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ABSTRACT In this paper, we proposed a modified hybrid con-
jugate gradient method based on a convex combination of the
Fletcher-Reeves (FR), Polak-Ribiere-Polyak (PRP) and a quasi-
Newton’s update. However, one of the suggested algorithm’s key
features is that the search direction is generated using a derivative-
free line search. Under suitable assumptions, the algorithm is set
up in such a way that its convergence is globally obtained. Finally,
numerical outcomes on numerous benchmark test problems, show
that our approach is more effective and robust than some existing
methods.
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1. Introduction
Consider a system of nonlinear equations of the form:

F (x) = 0, (1.1)

where F : Rn → Rn is nonlinear map. Nonlinear system of equations have a wide range
of applications in science and engineering, and a variety of methods for dealing with them
have been developed. See Newton’s and quasi-Newton’s methods [1, 2, 3, 4], the diagonal
Jacobian approximation method [5] and the derivative-free method [6], for more details. But,
storage, computation, and iterative approximation of the Jacobian matrix are required, these
renders both the two approaches unsuitable to solve large-scale system of nonlinear equations
[7]. The conjugate gradient (CG) methods are introduced to address the disadvantages of
Newton’s and quasi-Newton methods. Consequently, they are effective for dealing with large-
scale problems because of their convergence properties and low storage requirement, see [8, 9]
for more information. It uses the recurrence relation to generate an iterative sequence xk for
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a given initial guess x0 ∈ Rn via:

xk+1 = xk + αkdk , k = 0, 1, 2, · · · (1.2)

where αk > 0, xk+1 is the current iterate, xk is the previous iterate, and CG search direction
dk is given by

dk =
{
−F (xk), if k = 0,
−F (xk) + βkdk−1, if k ≥ 1,

(1.3)

for which the CG update parameter is βk . The approach changes in how βk is defined,
and hence different choices of βk leads to different CG approaches with various levels of
computational effectiveness and convergence.

In their survey of nonlinear CG methods, Hager and Zhang [10], divided the most important
CG techniques in two major categories, for which the Fletcher-Reeves (FR) method which is
in the first category, was established in 1964 (further information is available in [11]), and is
given by the following update parameter:

βFR
k = ∥F (xk+1)∥2

∥F (xk)∥2 . (1.4)

The update parameter for the Polak-Ribiere and Polyak (PRP) method, which is among the
second category founded in 1969 [12], is as follows:

βPRP
k = F T (xk+1)yk

∥F (xk)∥2 . (1.5)

The first category of CG methods are excellent in terms of global convergence [8], whereas the
strong computational performance is exhibited by the second category of the methods [13].
So, to exploit the advantages from each category, we merge the two approaches to create
hybrid CG algorithm, which are more effective and trustworthy than any other classical CG
algorithm. Most importantly, the algorithm works well especially when addressing large-scale,
unconstrained optimization problems of the following nature:

min f (x), x ∈ Rn, (1.6)

where f : Rn → R is twice continuously differentiable function [14]. Hybrid CG methods have
been widely used to solve (1.6) as can be seen in the articles presented by Andrei that provide
a variety of hybrid CG methods for convex combination, together with the information on
their traits, global convergence and computational experiments, (see [15, 16, 17]) for details.
However, the one described by Babaie-Kafaki et al. [18] is among the most effective of the
methods.

Recently, in [14], Ioannis et al. developed a convex combination of descent hybrid CG
approach using the memory-free BFGS update to solve (1.6). The hybridization parameter ϕk
is determined by combining βDY

k and βHS
k updates together with the approach of Frobenius

matrix norm. Because of its convergence property, ease of implementation, and cheap storage
requirements, hybrid CG methods are commonly utilized, but the scheme is scarce in the
literature for solving nonlinear system of equations. In this paper, we proposed a hybrid
algorithm based on a convex combination of βFR

k and βPRP
k parameters, similar to the one
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presented in [14] by Ioannis et al. by combining the self-scaling memory-less BFGS direction
with the direction of hybrid βFR

k and βPRP
k parameters given by

βMCG
k = ϕkβ

FR
k + (1 − ϕk)βPRP

k , where, ϕk ∈ [0, 1], ∀k. (1.7)

However, we limit the values of ϕk in the expression (1.7) to the range [0,1], to obtain
a convex combination. That is, ϕk is set to be zero, if it is less than zero, ϕk is equal to
1, if it is greater than 1, a suitable convex combination exists when ϕk is between 0 and
1. Throughout this paper, we denoted the Euclidean norm of vectors as ∥.∥, Fk = F (xk),
fk = f (xk) yk = Fk+1 − Fk and sk = xk+1 − xk . In addition, we assume that the Lipstchitz
condition is satisfied in (1.1), and f from (1.6) is defined by

f (x) = 1
2∥F (x)∥2. (1.8)

