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ABSTRACT
In this work, we propose and introduce a random P-contraction op-
erator and prove an existence theorem of random fixed points for this
operator which is a Banach Contraction Principle random version proof
by famous Polish mathematician Stefan Banach in the year 1982 which
100 years ago (1892 – 1945). Moreover, we obtain an existence result
for a solution of non-linear stochastic integral equations in a separable
partially ordered Banach space.
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1. Introduction
A random fixed point is a stochastic generalization of a classical fixed point. Random fixed

point theorems for random contraction mappings on separable complete metric spaces were
first proved by Spacek [1] and Hans [2,3]. In 1966, Mukherjee [4] gave a random fixed point
theorem version of Schaduer’s fixed point theorem on an atomic probability measure space. In
1976, Bharucha-Reid [5] gave sufficient conditions for a stochastic version of the well-known
Schauder’s fixed point theorem. In 1979, Itoh [6] extended Spacek’s and Hans’s theorems
to multivalued contraction mappings. Random fixed point theorems with an application to
random differential equations in Banach spaces are obtained by [6]. In 1984, Sehgal and Wa-
ters [7] obtained several theorems of random fixed points including a stochastic generalization
of Rothe’s fixed point theorems [8]. In 1993, Beg and Shahzad [9] proved random coincidence
points and common random fixed points for a pair of compatible random multivalued oper-
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ators in Polish spaces. Saha [10], Saha and Debnath [11] proved some random fixed point
theorems over a separable Banach space and a separable Hilbert space with a probability
measure. On the other hand, Padgett [12] studied the existence and uniqueness of a random
solution of a non-linear stochastic integral equation of the Hammerstein type. In 2012, Saha
and Dey [13] proved random fixed point theorems for (θ, L)−weak contractions in a separable
Banach space. Recently, Saha and Ganguly [14] proved a random fixed point theorem in a
separable Banach space equipped with a complete probability measure for a certain class of
contractive mappings.

In 2002, Kumam’s master thesis [15] studied fixed point property in modular spaces, he
extended and investigated the necessary and sufficient conditions to guarantee existence and
uniqueness of the fixed point of such mappings in that spaces (see more [16]). Later in 2003
the first group of Thai mathematicians leader by Professor Sompong Dhompongsa attend to
joint fixed point’s conference in Valencia, Spain. Then we can study fixed point theory for
further mathematical research for further development in Thailand.

A random fixed point was first studied in Thailand by Dhomponsa, Plubtieng and Kumam
before 2005 (see in [17,18]). In 2005, Kumam and Plubtieng [19] studied some random fixed
point theorems for set-valued nonexpansive non-self operator.

In yeas 2004-2005 Professor Poom Kumam first studied by his Ph.D. thesis under su-
pervisor Professor Somyot Plubtueng and proved some fixed point theorems for set-valued
random nonexpansive operators in the framework of Banach spaces with characteristic of
noncompact convexity associated to the separation measure of noncompactness condition.
(see more in Kumam and Plubtieng [20]) Later in 2006, Kumam and Plubtieng [21–23]
proved a random fixed point theorem for non-expansive non-self random operators and mul-
tivalued non-expansive non-self random operators in Banach spaces. In 2007, Kumam and
Plubtieng [24] established a random coincidence point and random common fixed point for
non-linear multivalued random operators. In the same year, Kumam and Plubtieng [25] stud-
ied the characteristic of noncompact convexity and random fixed point theorem for set-valued
operators. In 2009, Kumam and Plubtieng [26] proved random common fixed point theorems
for a pair of multi-valued and single-valued nonexpansive random operators in a separable
Banach space. In the same year, Kumam and Plubtieng [27] proved random fixed point
theorems for asymptotically regular random operators. In 2009, Kumam and Plubtieng [28]
studied viscosity approximation methods of random fixed point solutions and random varia-
tional inequalities in Hilbert spaces. Recently, Kumam et al proved some remarkable results
on random fixed point theorems in a series of papers (see in [29–47]).

Recently, in 2021, Dhompongsa and P. Kumam [49] studied and new proof of the Caristi’s
fixed point theorem and the Brouwer fixed point theorem which extended related with equi-
librium via best proximity pairs in abstract economies and optimization (see [54, 55]). More
[51–53] studied more about another proofs Brouwer fixed point and classical fixed point the-
orems.

