positive self-adjoint operator defined on a Hilbert space H. In general the
problem of solving operator equation (1.1) is ill-posed ( [7-9]). Lavrentiev regularization (LR)
method is used to approximate the solution X (assumed to be exist) of the equation (1.1). In LR
method the minimizer w® of the functional

Jo(x) = (Ax,x) = 2(y,x) + a(x,x), «a>0, (1.2)

is taken as an approximation for X. One can see [10](in Hilbert scale) (c.f [11] (for Tikhonov
regularization)) that the solution of (1.2) over smoothen the solution X, to overcome this, WLR
was studied in [4,10] (also see [2,5-8].)

In WLR method the minimizer Wgﬁ of the functional

J5(x) = (Ax,x) = 2(y, x) + a (APx,x), a >0, (1.3)
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where 8 € [0, 1), is taken as an approximation for X. The minimizer w, g of the above functional
satisfies the operator equation
AP (AP Lalx =y. (1.4)

Note that, in practice the available data y® € H with
ly =yl <. (1.5)

So, (1.4) with, y? in place of y, has a minimizer, then y° € R(AB). This, is a severe restriction,
but notice that this restriction can be overcome by considering finite dimentional realization of
(1.3). So, we consider the finite dimensional realization of (1.4), namely, we consider the Wgﬂ’h,
the solution of

(AP L al)x = AP Pyy?, (1.6)

where Py, is the orthogonal projection onto R(Py) and A, = PrAPy,.

Remark 1.1. Note that, Poy® € R(Ap), i.e., Pry® € R(AY) for 8 € [0,1). So, w5 is well
defined.

One of the main constrain in regularization methods is the choice of the regularization param-
eter .. In this paper, we consider the finite dimensional version of the adaptive parameter choice
method considered by Pereverzev and Schock in [12] for choosing the regularization parameter o
in (1.6). Throughout this paper c, c1, ¢, etc., denote generic constants which may take different
values at different occasions.

The rest of the paper is organized as follows. In Section 2 we provide error estimates for
ng’ﬁ'h — W g.hll, [|Wa8.n — Wa,g]| and ||wa,g — X||, where w, g is the solution of (1.6) with
y in the place of y°. In Section 3 we consider the finite dimensional version of the adaptive
parameter choice strategy for weighted simplified regularization method. Numerical example is
given in Section 4 and finally the paper ends with conclusion in Section 5.

2. Error Estimates

In this Section we obtain the error estimates for ||W£’6’h — Wq,8.h] and ||wa,gn — Wa, gl under
the assumption (1.5) and the source condition;

xe{xeH: x=Az ||z]| <p}0<v<1-p} (2.1)

If X satisfies (2.1), then we have [4, Lemma 2.1]

v

Wa,p = X[| = O(a™=7). (2.2)

For the results that follow, we impose the following conditions (cf. [13]). Let
en = [[A(l = Pl

and assume that limy_,g e, = 0. The above assumption is satisfied if P, — | point-wise and if A
is a compact operator. Let Ay := P,APp. Then

|An = All < [[PhA(Ph = DIl + [[(Pr — DA < 2ep.

In order to obtain an estimate for ||wy 5, — Wq, ||, we shall make use of the following formula
( [14, Page 287]);

Bzx — Tz / t* {(B +th7x — e(tt)x + ...+ (—)”@B”_lx dt
0

™ tn
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B"— 1
n—1
+(=1) z—n+1 X EH,

sinmz [x Bx

T z z-—1

where

0 if 0<t<1
e(t)_{l if 1<t<oo

for any positive self-adjoint operator B and for any complex number z such that 0 < Rez < n.
Takingz=1-—p3, 0 < B <1, we have

15, _sinT(1-p) [ x /OO 1-5 -1 _/OOX
B Px 1—ﬁ+ A t*P(B+ tl) " xdt . tﬁdt'

™
Using the above formula, for any Z € H, we have,

sinm(1l—

AP _ A7 — p) /°° EB(Ap + t) (A — Ap)(A+ tl) "\ Zdt. (23)
0

™

Proposition 2.1. Suppose y° satisfies (1.5) and Wo,3,h Satisfies (1.6) with y in place of y°. Then,
for B < v <1, the following estimates hold.