1.1. Self-Scaling Memory-less BFGS

For large-scale optimization problems, the self-scaling memory-less BFGS method is typi-
cally regarded as one of the most effective approaches [17], because of its good computational
performance and robust theoretical attributes. Based on the L-BFGS concept [19], the self-
scaling memory-less BFGS matrices are generated, given an initial matrix B0 = ϱ0I with
ϱ0 ∈ R then, the formula for BFGS is:

Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+ ykyT
k

sT
k yk

, (1.9)

where Bk is an n×n matrix known as the Jacobian matrix’s approximation at xk . From (1.9),
the scaled memory-less BFGS is updated as follows:

Bk+1 = ϱk I − ϱk
sksT

k
sT
k sk

+ ykyT
k

sT
k yk

, (1.10)

where ϱk ∈ R is the scaling parameter. The search direction is determined by

dk+1 = −B−1
k+1Fk+1, (1.11)

where −B−1
k+1 is a Jacobian inverse approximation that can be obtained using the following

expression [14]

B−1
k+1 = 1

ϱk
I − 1

ϱk

skyT
k + yksT

k
sT
k yk

+
(

1 + 1
ϱk

∥yk∥2

sT
k yk

)
sksT

k
sT
k yk

, (1.12)

where ϱk is to be expressed by Oren and Luenberger method [20]

ϱOL
k = sT

k yk
∥sk∥2 . (1.13)

1.2. Proposed Method and its Algorithm

A hybrid technique as a convex combination of the classical FR [11] and PRP [12] CG
schemes is provided here. Following a similar process as in [14], the update parameter is
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obtained using self-scaling memory-less BFGS direction and the direction of hybrid two CG
parameters. By (1.3) and (1.7), our propose descent search direction is given by:

dMCG
k+1 = −Qk+1Fk+1, (1.14)

where Qk+1 = I − ϕk
dk F T

k+1
∥Fk∥2 − (1 − ϕk) dk yT

k
∥Fk∥2 is a search direction matrix. Therefore, the

following minimization problem can be solved by computing the parameter ϕk .

min∥Dk+1∥F ϕk > 0, (1.15)

where ∥.∥F is the Frobenius matrix norm and Dk+1 = QT
k+1 − B−1

k+1. If
∥Dk+1∥2

F = tr(DT
k+1.Dk+1), then we have

∥Dk+1∥2
F = ϕ2

k

(
(F T

k+1sk)2 + (sT
k yk)2

∥Fk∥4

)
− 2ϕk

[(
sT
k yk − F T

k+1sk

) sT
k yk

∥Fk∥4 +
(

1 − 1
ϱk

) F T
k+1sk

∥Fk∥2

+
(

1
ϱk

− 1
)

sT
k yk

∥Fk∥2 +
(

1 −
F T

k+1sk

sT
k yk

)
∥sk∥2

∥Fk∥2 +
(

F T
k+1sk − sT

k yk

) 2
ϱk∥Fk∥2

+
(

1 −
F T

k+1sk

sT
k yk

)
∥sk∥2∥yk∥2

ϱksT
k yk

]
+ ℑ,

(1.16)

where ℑ is a constant containing the negative term of (−ϕ2
k) and does not depend on ϕk .

However, a second-degree polynomial with the variable ϕk , where the coefficient of ϕ2
k is

always positive, is used to compute the value of ∥Dk+1∥2
F . Now, from (1.16), we get:

2ϕk

[
ϕk

(
(F T

k+1sk)2 + (sT
k yk)2

2∥Fk∥4

)
−

[
(sT

k yk − F T
k+1sk)sT

k yk

∥Fk∥4

+ 1
∥Fk∥2

(
1 − 1

ϱk

)(
F T

k+1sk − sT
k yk

)
+ ∥sk∥2

∥Fk∥2

(
1 −

F T
k+1sk

sT
k yk

)

+ 2
ϱk∥Fk∥2

(
F T

k+1sk − sT
k yk

)
+ ∥sk∥2∥yk∥2

ϱksT
k yk

(
1 −

F T
k+1sk

sT
k yk

)]]
= 0.