Banach’s contraction principle [48] is one of the most important result of non-linear anal-
ysis. It has been the source of metric fixed point theory and its significance rests in its various
applicability in different branches of mathematics. In the general setting of a complete metric
space, this theorem runs as follows (see in [56,57]).
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Fig. 1. From left to right: Sompong Dhomponsa (CMU), Satit Saejung (KKU), Attapol
Kaewkhao (CMU), Somyos Pulubting (NU) and Poom Kumam (KMUTT) in The 7th In-
ternational Conference on Fixed Point Theorem and its Applications (ICFPTA), July 2003,
Valencia Spain. Available from: https://sites.google.com/site/fixedpointthailand

Theorem 1.1. (Banach’s contraction principle) If (X , d) be a complete metric space and
T : X → X be a self-mapping such that,

d(Tx , Ty) ≤ αd(x , y), (1.1)

for each x , y ∈ X for some α ∈ [0, 1), then T has a unique fixed point.

In 2000, Ciric [58] dealt with a class of mappings (not necessarily continuous) which are
defined on a metric space and proved the following fixed point theorem which is a double
generalization of Gregus [59].

Theorem 1.2. Let C be a closed convex subset of a complete convex metric space X and
T : C → C be a mapping satisfying

d(Tx , Ty) ≤ ad(x , y) + b max{d(x , Tx), d(y , Ty)} + c[d(x , Ty) + d(y , Tx)]. (1.2)

where 0 < a < 1, a + b = 1, c ≤ 4−a
8−b for all x , y ∈ C . Then T has a unique fixed point.

https://sites.google.com/site/fixedpointthailand
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Fig. 2. Stefan Banach (1892–1945). Available from: https://pantheon.world/profile/person/
Stefan_Banach

Recently, Chaipunya, Sintunavarat and Kumam [60] first introduced a new type of a
contractive condition defined on a partially ordered space, namely a P-contraction, which
generalizes the weak contraction, as follows.

Fig. 3. From left to right: Wutiphol Sintunavarat (TU), Parin Chaipunya (KMUTT) and
Poom Kumam (KMUTT) first introduced a P-contraction (2012)

A relation ⊑ is called a partial ordering on a set X if it is reflexive, anti-symmetric and
transitive. For x , y ∈ X , we may write x ⊒ y for y ⊑ x to emphasize some particular cases.

https://pantheon.world/profile/person/Stefan_Banach
https://pantheon.world/profile/person/Stefan_Banach
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For x , y ∈ X are called comparable if x ⊑ y or y ⊑ x . If a set X has a partial ordering
⊑ defined on it,we say that it is a partially ordered set and denote it by (X ,⊑). If any two
elements in X are comparable, then (X ,⊑) is called a totally ordered set. Moreover, it is
called a sequentially ordered set if each element of a convergent sequence in X is comparable
with its limit.

Definition 1.3. Let (X ,⊑, d) be a partially ordered metric space. A function ϱ : X ×X → R
is called a P-function w.r.t. ⊑ in X if it satisfies the following conditions:

(a) ϱ(x , y) ≥ 0 for every comparable x , y ∈ X ;

(b) for any sequences {xn}+∞
n=1, {yn}+∞

n=1 in X such that xn and yn are comparable at each
n ∈ N, if limn→+∞ xn = x and limn→+∞ yn = y , then limn→+∞ ϱ(xn, yn) = ϱ(x , y);

(c) for any sequences {xn}+∞
n=1, {yn}+∞

n=1 in X such that xn and yn are comparable at each
n ∈ N, if limn→+∞ ϱ(xn, yn) = 0, then limn→+∞ d(xn, yn) = 0.

If, in addition, the following condition is also satisfied:

(A) for any sequences {xn}+∞
n=1, {yn}+∞

n=1 in X such that xn and yn are comparable at each
n ∈ N, if limn→+∞ d(xn, yn) exists, then limn→+∞ ϱ(xn, yn) also exists,

then ϱ is said to be a P-function of type (A) w.r.t. ⊑ in X .

Definition 1.4. Let (X ,⊑, d) be a partially ordered metric space, a mapping f : X → X is
called a P-contraction w.r.t. ⊑ if there exists a P-function ϱ : X × X → R w.r.t. ⊑ in X
such that

d(fx , fy) ≤ d(x , y) − ϱ(x , y) (1.3)
for any comparable x , y ∈ X . If in addition ϱ is a P-function of type (A) w.r.t. ⊑ in X , then
f is said to be a P-contraction of type (A) w.r.t. ⊑.

