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ABSTRACT
The semiclosed principle for generalized Osilike-Berinde-nonexpansive
mappings in 2-uniformly convex geodesic spaces is proved. The ex-
istence of endpoints and common endpoints for generalized Osilike-
Berinde-nonexpansive mappings in this setting is also established. Our
results extend and improve many results in the literature.
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1. Introduction
Let (M, d) be a metric space, x ∈ M, and C be a nonempty subset of M. We define

dist(x , C) := inf{d(x , y) : y ∈ C}, R(x , C) := sup{d(x , y) : y ∈ C},

and
diam(C) := sup{d(y , z) : y , z ∈ C}.

We denote the family of nonempty closed bounded subsets of C by CB(C). The Pompeiu-
Hausdorff distance on CB(C) is defined by

H(A, B) := max
{

sup
a∈A

dist(a, B), sup
b∈B

dist(b, A)
}

for all A, B ∈ CB(C).

A mapping T from C into CB(C) is called a multi-valued mapping. In particular, if Tx is
a singleton for every x in C , then T is called a single-valued mapping. A point x in C is
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called a fixed point of T if x ∈ Tx . We denote the set of all fixed points of T by Fix(T ).
A multi-valued mapping T : C → CB(C) is called a contraction if there exists a constant
α ∈ [0, 1) such that

H(Tx , Ty) ≤ α d(x , y) for all x , y ∈ C . (1.1)
If (1.1) is valid when α is equal to 1, then T is called nonexpansive.

Fixed point theory is an important tool for finding solutions of problems in the form of
equations or inequalities. One of the fundamental and celebrated results in metric fixed point
theory is the so-called Banach contraction principle which stated that every single-valued
contraction on a complete metric space always has a fixed point (see [1]). The principle was
extended to multi-valued mappings by Nadler [2] in 1969.

In 1995, Osilike [3] generalized the concept of a single-valued contraction to a mapping
f : C → C such that there exist α ∈ [0, 1) and L ∈ [0,∞) for which

d(f (x), f (y)) ≤ α d(x , y) + L d(x , f (x)) for all x , y ∈ C .

In 2007, Berinde and Berinde [4] extended the Osilike’s concept to a multi-valued mapping
T : C → CB(C) such that there exist α ∈ [0, 1) and L ∈ [0,∞) for which

H(Tx , Ty) ≤ α d(x , y) + L dist(x , Tx) for all x , y ∈ C . (1.2)

By combining the ideas of [3] and [4], Bunlue and Suantai [5] introduced a general class
of multi-valued mappings in the following manner: a mapping T : C → CB(C) is said to be
Osilike-Berinde-nonexpansive if there exists µ ≥ 0 such that

H(Tx , Ty) ≤ d(x , y) + µ dist(x , Tx) for all x , y ∈ C .

In [5], the authors also obtained fixed point theorems and convergence theorems for Osilike-
Berinde-nonexpansive mappings in uniformly convex Banach spaces and Banach spaces which
satisfy the Opial’s condition.

The concept of endpoints (or strict fixed point) for multi-valued mappings is an important
concept which lies between the concept of fixed points for single-valued mappings and the
concept of fixed points for multi-valued mappings. In 1986, Corley [6] proved that a maxi-
mization with respect to a cone is equivalent to the problem of finding an endpoint of a certain
multi-valued mapping. In 2010, Amini-Harandi [7] proved the existence of endpoints for multi-
valued contractions in complete metric spaces. After that, Ahmad et al. [8] applied his result
to guarantee the existence of solutions of the mixed Hadamard and Riemann-Liouville frac-
tional inclusion problems. For more details and further applications of the endpoint theory,
the reader is referred to [9–14].

Recently, Panyanak [15] introduced the concept of generalized Osilike-Berinde-nonexpansive
mappings in metric spaces and showed that it was weaker than the concept of Osilike-
Berinde-nonexpansive mapping. In [15], the author also proved the semiclosed principle
and applied it to obtain endpoint and common endpoint theorems for generalized Osilike-
Berinde-nonexpansive mappings with nonempty compact values in 2-uniformly convex hyper-
bolic spaces.

In this paper, motivated by the above results, we prove the semiclosed principle for gen-
eralized Osilike-Berinde-nonexpansive mappings with nonempty closed and bounded values in
the general setting of 2-uniformly convex geodesic spaces. We also obtain common endpoint
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theorems for a family of generalized Osilike-Berinde-nonexpansive mappings in this setting.
Our results extend and improve the results of Bunlue and Suantai [5], Panyanak [15] and
many others.

2. Preliminaries
Throughout this paper, N stands for the set of natural numbers and R stands for the set

of real numbers. Let C be a nonempty subset of a metric space (M, d) and T : C → CB(C)
be a multi-valued mapping. A point x in C is called an endpoint of T if Tx = {x}. We denote
the set of all endpoints of T by End(T ). Notice that the following statements hold:

• If x is an endpoint of T , then x is a fixed point of T .
• x ∈ Fix(T ) if and only if dist(x , Tx) = 0.
• x ∈ End(T ) if and only if R(x , Tx) = 0.
A sequence {xn} in C is called an approximate endpoint sequence of T [7] if

lim
n→∞

R(xn, Txn) = 0.