(1.17)

Finally, from (1.17), the unique solution of problem (1.15) is obtained as:

ϕ∗k =
(

2∥Fk∥2

(F T
k+1sk)2 + (sT

k yk)2

)[(
F T

k+1sk − sT
k yk

)( 2
ϱk

− sT
k yk

∥Fk∥2

)

+
(

1 + ∥Fk∥2∥yk∥2

ϱksT
k yk

)(
1 −

F T
k+1sk

sT yk

)
∥sk∥2 +

(
1 − 1

ϱk

)(
F T

k+1sk − sT
k yk

)]
.

(1.18)

The concept of the approach in [20] was adopted to ensure that, the suggested method
generates a descent search direction. Let us specify the direction of our algorithm by:

dMCG
k+1 = −

(
1 + βMCG

k F T
k+1dk

)
Fk+1 + ∥Fk+1∥2βMCG

k dk . (1.19)
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Therefore, in view of (1.19), the condition holds as follows:

F T
k+1dMCG

k+1 ≤ −∥Fk+1∥2. (1.20)

We computed the step-length (αk) using the derivative-free line search method suggested
in [3]. Suppose that, ψ1 > 0, ψ2 > 0 and r ∈ (0, 1) are constants. Let {σk} represent a
non-negative sequence in the sense that

∞∑
k=0

σk < σ <∞. (1.21)

Hence, αk is to be computed as:

fk+1 − fk ≤ −ψ1∥αkFk∥2 − ψ2∥αkdk∥2 + σk fk . (1.22)

Let ik be the lowest positive integer i in the sense that, α = r i satisfies in the equation (1.22).
Suppose that αk = r ik , then the following is how we can now explain the MCG algorithm:

Algorithm 1: A Modified Hybrid Conjugate Gradient (MCG) Algorithm
Step 1: Given x0 ∈ Rn, αk > 0, ϵ = 10−4, d0 = −F0, set k = 0.
Step 2: Compute F (xk). If ∥F (xk)∥ ≤ ϵ, stop, otherwise go to Step 3.
Step 3: Compute the step length αk using (1.22).
Step 4: Set xk+1 = xk + αkdk .
Step 5: Compute F (xk+1).
Step 6: Update dMCG

k+1 from (1.19), by using (1.4), (1.5), (1.18) and (1.7).
Step 7: Set k = k + 1 and go to Step 2.

The remainder of this work is arranged in the following manner. In Section 2, we proved
the convergence of the algorithm. In section 3, we give the numerical experiments using
various test problems of nonlinear equations. It also contains a report that discusses the
numerical outcomes. Section 4 is the conclusion.

2. Theoretical Results
We need to make the following corollaries in order to prove that, our Algorithm 1 is globally

convergent to the solution of (1.1).

Corollary 2.1. The following set is bounded:

Ω = {x |∥F (x)∥ ≤ ∥F (x0)∥},

that is, there exists a constant B > 0 such that ∥F (x)∥ ≤ B, ∀x ∈ Ω.

Corollary 2.2. Since F is continuously differentiable, then, there exists x∗ ∈ Rn, such that
F (x∗) = 0.

Corollary 2.3. If the function F is Lipschitz continuous, then there exists a positive constant
L such that

∀ x , y ∈ Ω, ∥F (x) − F (y)∥ ≤ L∥x − y∥.
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But based on Corollary 2.1, it is clear that, there exists a non-negative constant M such that.

∥F (x)∥ ≤ M , ∀ x ∈ Ω. (2.1)

Lemma 2.4. Suppose that, {xk} is generated by MCG Algorithm 1, then the direction dk is
a descent for Fk at xk . Meaning that:

F T
k+1dk+1 < 0 , ∀ k ≥ 0. (2.2)

Proof. By (1.19), we can deduce that:

dMCG
k+1 = −

(
1 + βMCG

k F T
k+1dk

)
Fk+1 + ∥Fk+1∥2βMCG

k dk . (2.3)

Multiplying (2.3) by F T
k+1 to obtain,

F T
k+1dMCG

k+1 = −∥Fk+1∥2 − ∥Fk+1∥2βMCG
k F T

k+1dk + ∥Fk+1∥2βMCG
k F T

k+1dk . (2.4)

Therefore, from (2.4), we get
F T

k+1dMCG
k+1 = −∥Fk+1∥2,

which shows that,
F T

k+1dMCG
k+1 < 0.

Lemma 2.5. If Corollaries 2.1 and 2.3 are met, and the sequence {xk} is generated by the
Algorithm 1. Suppose that, m is any non-negative constant, ∋,

∥Fk∥2 ≥ m. (2.5)

Then, ∣∣βMCG
k

∣∣ ≤ M
m

(
M + 2LB

)
:= µ.