Also recently, in the sense of random fixed points, Saha and Ganguly [14] proved a theorem
of random fixed point in a separable Banach space equipped with a complete probability
measure for a certain class of contractive mappings as follows.

Theorem 1.5. Let X be a separable Banach space and (Ω,β,µ) be a complete probability
measure space. Let T : Ω× X → X be a continuous random operator such that for ω ∈ Ω,
T satisfies

∥T (ω, x1) − T (ω, x2)∥ ≤ a(ω) max{∥x1 − x2∥, c(ω)[∥x1 − T (ω, x1)∥ + ∥x2 − T (ω, x1)∥]}
+ b(ω) max{∥x1 − T (ω, x1)∥, ∥x2 − T (ω, x2)∥}

for all x1, x2 ∈ X where a(ω), b(ω), c(ω) are real-valued random variables such that 0 <

a(ω) < 1, a(ω) + b(ω) = 1, c(ω) ≤ 4−a(ω)
8−a(ω) almost surely. Then there exists a unique random

fixed point of T in X .

The purpose of this paper is to prove a random fixed point theorem for a random P-
contraction operator. The paper is organized as follows. Sections 1 and 2 contains Introduc-
tion and Preliminaries, respectively. The main results are presented in section 3. The last
section contains some application to a random non-linear integral equations.
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2. Preliminaries
Let (X ,βX ) be a separable Banach space, where βX is a σ-algebra of Borel subsets of X ,

(Ω,β,µ) be a complete probability measure space. More details we refer to the paper of Joshi
et.al. [61].

Definition 2.1.

(1) x : Ω → X is called an X -valued random variable if x−1(B) ∈ β for any B ∈ βX

(2) x : Ω → X is called a finitely valued random variable if it is constant on any finite
number of disjoint sets Ai ∈ β and is equal to 0 over Ω \ (

∪n
i=1 Ai). The mapping x is

said to be a simple random variable if it’s finitely valued and µ{ω : ∥x(ω)∥ > 0} < ∞.

(3) x : Ω → X is called a strong random variable if there is a sequence of simple random
variables {xn(ω)} converges to x(ω) almost surely, that is, there is a set A0 ∈ β with
µ(A0) = 0 so that limn→∞ xn(ω) = x(ω) for any ω ∈ Ω \ A0.

(4) x : Ω → X is called a weak random variable if the function x∗(x(·)) is a real valued
random variable for any x∗ ∈ X∗, where X∗ denotes the first normed dual space of X .

In a separable Banach space X , the notions of strong and weak random variables coincide
( [61]).

Theorem 2.2. [61] Assume x , y : Ω → X be strong random variables and α,β be constants.
Then the following assumption hold:

(1) αx + βy is a strong random variable.

(2) If f : Ω → R is a real valued random variable, then fx is a strong random variable.

(3) If xn is a sequence of strong random variables converges strongly to x almost surely,
then x is a strong random variable.

Definition 2.3. Let Y be another Banach space.

(1) F : Ω × X → Y is called a random mapping if F (·, x) is a Y -valued random variable
∀x ∈ X .

(2) F : Ω × X → Y is called a continuous random mapping if µ({ω ∈ Ω : F (ω, x) is a
continuous function of x}) = 1.

(3) F : Ω × X → Y is called a demicontinuous at x ∈ X if ∥xn − x∥ → 0 implies
F (·, xn) ⇀ F (·, x) almost surely.

Theorem 2.4. [61] Let F : Ω× X → Y be a demicontinuous random mapping where Y is
a separable Banach space. Then, for any X -valued random variable x , the function F (·, x(·))
is a Y -valued random variable.
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Following Joshi et.al. [61], we recall some necessary Definitions and results:

Definition 2.5.

(1) F (ω, x(ω)) = x(ω) is said to be a random fixed point equation, where F is a random
mapping.

(2) For each x : Ω → X which satisfies the random fixed point equation almost surely is
called a wide sense solution of the fixed point equation.

(3) For each X -valued random variable x which satisfies µ{ω : F (ω, x(ω)) = x(ω)} = 1 is
called a random fixed point of F : Ω → X .