Moreover, if {Tα : α ∈ Ω} is a family of multi-valued mappings from C into CB(C),
then {xn} is called an approximate common endpoint sequence of {Tα : α ∈ Ω} [16] if
lim

n→∞
R(xn, Tαxn) = 0 for all α ∈ Ω.

Definition 2.1. A multi-valued mapping T : C → CB(C) is said to be generalized Osilike-
Berinde-nonexpansive if there exists µ ≥ 0 such that

H(Tx , Ty) ≤ d(x , y) + µR(x , Tx) for all x , y ∈ C . (2.1)

Let (M, d) be a metric space and x , y ∈ M. A continuous mapping γ : [0, 1] → M is
called a geodesic joining x and y if γ(0) = x , γ(1) = y and

d(γ(t), γ(t ′)) = |t − t ′|d(x , y) for all t, t ′ ∈ [0, 1].

A metric space (M, d) is said to be a geodesic space if for any two points in M there exists
a geodesic joining them. Moreover, if any two points in M are joined by a unique geodesic,
then we say that M is a uniquely geodesic space.

A geodesic space (M, d) is called 2-uniformly convex [17] if there exists a constant cM ∈
(0, 1] such that for any x , y , z ∈ M and for any geodesic γ : [0, 1] → M joining x and y , the
following inequality holds:

d2(γ(t), z) ≤ (1 − t)d2(x , z) + td2(y , z) − cMt(1 − t)d2(x , y) for all t ∈ [0, 1].

It is known from [18] that every 2-uniformly convex geodesic space is uniquely geodesic.
Example 2.2. (1) Every uniformly convex Banach space is a 2-uniformly convex geodesic
space (see [19]).

(2) If M is a CAT(0) space, then it is a 2-uniformly convex geodesic space (see [20]).
(3) If κ > 0 and M is a CAT(κ) space with diam(M) ≤ π/2−ε√

κ
for some ε ∈ (0,π/2), then

by Lemma 2.3 of [21] we can conclude that

d2(γ(t), z) ≤ (1 − t)d2(x , z) + td2(y , z) − R
2 t(1 − t)d2(x , y) for all t ∈ [0, 1],
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where R = (π−2ε) tan(ε). This clearly implies that M is a 2-uniformly convex geodesic space.

From now on, M stands for a complete 2-uniformly convex geodesic space. Let C be a
nonempty subset of M and {xn} be a bounded sequence in M. The asymptotic radius of {xn}
relative to C is defined by

r(C , {xn}) := inf
{

lim sup
n→∞

d(xn, x) : x ∈ C
}

.

The asymptotic center of {xn} relative to C is the set

A(C , {xn}) :=
{

x ∈ C : lim sup
n→∞

d(xn, x) = r(C , {xn})
}

.

It is known from [22] that if C is a nonempty closed convex subset of M, then A(C , {xn})
consists of exactly one point. Now, we give the definition of ∆-convergence.
Definition 2.3. Let C be a nonempty closed convex subset of M and x ∈ C . Let {xn} be a
bounded sequence in M. We say that {xn} ∆-converges to x if A(C , {xnk}) = {x} for every
subsequence {xnk} of {xn}. In this case, we write xn

∆−→ x .

It is known from [23] that every bounded sequence in M has a ∆-convergent subsequence.
Definition 2.4. Let C be a nonempty closed convex subset of M and T : C → CB(C). Let
I be the identity mapping on C . We say that I − T is semiclosed if for any sequence {xn} in
C such that xn

∆−→ x and R(xn, Txn) → 0, one has Tx = {x}.

3. Main Results
We start this section by proving the semiclosed principle for generalized Osilike-Berinde-

nonexpansive mappings in 2-uniformly convex geodesic spaces. Notice that this is an extension
of Theorem 3.1 in [15].
Theorem 3.1. Let C be a nonempty closed convex subset of M and I the identity mapping on
C . Let T : C → CB(C) be a generalized Osilike-Berinde-nonexpansive mapping with µ ≥ 0.
Then I − T is semiclosed.

Proof. Let {xn} be a sequence in C such that xn
∆−→ x and R(xn, Txn) → 0. Let y be an

arbitrary point in Tx . For each n ∈ N, we can choose yn in Txn such that

d(y , yn) ≤ dist(y , Txn) + 1
n .

It follows from (2.1) that

d(xn, y) ≤ d(xn, yn) + d(yn, y)

≤ R(xn, Txn) + H(Txn, Tx) + 1
n

≤ (1 + µ)R(xn, Txn) + d(xn, x) + 1
n ,

which implies lim sup
n→∞

d(xn, y) ≤ lim sup
n→∞

d(xn, x). Since xn
∆−→ x , it must be the case that

y = x . Hence, Tx = {x} and the proof is completed.
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By applying Theorem 3.1, we prove a common endpoint theorem for a family of generalized
Osilike-Berinde-nonexpansive mappings.