That is, our proposed βMCG
k is bounded to some positive constants.

Proof. From (1.7), we have

βMCG
k = ϕkβ

FR
k + (1 − ϕk)βPRP

k , where ϕk ∈ [0, 1], ∀k. (2.6)

Using (1.4) and (1.5), (2.6) becomes,

βMCG
k = ϕk

∥Fk+1∥2

∥Fk∥2 +
F T

k+1yk

∥Fk∥2 − ϕk
F T

k+1yk

∥Fk∥2 . (2.7)

The absolute value on each side of (2.7), is taken to obtain:

∣∣βMCG
k

∣∣ ≤ |ϕk |
∥Fk+1∥2

∥Fk∥2 +
|F T

k+1yk |
∥Fk∥2 + |ϕk |

|F T
k+1yk |
∥Fk∥2 . (2.8)

Applying Cauchy-Schwartz inequality to (2.8), we have

∣∣βMCG
k

∣∣ ≤ |ϕk |
∥Fk+1∥2

∥Fk∥2 + ∥Fk+1∥∥yk∥
∥Fk∥2 + |ϕk |

∥Fk+1∥∥yk∥
∥Fk∥2 .
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From Corollary 2.3 and (2.5), it follows that,

∣∣βMCG
k

∣∣ ≤ |ϕk |
M2

m + LM∥sk∥
m + |ϕk |

LM∥sk∥
m . (2.9)

Rearrange (2.9), to get

∣∣βMCG
k

∣∣ ≤ M
m

(
|ϕk |M + L∥sk∥

(
1 + |ϕk |

))
.

Thus, by Corollary 2.1, we have∣∣βMCG
k

∣∣ ≤ M
m

(
M + 2LB

)
:= µ. (2.10)

Lemma 2.6. Assume that, Corollaries 2.1 and 2.1 are true, and the direction {dk} is generated
by the MCG Algorithm 1. Then,

∥dMCG
k+1 ∥ ≤ ρkMk+1, where ρ > 0, ∀ k.

Proof. We have by Lemma 2.4, ∀k > 0:

dMCG
k+1 = −

(
1 + βMCG

k F T
k+1dMCG

k
)

Fk+1 + ∥Fk+1∥2βMCG
k dMCG

k . (2.11)

Now, equation (2.11) can be expressed as∥∥∥dMCG
k+1

∥∥∥ =
∥∥∥− (1 + βMCG

k F T
k+1dMCG

k
)

Fk+1 + ∥Fk+1∥2βMCG
k dMCG

k

∥∥∥. (2.12)

By triangular inequality, (2.12) becomes∥∥∥dMCG
k+1

∥∥∥ ≤
∥∥∥ (1 + βMCG

k F T
k+1dk

)
Fk+1

∥∥∥+
∣∣∣βMCG

k

∣∣∣∥∥∥Fk+1

∥∥∥2∥∥∥dMCG
k

∥∥∥. (2.13)

From which, we expand (2.13) and obtain∥∥∥dMCG
k+1

∥∥∥ ≤
∥∥∥Fk+1 + βMCG

k

∥∥∥Fk+1

∥∥∥2
dk

∥∥∥+
∣∣∣βMCG

k

∣∣∣∥∥∥Fk+1

∥∥∥2∥∥∥dMCG
k

∥∥∥. (2.14)

By triangular inequality, (2.14) can written as∥∥∥dMCG
k+1

∥∥∥ ≤
∥∥∥Fk+1

∥∥∥+
∣∣∣βMCG

k

∣∣∣∥∥∥Fk+1

∥∥∥2∥∥∥dk

∥∥∥+
∣∣∣βMCG

k

∣∣∣∥∥∥Fk+1

∥∥∥2∥∥∥dMCG
k

∥∥∥. (2.15)

From, (2.15), we have∥∥∥dMCG
k+1

∥∥∥ =
∥∥∥Fk+1

∥∥∥+ 2
∣∣∣βMCG

k

∣∣∣∥∥∥Fk+1

∥∥∥2∥∥∥dMCG
k

∥∥∥. (2.16)

By apply (2.1) and (2.10), (2.16) becomes

∥dMCG
k+1 ∥ ≤ M + 2µM2∥dMCG

k ∥. (2.17)
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However, (2.17) can be expressed as

∥dMCG
k+1 ∥ ≤ M

(
1 + 2µM

)
∥dMCG

k ∥. (2.18)

When k = 1, (2.18) becomes

∥dMCG
2 ∥ ≤ M

(
1 + 2µM

)
∥dMCG

1 ∥.