3. The Main Results
In this section, we propose the definition of P-contraction in the sense of random fixed

point and prove the existence of a random fixed point for this contraction in a separable
partially ordered Banach space.

Motivated and inspired by Definition 1.4 and Theorem 1.5 we propose the definition as
follows.

Definition 3.1. Let T : Ω× X → X be a continuous random operator such that for ω ∈ Ω
almost surely, T is said to be a random P-contraction if we have

∥T (ω, x1) − T (ω, x2)∥ ≤ ∥x1 − x2∥ − ϱ(ω, x1, x2) (3.1)

for all x1, x2 ∈ X and ϱ(ω, ·, ·) : X × X → R satisfies the condition in Definition 1.3.

Next, we prove the existence of a random fixed point of T in X .

Theorem 3.2. Let X be a separable partially ordered Banach space and (Ω,β,µ) be a
complete probability measure space. Let T : Ω × X → X be a continuous random operator
such that for ω ∈ Ω almost surely, T satisfies a random P-contraction in Definition 3.1. Then
there exists a random fixed point of T .

Proof. Let A = {ω ∈ Ω : T (ω, x) is a continuous function of x} and for x1, x2 ∈ X , Bx1,x2 =
{ω ∈ Ω : ∥T (ω, x1) − T (ω, x2)∥ ≤ ∥x1 − x2∥ − ϱ(ω, x1, x2)}.

Let S be a countable dense subset of X . Now, we prove that∩
x1,x2∈X (Bx1,x2 ∩ A) =

∩
s1,s2∈S(Bs1,s2 ∩ A).

Let ω ∈
∩

s1,s2∈S(Bs1,s2 ∩ A) for any s1, s2 ∈ S, we obtain

∥T (ω, x1) − T (ω, x2)∥ ≤ ∥T (ω, x1) − T (ω, s1)∥ + ∥T (ω, s2) − T (ω, x2)∥ (3.2)
+ ∥T (ω, s1) − T (ω, s2)∥

≤ ∥T (ω, x1) − T (ω, s1)∥ + ∥T (ω, s2) − T (ω, x2)∥)
+ ∥s1 − s2∥ − ϱ(ω, s1, s2)

≤ ∥T (ω, x1) − T (ω, s1)∥ + ∥T (ω, s2) − T (ω, x2)∥)
+ ∥s1 − x1∥ + ∥x1 − x2∥ + ∥x2 − s2∥ − ϱ(ω, s1, s2).
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Let ε > 0, we choose δ > 0 so that

∥T (ω, x) − T (ω, y)∥ < ε whenever ∥x − y∥ < δ.

Choose sequences {s1n}, {s2n} in S, we get

∥x1 − s1n∥ < δ = 1
n

and
∥x2 − s2n∥ < δ = 1

n
for each n. Plug in {s1n}, {s2n} into (3.2), we obtain

∥T (ω, x1) − T (ω, x2)∥ ≤ 4ε + ∥x1 − x2∥ − ϱ(ω, s1n, s2n).

Without loss of generality, we assume that {s1n} and {s2n} are comparable for each n. Thus,
by the condition (b) in Definition 3.1, we get

lim
n→∞

ϱ(ω, s1n, s2n) = ϱ(ω, x1, x2).

Therefore,

∥T (ω, x1) − T (ω, x2)∥ = 4ε + ∥x1 − x2∥ − ϱ(ω, x1, x2).

As ε > 0 is arbitrary, if follows that

∥T (ω, x1) − T (ω, x2)∥ ≤ ∥x1 − x2∥ − ϱ(ω, x1, x2). (3.3)

Thus we have ω ∈
∩

x1,x2∈X (Bx1,x2 ∩ A), which implies that∩
s1,s2∈S(Bs1,s2 ∩ A) ⊂

∩
x1,x2∈X (Bx1,x2 ∩ A).

Also, we have ∩
x1,x2∈X (Bx1,x2 ∩ A) ⊂

∩
s1,s2∈S(Bs1,s2 ∩ A).

Therefore, we get ∩
s1,s2∈S(Bs1,s2 ∩ A) =

∩
x1,x2∈X (Bx1,x2 ∩ A).

Let N ′ =
∩

s1,s2∈S(Bs1,s2 ∩ A). Then µ(N ′) = 1. Next, we prove that ∀ω ∈ N ′, T (ω, x) is
a deterministic continuous operators satisfying the mapping referred in [60].