Theorem 3.2. Let C be a nonempty closed convex subset of M and {Tα : α ∈ Ω} a family
of generalized Osilike-Berinde-nonexpansive mappings from C into CB(C). If {Tα : α ∈ Ω}
has a bounded approximate common endpoint sequence in C , then it has a common endpoint
in C .

Proof. Let {xn} be a bounded approximate common endpoint sequence of {Tα : α ∈ Ω}. As
we have observed, there exists a subsequence {xnk} of {xn} such that xnk

∆−→ x . It follows
from Theorem 3.1 that Tαx = {x} for all α ∈ Ω. This completes the proof.

As a consequence of Theorem 3.2, we can obtain the following result.

Corollary 3.3. Let C be a nonempty closed convex subset of M and T : C → CB(C) a
generalized Osilike-Berinde-nonexpansive mapping. Then T has an endpoint if and only if T
has a bounded approximate endpoint sequence in C .

Now, we prove another common endpoint theorem which can be viewed as an extension
of Theorem 3.3 in [15].

Theorem 3.4. Let C be a nonempty closed convex subset of M and {Tα : α ∈ Ω} a
family of generalized Osilike-Berinde-nonexpansive mappings from C into CB(C). Suppose
there exist two disjoint subsets A and B of Ω such that A ∪ B = Ω. Also, suppose each
α ∈ A, the mapping Tα has a bounded approximate endpoint sequence in ∩β∈BEnd(Tβ).
Then {Tα : α ∈ Ω} has a common endpoint in C .

Proof. Fix α ∈ A and let {xn} be a bounded approximate endpoint sequence of Tα in
∩β∈BEnd(Tβ). Without loss of generality, we may assume that xn

∆−→ x . According to Theorem
3.1, x ∈ End(Tα). Fix β ∈ B and let y ∈ Tβx . Since Tβ is generalized Osilike-Berinde-
nonexpansive, by (2.1) we get

d(y , xn) = dist(y , Tβxn)
≤ H(Tβx , Tβxn)
≤ d(x , xn) + µR(xn, Tβxn).

This implies that lim sup
n→∞

d(y , xn) ≤ lim sup
n→∞

d(x , xn). Since xn
∆−→ x , we have y = x for all

y ∈ Tβx and hence Tβx = {x}. This shows that x is a common endpoint of {Tα : α ∈ Ω}.

As a consequence of Theorem 3.4, we also obtain the following result.

Corollary 3.5. Let C be a nonempty closed convex subset of M and T , S : C → CB(C) be
generalized Osilike-Berinde-nonexpansive mappings. Suppose that T has a bounded approxi-
mate endpoint sequence in End(S). Then T and S has a common endpoint in C .

Finally, we finish the paper with a numerical example.
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Example 3.6. [24, 25] Let (M, d) be the Euclidean space R2 and C = [0, 1] × [0, 1]. Let
T : C → CB(C) be defined by

T (a, b) := the closed convex hull of {(0, 0), (a, 0), (0, b)}.

Then T is a generalized Osilike-Berinde-nonexpansive mapping with End(T ) = {(0, 0)}. Let
{xn} be the sequence of Mann iteration defined by x1 ∈ C and

xn+1 = 1
nxn + (1 − 1

n )yn, n ∈ N,

where yn ∈ Txn such that d(xn, yn) = R(xn, Txn). We see that, in any case of x1, the sequence
{xn} converges to (0, 0) as n tends to ∞.

n
x1 = (1, 0.4)

boundary case
x1 = (0.3, 0.5)
interior case

x1 = (0.6, 0.6)
diagonal case

x1 = (0, 1)
corner case

xn xn xn xn
1 (1.00000,0.40000) (0.30000,0.50000) (0.60000,0.60000) (0,1.00000)
2 (1.00000,0.40000) (0.30000,0.50000) (0.60000,0.60000) (0,1.00000)
3 (0.50000,0.20000) (0.15000,0.25000) (0.30000,0.30000) (0,0.50000)
4 (0.16667,0.06667) (0.05000,0.08333) (0.10000,0.10000) (0,0.16667)
5 (0.04167,0.01667) (0.01250,0.02083) (0.02500,0.02500) (0,0.04167)
6 (0.00833,0.00333) (0.00250,0.00417) (0.00500,0.00500) (0,0.00833)
7 (0.00139,0.00056) (0.00042,0.00069) (0.00083,0.00083) (0,0.00139)
8 (0.00020,0.00008) (0.00006,0.00010) (0.00012,0.00012) (0,0.00020)
9 (0.00002,0.00001) (0.00001,0.00001) (0.00001,0.00001) (0,0.00002)
10 (0.00000,0.00000) (0.00000,0.00000) (0.00000,0.00000) (0,0.00000)

Table 1. Numerical experiments
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