But,
∥dMCG

1 ∥ = ∥ − F MCG
1 ∥ = ∥F MCG

1 ∥.

Therefore,
∥dMCG

2 ∥ ≤ M
(

1 + 2µM
)
∥F MCG

1 ∥. (2.19)

When k = 2, then, from (2.18), we have

∥dMCG
3 ∥ ≤ M

(
1 + 2µM

)
∥dMCG

2 ∥.

In which from (2.19), we have

∥dMCG
3 ∥ ≤ M

(
1 + 2µM

)(
M
(

1 + 2µM
)
∥F MCG

1 ∥
)

. (2.20)

From (2.20), we get
∥dMCG

3 ∥ ≤ M2
(

1 + 2µM
)2

∥F MCG
1 ∥. (2.21)

When k = 3, then, from (2.18), we have

∥dMCG
4 ∥ ≤ M

(
1 + 2µM

)
∥dMCG

3 ∥. (2.22)

Using (2.21), (2.22) becomes

∥dMCG
4 ∥ ≤ M

(
1 + 2µM

)
M2
(

1 + 2µM
)2

∥F MCG
1 ∥. (2.23)

From (2.23), we obtain
∥dMCG

4 ∥ ≤ M3
(

1 + 2µM
)3

∥F MCG
1 ∥. (2.24)

Using (2.1), we can write (2.24) as

∥dMCG
4 ∥ ≤

(
1 + 2µM

)3
M4.

In general, ∀k ≥ 0, we have
∥dMCG

k+1 ∥ ≤ ρkMk+1,

where
ρ = 1 + 2µM.



Modified Conjugate Gradient Method for Solving System of Nonlinear Equations 149

Lemma 2.7. [1] If Corollaries 2.3 is holds, let the sequence {xk} be generated by the Algorithm
1. Then, we have

lim
k→∞

∥αkdk∥2 = 0,

and
lim

k→∞
∥αkF (xk)∥2 = 0. (2.25)

Theorem 2.8. If Corollaries 2.1, 2.2 and 2.3 are satisfied, let {xk} sequence be generated by
the Algorithm 1. Then,

lim
k→∞

inf ∥Fk∥ = 0.

Proof. Case 1. If limk→∞ inf ∥dk∥ = 0. Then, based on the definition of the direction, we
have:

lim
k→∞

inf ∥Fk∥ = 0.

Case 2. If limk→∞ inf ∥dk∥ > 0. Then, we have

lim
k→∞

inf ∥Fk∥ > 0.

By (2.25), we obtain
lim

k→∞
αk = 0.

Using (1.8) and (1.22), we obtain:

∥Fk+1∥2 − ∥Fk∥2 ≤ ω1∥αkFk∥2 − ω2∥αkdk∥2 + σk∥Fk∥2. (2.26)

If, (2.26) is not true, then, it means that, there exists a non-negative integer i − 1 such that,

∥Fk+1∥2 − ∥Fk∥2 > ω1∥r i−1Fk∥2 − ω2∥r i−1dk∥2 + σk∥Fk∥2.

Since, {∥Fk∥} and {∥dk∥} are bounded, then, allowing i → ∞, we have

∥Fk+1∥2 − ∥Fk∥2 > σk∥Fk∥2. (2.27)

By rearranging (2.27), we obtain

∥Fk+1∥2 >
(

1 + σk

)
∥Fk∥2. (2.28)

Taking the summation on both sides of (2.28), we have:

k∑
j=0

∥Fj+1∥2 >

k∑
j=0

(
1 + σj

)
∥Fj∥2. (2.29)

From (2.29), we deduce that

∥F1∥2+∥F2∥2+ . . . +∥Fk+1∥2 > ∥F0∥2+∥F1∥2+. . . +∥Fk∥2+σ
(
∥F0∥2+∥F1∥2+. . . +∥Fk∥2

)
.

(2.30)
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However, (2.30) can reduce to

∥Fk+1∥2 > ∥F0∥2 + σ

k∑
j=0

∥Fj∥2 > ∥F0∥2.

Which implies that,
∥Fk+1∥2 > ∥F0∥2.

So,
∥Fk+1∥ > ∥F0∥, for some k.

This contradicts Corollary 2.1. Thus, we finally conclude that,

lim
k→∞

inf ∥Fk∥ = 0.