Let x : Ω → X be a random variable defined for some x∗ ∈ X by

x(ω) =

 xω, ω ∈ N ′

x∗, ω /∈ N ′.

Next, we show that x(ω) is the random variable. We construct a sequence of random
variable xn(ω) as follows. Let x0(ω) be an arbitrary random variable and x1(ω) = T (ω, x0(ω)).
So x1(ω) is a random variable. Next, we get xn+1(ω) = T (ω, xn(ω)), by repeated generating,



On the Result of P-contraction Operators 121

it gives that {xn(ω)}n=1,2,... is a random variables sequence converge to x(ω). Thus, x(ω) is
a random variable.

Finally, we prove that x(ω) is a unique. Let y : Ω → X be another random fixed point.
We want to prove that x(ω) = y(ω) almost surely. Let M = {ω ∈ N ′ : x(ω) = y(ω)}. To
prove µ(M) = 0. Suppose µ(M) > 0, thus µ(M ∩ N ′) > 0 implies M ∩ N ′ ̸= ∅, for all
ω ∈ M ∩ N ′. Let ω ∈ M ∩ N ′, thus x(ω) ̸= y(ω). But x(ω) and y(ω) are fixed point of
T (ω, ·) : X → X , thus x(ω) = y(ω). So µ(M) = 0 which is contradiction. Thus, x(ω) is a
unique. Therefore, x(ω) is a unique random fixed point of T . This completes the proof.

If we do not consider the P function, we obtain the corollary as follows.

Corollary 3.3. Assume that (Ω,β,µ) be a complete probability measure space and T be a
operator satisfying

∥T (ω, x1) − T (ω, x2)∥ < ∥x1 − x2∥

for all x1, x2 ∈ X , where X be a separable Banach space. Then a random fixed point of T
exists in X .

Proof. Suppose
A = {ω ∈ Ω : T (ω, x) is a continuous of x}

and
Bx1,x2 = {ω ∈ Ω : ∥T (ω, x1) − T (ω, x2)∥ < ∥x1 − x2∥}.

Suppose S be a set of countable dense, S ⊂ X . Now, we prove that∩
x1,x2∈X (Bx1,x2 ∩ A) =

∩
s1,s2∈S(Bs1,s2 ∩ A).

Then for all s1, s2 ∈ S, we get

∥T (ω, s1) − T (ω, s2)∥ < ∥s1 − s2∥. (3.4)

Next, following the proof in Theorem 3.2.

4. Application to a Random Non-linear Integral Equation
Many years ago Professor Poom Kumam team studied many stochastics version of fixed

point and also some related topics of random fixed point for some applications part you can
see in the references therein see [38–47].

Now, we use Theorem 3.2 to show a solution of a non-linear stochastic integral equation
exist in a Banach space. Assume that S is a locally compact metric space and (Ω,β,µ) is
the probability measure space with β being σ-algebra and µ the probability measure. We can
write this equation of the Hammerstein type ( [12]) as follows:

x(t1;ω) = h(t1;ω) +
∫

S
k(t1; t2;ω)f (t2; x(t2;ω))dµ(t2), (4.1)

where
(a) d is a metric imposed on product cartesian of S;
(b) µ0 is a complete σ-finite measure imposed on the collection of Borel subsets of S;
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(c) ω ∈ Ω where Ω is the supporting set of (Ω,β,µ);
(d) x(t1;ω) is the unknown vector valued random variable for any t1 ∈ S;
(e) h(t1;ω) is the stochastic free term imposed for t1 ∈ S;
(f) k(t1, t2;ω) is the stochastic kernel imposed for t1, t2 ∈ S;
(h) f (t1, x) is a vector valued function for t1 ∈ S and x .

Note that (4.1) is called a Bochner integral (see in [62]).

Next, we suppose that the union of a countable family {Cn} of compact sets by Cn+1 ⊂ Cn
is imposed as S so that, for each another compact set in S, there is Ci which contains it
(see [63]).

We impose a space of all continuous functions from S into L2(Ω,β,µ) by C = C(S, L2(Ω,β,µ))
by the topology of uniform convergence on compact sets of S, that is, x(t1;ω) is a vector
valued random variable for any fixed t1 ∈ S so that

∥x(t1;ω)∥2
L2(Ω,β,µ) =

∫
Ω
|x(t1;ω)|2dµ(ω) < ∞.