(1) W2 5 — warpnl) = O ( ‘i) .

al-8
and
(ii) HWaﬂ,h - Wa,ﬂ” =0 % .
al-B8

In particular,

(iif) ||w2 55, — %I < c1 511; +ealn,
B, e

Proof. From (1.6), we have

1— _ _
W50 — W g ull = (A7 +al)™E AP Pa(y — y0)|

A8
SSup |\ ~g—g | Iy Y
sup 5| 1Y ')

-o()
al-8

proving (7). To Prove (ii), notice that

wagh = (A, AL~ 5—1—04/) la- ﬂPhy

= (A1 P raltA, P PuAR

= (A7 +al)” 1A1 U2+ (AP + al) TA P PLA(L - PR,
Wap = (A1 FraltAPy

= (AP 4 alntAT PR

and hence

Waph —Wag = (A7 +al) LA — (A0 4 al) LAV AR



204 S. George et al.

HALP 4 al)TA P PLA(L — PR,

So
1— 1 a— ~
Wa.h = wasll < I+ (A, +al)TLA P PRA(L = PR)R|,
where = [(A} % + al) AP — (A8 4 al)LAFIR.

Further, we have

_ _ _ ~ € —~
(A7 + al) LA, P PyA(l — PR)R| < —— |||

ol-8

and

(A7 +an™tA77 — (AP 1 antA AR

= (A7 +anTHA (A fal) — (A7 aAYP) (AP £ al) ik

= (AP +antalA P - APAYP £ an) iR,
So by (2.3), we have

sinm(1— B)a

AP )t
. (h + al)

X / P (Ap+ t)THA = Ap)(A+ t) THAYP 4 al)Tixdt|).
0

(2.4)

(2.5)

< LB oat? oy
« /OOO E8)[(Ay + t) 1A — A)(A+ t) 1A £ al)1x|dt

< ITCZI0(aP 1 an
><[/01 278 (Ap + t)THA — A (A + t) YA + al)7IR||dt
+ /loo (A + t) LA = Ap)(A+ t)TH AP+ al) IR dt]

< SO [Ty 4 ) A A+ ) HA Az
w7 A+ ) A= A4+ ) A+ )R]

< Snmll=p) ”(i ) [/01 rHﬂ%II(A ) LAY (AT 4 al) Lz de
N /100 tl_ffeh”(Al—ﬁ +al) A Z| d].

Therefore,

in7(1 — ! 2
< SEREEL e S a0 s aty
™ 0 v
vy 1 /Oo 1 dt
(e e
sinm(1— f) [HZH/1 2¢p dt
0

+ 2ep||2|

T o ti-6-v
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+26,e] ~ =
€ 7
BB - ) ol
sinm(1— ) [HZH 2¢p v’ 1
- +2 v
> . a B+v EhHZHﬁ(]. 5)(1 ) V)]_—y 041_1—5
sinm(1— 3)|z|| [1 v } €h
< 2———— |-+ . 2.6
TR U (e ey e (20)
Hence (ii) follows from (2.4), (2.5), (2.6) and the fact that max{Z, 17111,[3 }< 1
[ - al=-F
The result (iii) now follows from (i), (ii) and (2.2).
U
3. Adaptive Selection of the Parameter
Note that by (iii) of Proposition 2.1, we have
~ J v
\|Wgﬁ,,—x||<c< +f"+aua>, (3.1)
B, e

where
C = max{c, 2}

Further, observe that the error 2t +aT7 in (3.1) is of optimal order if a5 := a(6) satisfies
al-8

_v_ 1-8
0teh — oT-5. That is o = (8 + €p,) v#1 . Pereverzev and Schock in [12], introduced the adaptive
m

selection of the parameter strategy, we modified adaptive method suitably for the situation for
choosing the parameter « to obtain the optimal order in (3.1). Let i € {0,1,2,---,N} and

a; = pi'ag where ;1 > 1 and ag > 6.