3. Numerical Results
We evaluated the effectiveness of our suggested algorithm using different benchmark prob-

lems with various initial guess and dimensions by the following algorithm:
MCG stands for our proposed algorithm, and the following settings were made: r = 0.2,

σk = 1
(k+1)2 and ψ1 = ψ2 = 10−4.

A new derivative-free conjugate gradient NDCG is the method proposed in [6] and we
also have the following: ψ1 = ψ2 = 10−4, r = 0.2 and σk = 1

(k+1)2 .
The codes were written in MATLAB 7.71GB (R2014a) and ran on a 2GB RAM PC with

a 2.13 GHz CPU. The iterations would be terminated when the total number of 5000 are
attained or ∥F (xk)∥ ≤ 10−4. Twenty (20) test problems with various initial guess and dimen-
sions (n values) were used to compare the two algorithms.

The Twenty (20) test problems used in the proposed algorithm are as follows:

Problem 3.1. [21]
F1(x) = exp(x1) − 1,
Fi(x) = exp(xi) − 1,
Fn(x) = exp(xn) − 1,

i = 1, 2, 3, ... , n.
x0 = (−0.1,−0.1, ... ,−0.1)T .

Problem 3.2. [21]
F1(x) = x1 − 3x1(sin((x1)/3) − 0.66) + 2,
Fi(x) = xi − 3xi(sin((xi)/3) − 0.66) + 2,
Fn(x) = xn − 3xn(sin((xn)/3) − 0.66) + 2,

i = 1, 2, 3, ... , n.
x0 = (−0.5,−0.5, ... ,−0.5)T .



Modified Conjugate Gradient Method for Solving System of Nonlinear Equations 151

Problem 3.3. [13]
Fi(x) = log(xi + 1) + xi

n ,

i = 1, 2, ... , n.
x0 = (0.04, 0.04, ... , 0.04)T .

Problem 3.4. [1]
Fi(x) = xi − (0.1)x2

i+1

i = 1, 2, ... , n − 1.
x0 = (0.25, 0.25, ... , 0.25)T .

Problem 3.5. [1]
Fi(x) = 2xi − sin|xi |,

i = 1, 2, ... , n.
x0 = (0.15, 0.15, ... , 0.15)T .

Problem 3.6. [1]
F1 = x1 − ecos( x1+x2

n+1 ),

Fi = xi − ecos
( xi−1+xi +xi+1

n+1

)
,

Fn = xn − ecos
( xn−1+xn

n+1

)
,

i = 2, 3, ... , n − 1.
x0 = (5, 5, ... , 5)T .

Problem 3.7. [21]
F1(x) = 0.2x2

1 − 2,
Fi(x) = 0.2x2

i − 2,
Fn(x) = 0.2x2

n − 2,
i = 1, 2, ... , n.

x0 = (−0.15,−0.15, ... ,−0.15)T .

Problem 3.8. [7]
Fi(x) = (1 − x2

i ) + xi(1 + xIxn−2xn−1xn) − 2,
i = 1, 2, ... , n.

x0 = (−0.03,−0.03, ... ,−0.03)T .

Problem 3.9. [21]
F1(x) = ex2

1 − 1 − cos(1 − x1),

Fi(x) = ex2
i − 1 − cos(1 − xi),

Fn(x) = ex2
n − 1 − cos(1 − xn),

i = 1, 2, ... , n.
x0 = (0.8, 0.8, ... , 0.8)T .
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Problem 3.10. [7]
F1(x) = x1 − x2

2 ,
Fi(x) = xi − x2

i+1,
i = 1, 2, ... , n − 1.

x0 = (0.05, 0.05, ... , 0.05)T .
Problem 3.11. [1]

Fi(x) = 0.1(1 − xi)2 − e−x2
i ,

Fn(x) = n
10(1 − e−x2

n ),

i = 1, 2, ... , n − 1.
x0 = (0.05, 0.05, ... , 0.05)T .

Problem 3.12. [13]

Fi(x) = xi −
1
nx2

i + 1
n

n∑
i=1

xi + 1,

i = 1, 2, ... , n.
x0 = (0.5, 0.5, ... , 0.5)T .

Problem 3.13. [13]
Fi = 2xi + sin(xi) − 1,
i = 1, 2, 3, ... , n.

x0 = (1, 1, ... , 1)T .
Problem 3.14. [22]

Fi(x) = xi −

(
1 − c

2n

n∑
j=1

(µixj)
(µi + µj)

)−1

, for i = 1, 2, ... , n wth c ∈ [0, 1) and

µi = i − 0.5
n , for 1 ≤ i ≤ n.(In our experiment, we take c = 0.9).

x0 = (0.1, 0.1, ... , 0.1)T .
Problem 3.15. [1]

F (x) =


2 −1
−1 2 −1

. . . . . . . . .
. . . . . . −1

−1 2

 x + (ex
1 − 1, ... , ex

n − 1)T .

x0 = (−0.1,−0.1, ... ,−0.1)T .
Problem 3.16. [23]

Fi = xi cos(xi −
1
n ) − xi ,

i = 1, 2, 3, ... , n.
x0 = (0.5, 0.5, ... , 0.5)T .
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Problem 3.17. [23]
Fi = cos(xi − 1) + xi − 1,
i = 1, 2, 3, ... , n.

x0 = (1, 1, ... , 1)T .

Problem 3.18. [24]
F1 = 5x2

1 − 2x1 − 3,
Fi = 5x2

i − 2xi − 3,
Fn = 5x2

n − 2xn − 3,
i = 1, 2, 3, ... , n − 1.

x0 = (3, 3, ... , 3)T .

Problem 3.19. [1]

F (x) =


2 −1
0 2 −1

. . . . . . . . .
. . . . . . −1

−1 2

 x + (sinx1 − 1, ... , sinxn − 1)T .

x0 = (0.5, 0.5, ... , 0.5)T .

Problem 3.20. [23]
F1 = x2

1 − 4,
Fi = x2

i − 4,
Fn = x2

n − 4,
i = 1, 2, 3, ... , n − 1.

x0 = (5, 5, ... , 5)T .
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Table 1. Experimental results of MCG and NDCG algorithms for problems 3.1 - 3.10

MCG NDCG
Problems Dimension NI Time(s) ∥F (xk)∥ NI Time(s) ∥F (xk)∥

1000 3 0.91353 2.16E-09 — — —
3.1 10000 3 1.002982 6.82E-09 — — —

100000 3 3.176163 2.16E-08 — — —
1000 8 0.333859 2.40E-05 10 0.151941 9.36E-05

3.2 10000 8 0.726523 7.60E-05 11 0.744871 5.88E-05
100000 9 3.400227 4.82E-05 13 3.744509 3.73E-05
1000 2 0.180006 1.48E-05 44 0.302014 3.67E-05

3.3 10000 2 0.639259 2.23E-05 — — —
100000 2 3.027584 9.34E-05 — — —
1000 3 0.477494 7.78E-09 5 0.114819 1.93E-05

3.4 10000 3 0.651447 7.76E-08 6 0.648342 3.45E-06
100000 3 2.942724 7.42E-07 6 2.854309 1.50E-05
1000 3 0.170331 2.24E-08 — — —

3.5 10000 3 0.604953 7.10E-08 — — —
100000 3 2.803624 2.24E-07 76 6.367274 2.33E-05
1000 2 0.15777 4.51E-07 3 0.109802 2.58E-05

3.6 10000 2 0.596782 1.43E-10 3 0.648579 2.59E-08
100000 4 3.252949 6.81E-06 4 3.23372 6.81E-06
1000 8 0.167542 2.84E-05 19 0.160408 7.36E-05

3.7 10000 8 0.686853 8.97E-05 21 0.861724 6.11E-05
100000 9 3.015206 7.51E-05 23 3.931699 5.07E-05
1000 6 0.188879 3.61E-05 10 0.141725 4.06E-05

3.8 10000 7 0.745648 2.28E-05 11 0.778653 2.57E-05
100000 7 3.614148 7.21E-05 11 3.712357 8.11E-05
1000 11 0.204847 6.77E-05 11 0.200002 6.77E-05

3.9 10000 12 0.952941 8.07E-05 12 0.899824 8.07E-05
100000 13 3.996135 9.61E-05 13 3.980791 9.61E-05
1000 3 0.139341 4.24E-09 5 0.114294 8.72E-05

3.10 10000 3 0.603523 4.08E-08 6 0.782242 1.45E-05
100000 3 3.104715 4.01E-07 7 3.071305 2.23E-05
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Table 2. Experimental results of MCG and NDCG algorithms for problems 3.11 - 3.20

MCG NDCG
Problems Dimension NI Time(s) ∥F (xk)∥ NI Time(s) ∥F (xk)∥

1000 29 0.26663 7.52E-05 48 0.282874 9.70E-05
3.11 10000 32 0.928716 7.40E-05 53 1.025351 8.95E-05

100000 35 4.827367 7.28E-05 58 6.165456 8.25E-05
1000 17 0.22852 3.23E-05 48 0.274158 2.03E-05

3.12 10000 37 1.067673 1.01E-06 84 1.596403 6.30E-05
100000 49 5.517871 3.17E-08 87 11.69978 2.38E-05
1000 13 0.178711 9.39E-05 13 0.130961 8.22E-05