Let "
| := max {i ta TP <5+ eh} <N and (3.2)
. 5 5 0+ep . .
ki=maxqi:|lwg gp—wy gnll <4C——,/=01,2,---,i—1 (3.3)
al=?

J
where C is as in (3.1). We have the following Theorem.

1+v
Theorem 3.1. [15] Assume that there exists i € {0,1,---, N} such that o; " < § + €p. Let
assumptions of Proposition 2.1 be fulfilled, and let | and k be as in (3.2) and (3.3) respectively.
Then | < k; and

v+1 v
Iwl, o — R < 6 Cpi= (5 + )51,

v

Proof. To prove | < k, it is enough to show that, for each i € {1,2,... N}, ail’ﬁ < 6+f” e

a}fﬁ
§ 0 d+ep . - . .
w3, 5.5 — W, gl <4C5t, Vj=0,1,2, .0 — 1. For j < i, we have
I ' ’ ’ am
J
b) 5 5 = = 5
| Wi = Wayn Il < I wapn =X+ 1 X = wg, g |l
v ) v )
< Clo/ 7+ —i:h +C ajlfﬁ + Eh
al™? al”
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5
< 2Caf T 4202t
ozjlfﬁ
< 4C5—|—6h
Oém

J
Thus the relation | < k is proved. Further note that

S~ 5 S~ 5 5 5
X = wa, sn ISIX=wa, g0l + 1l Wa, 58— Wa, g0

where
v d+e€ d+e€
1% —wl spll<Claf P+ | <2C—1"
3 3
Q Q
Now since | < k, we have
o+ fh
I W, pn—wWopnll < 4C—r
a,l_ﬁ
Hence
R o+ eh
| X —w, kﬁh [<6C—r
04,175
”+1 ”+1 u+1 v+l
Again, since 045 =0+ep < 04,+1 < pul=Bayt=#, and o < ay < ayy1, it follows that
0+ € 0+ € u+1 v vil v
Lh 7h < ptBoy TR < pi-Bas-A < p (5+€h)u+1
Q5 E a,lfﬁ

This completes the proof.

3.1. Implementation of adaptive choice rule

Finally the balancing algorithm associated with the choice of the parameter specified in The-
orem 3.1 involves the following steps:

= Choose ag > 0 such that 6 < ag and p > 1.
» Choose o = pi'ag,i=0,1,2,---, N.

3.2. Algorithm
1. Set i =0.

2. Solve ngﬂ’h by using (1.6).

3. If ||Wg,,ﬁ,h_ ng’BVhH >4C ‘Sir_ig ,j=0,1,2,...i—1, then take k = i—1 and return w,, g .
o
J

4. Elseset i =i+ 1 and go to 2.
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4. Numerical Examples

In this section, we consider an academic example for the numerical discussion to validate
our theoretical results. The discrete version of the operator A is taken from the Regularization
Toolbox by Hansen [16].

||Wg,5,h_;||
[K]

of 3, n (size of the mesh) and noise level 4.
Example 4.1 [17] Define the function

Relative errors E, g = ) and « are presented in the tables for different values

1+4cos (%) |x] <3
X) =
o) 0 x| > 3.
Consider the problem of solving integral equation
6
[T](s) = / k(s t) x(t)dt = g(s), —6<s<6, (4.1)
—6

[s|m

where k(s, t) = ¢(s — t), g(s) = (6 — |s|) (1 + L cos () + 2 sin ( 7). We take A= T*T.
The solution of this problem X(t) is given by X(t) = ¢(t). We have introduced the random noise
level § = 0.05 and 0.01 in the exact data. Relative errors and « values are showcased in Tables 1
obtained using adaptive method for different values of 5, n and §. In Fig:1, Fig:3, Fig:5 and Fig:7
(plot (a)), contains the computed solution (C.S) and exact solution ( exact sol.) and in Fig:2,

Fig:4, Fig:6 and Fig:8 ( plot (b)), contains the exact data and noise data.