3.13 10000 13 0.708997 9.39E-05 13 0.616541 8.22E-05
100000 13 2.857375 9.39E-05 13 2.827481 8.22E-05
1000 84 0.671679 7.19E-05 24 0.169855 3.89E-05

3.14 10000 96 1.948775 8.04E-05 7 0.669502 8.19E-05
100000 76 10.66796 8.23E-05 78 9.22312 3.72E-06
1000 19 1.132849 9.29E-05 21 1.372109 5.31E-05

3.15 10000 19 58.18636 9.52E-05 21 66.01411 8.78E-05
100000 — — — — — —
1000 5 0.139434 9.49E-07 — — —

3.16 10000 5 0.659638 3.07E-06 — — —
100000 5 4.953931 9.72E-06 — — —
1000 32 0.277749 6.81E-05 61 0.384831 8.10E-05

3.17 10000 34 0.976909 9.77E-05 67 1.426963 7.83E-05
100000 37 4.873251 9.44E-05 73 9.98812 7.56E-05
1000 26 0.410418 6.20E-05 — — —

3.18 10000 28 0.938922 7.06E-05 — — —
100000 30 4.749132 8.04E-05 — — —
1000 22 1.244464 9.49E-05 28 2.033708 5.24E-05

3.19 10000 26 2.013005 9.99E-05 33 131.454 5.24E-05
100000 — — — — — —
1000 11 0.177192 6.36E-05 19 0.564376 3.55E-05

3.20 10000 12 0.730628 4.02E-05 20 0.851822 2.24E-05
100000 13 3.393716 2.54E-05 20 4.004684 7.10E-05

Tables 1 and 2, contain the experimental results of the two algorithms, the total number
of iterations and CPU time respectively are denoted by “NI” and “Time (s)”, while “∥F (xk)∥”
is the magnitude of the function F . Both of these algorithms attempt to solve problem (1.1)
according to the tables, and the efficiency of our proposed algorithm was established because
it successfully solves some problems that the NDCG algorithm fails to solve. This is convincing
evidence that, NDCG method fails to solve problems 3.1, 3.16 and 3.18 completely. We used
(—) to represent a failure.
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Table 3. The numerical results shown in Tables 1 and 2 are summarized.

ALGORITHM
MCG NDCG Undecided

Number of all problems 60 60
Problems solved with
fewer number of iterations 49 2 9
Percentage 81.67% 3.33% 15.00%
Problems solved with
fewer CPU time 40 18 2
Percentage 66.67% 30.00% 3.33%

In the summarized Table 3, it is observed that, the MCG method is a winner compared
to the NDCG method as fewer iterations and CPU time are needed to solve more problems
respectively. The MCG method wins 81.67% (49 out of 60) of the problems that required
fewer iterations compared to NDCG 3.33% (2 out of 60). It is also observed in the summarized
result that, both MCG and NDCG algorithms solved 9 problems with equal iterations’ number,
equivalents to 15.00% indicated as undecided. The summary Table also shows that, in terms
of CPU time, the suggested MCG algorithm performs better than the NDCG algorithm. The
reported data indicates that 66.67% (40 out of 60) of the problems were solved by the MCG
method Using less CPU time compared to 30.00% (18 out of 60) solved by the NDCG method.
both MCG and NDCG algorithms solved 2 problems with equal CPU time, equivalents to
3.33% indicated as undecided.
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Fig. 1. Performance profiles for problems in relation to the number of iterations
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Fig. 2. Performance profiles for problems in relation to the CPU time (s)

Figures 1 and 2 demonstrate how our algorithm performs according to the CPU time (S)
and number of iterations, as measured by Dolan and Mor«e profiles [25]. Specifically, we plot
the proportion P(τ) of problems where the algorithm is within the best time for each method
by a factor called τ and the top curve representing our algorithm.

4. Conclusion
We presented a modified conjugate gradient (MCG) method for finding approximate solu-

tion of nonlinear system of equations in this work, then we compare how well it performs with
new derivative-free conjugate gradient (NDCG) method proposed in [6] by numerical tests.
Using a non-monotone type line search [3], we proved that our suggested algorithm is globally
converged to the solution of equation (1.1). Experimentally, our method demonstrates its
robustness.
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