Table 1. Relative errors obtained from Adaptive method

B n =100 n =500 n = 1000
0 =0.05 0=0.01 0 =10.05 0=0.01 0 =0.05 0=0.01

e 1.393509e + 00 | 4.884165e — 01 | 1.266827e + 00 | 3.335950e — 01 | 1.151661e + 00 | 3.032682e — 01
0 Enpn | 1.114813e — 01 | 5.507954e — 02 | 1.063084e — 01 | 4.492278e — 02 | 1.040632e — 01 | 4.212422e — 02
e 1.686146e + 00 | 4.440150e — 01 | 1.532860e + 00 | 3.032682¢ — 01 | 1.393509e + 00 | 2.756984e — 01
0.15 | Eq,n | 1.059385e — 01 | 4.664234e — 02 | 1.004385e — 01 | 4.396330e — 02 | 1.002486e — 01 | 4.037034e — 02
o 1.854761e 4- 00 | 4.036500e — 01 | 1.686146e + 00 | 2.756984e — 01 | 1.266827¢ + 00 | 2.506349e — 01
0.25 | Eypn | 1.057641e — 01 | 4.397211e — 02 | 1.008134e — 01 | 4.237829e — 02 | 8.230723e — 02 | 3.856134e — 02
o 2.040237e 4- 00 | 3.669545e — 01 | 1.854761e + 00 | 2.506349e — 01 | 1.151661e + 00 | 2.278499¢ — 01
0.35 | Eog,n | 1.047137e — 01 | 4.313658e — 02 | 1.000185e — 01 | 3.810415e — 02 | 6.896331e — 02 | 3.495328e — 02

0.25

0.2

0.1

0.05

Fig:1 Solution of Phillips example with
0 =0.01, 8 =0 and n=1000.

@

C.S.with 3=0, §=0.01

exact sol.

(o)

0.8

06

0.4

0.2

exact data
= = = noise data

-0.2

Fig:2 Data of Phillips example with
0 =0.01, 8 =0 and n = 1000.
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a
0.25 @
0.2
0.15
0.1
0.05
0
C.S.with 3=0.15, 6=0.01
————exact sol.
-0.05
-2 -1.5 -1 -0.5 0 0.5 1 15 2

Fig:3 Solution of Phillips example with
60 =0.01, 8 =0.15 and n = 1000.

(a)

C.S.with =025, 6=0.01
act sol.

0.25

0.2

0.1

0.05

-0.05

Fig:5 Solution of Phillips example with
0 =0.01, 8 =0.25 and n = 1000.

(a)
C.S.with 3=0.35, 4§=0.01
exact sol.

0.25

0.2

0.15

0.1

0.05

-0.05

Fig:7 Solution of Phillips example with
0 =0.01, 8 =0.35 and n = 1000.

(b)

exact data
= = =noise data

0.8

0.6

0.4

0.2 r

-0.2

Fig:4 Data of Phillips example with
0 =0.01, 8 =0.15 and n = 1000.

®

exact data
= = =noise data

0.8 -

0.6

0.4 -

02

-0.2

Fig:6 Data of Phillips example with
0 =0.01, 8 =0.25 and n = 1000.

®

exact data
= = =noise data

0.8 -

0.6 -

0.4 -

0.2

-0.2

Fig:8 Data of Phillips example with
0 =0.01, 8 =0.35 and n = 1000.
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5. Conclusion

In this paper we considered weighted simplified regularization method for ill-posed equations

in the finite dimensional subspaces of a Hilbert space involving positive self-adjoint operator.
We obtained an optimal order error estimate under a general Holder type source condition and
the regularization parameter is chosen using adaptive parameter choice strategy introduced by
Pereverzev and Schock [17]. Numerical experiments confirms the theoretical results.
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