Observe that C(S, L2(Ω,β,µ)) is a locally convex space( [62]) who topology is given by

∥x(t1;ω)∥n = sup
t1∈Cn

∥x(t1;ω)∥L2(Ω,β,µ) (4.2)

which is the countable family of semi-norms, for any n ≥ 1. Moreover, because L2(Ω,β,µ) is
complete, then C(S, L2(Ω,β,µ)) is complete relative to (4.2).

Later, we impose a Banach space of all bounded continuous functions from S into
L2(Ω,β,µ) by BC = BC(S, L2(Ω,β,µ)) by the norm

∥x(t1;ω)∥BC = supt1∈S ∥x(t1;ω)∥L2(Ω,β,µ).

BC ⊂ C is a space of all second order vector valued stochastic processes imposed on S which
are bounded and continuous in mean square.

Now, we consider the functions h(t1;ω) and f (t1, x(t1;ω)) to be in C(S, L2(Ω,β,µ))
space by respect to the stochastic kernel and suppose that, for any pair (t1, t2), k(t1, t2;ω) ∈
L∞(Ω,β,µ) and the norm denoted by

∥|k(t1, t2;ω)|∥ = ∥k(t1, t2;ω)∥L∞(Ω,β,µ) = µ− ess supω∈Ω |k(t1, t2;ω)|.

Also, we assume that k(t1, t2;ω) ∈ L∞(Ω,β,µ) is so that

∥|k(t1, t2;ω)|∥ = ∥x(t2;ω)∥L2(Ω,β,µ)

is µ-integrable by respect to t2 for any t1 ∈ S and x(t2;ω) ∈ C(S, L2(Ω,β,µ)) and there is
a real valued function G µ-a.e. on S so that G(S)∥x(t2;ω)∥L2(Ω,β,µ)) is µ-integrable and, for
any (t1, t2) in S × S,

∥|k(t1, u;ω) − k(t2, u;ω)|∥ · ∥x(u;ω)∥L2(Ω,β,µ) ≤ G(u)∥x(u;ω)∥L2(Ω,β,µ) µ− a.e..

Later, suppose that, for almost everywhere t2 ∈ S, k(t1, t2;ω) is continuous in t1 from S
into L∞(Ω,β,µ).
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Now, we impose the random integral operator T on C(S, L2(Ω,β,µ)) by

(Tx)(t1;ω) =
∫

S
k(t1, t2;ω)x(t2;ω)dµ(t2), (4.3)

which is called a Bochner integral. By the assumptions on k(t1, t2;ω), it follows that, for each
t1 ∈ S, (Tx)(t1;ω) ∈ L2(Ω,β,µ) and (Tx)(t1;ω) is continuous in mean square by Lebesgue’s
dominated convergence theorem, that is, (Tx)(t1;ω) ∈ C(S, L2(Ω,β,µ)).

Lemma 4.1. [12] The linear operator T defined by (4.3) is continuous from
C(S, L2(Ω,β,µ)) into itself.

Definition 4.2. [64], [65] Let B and D be Banach spaces. The pair (B, D) is called admissible
by respect to a linear operator T if T (B) ⊂ D.

Lemma 4.3. [12] If T is a continuous linear operator from C(S, L2(Ω,β,µ)) into itself and
B, D ⊂ C(S, L2(Ω,β,µ)) are Banach spaces stronger than C(S, L2(Ω,β,µ)) so that (B, D)
is admissible by respect to T , then T is continuous from B into D.

By a random solution of (4.1), we mean a function

x(t1;ω) ∈ C(S, L2(Ω,β,µ))

which satisfies (4.1) µ− a.e..
By using Theorem 3.2, we are now in state prove the theorem as follows.

Theorem 4.4. If (4.1) is subject to the assumptions as follows:

(1) B and D are Banach spaces stronger than C(S, L2(Ω,β,µ)) so that (B, D) is admissible
by respect to the integral operator imposed by (4.3);

(2) x(t1;ω) 7→ f (t1, x(t1;ω)) is an operator from Q(ρ) = {x(t1;ω) : x(t1;ω) ∈ D, ∥x(t1;ω)∥D
≤ ρ} into B satisfying

∥f (t1, x1(t1,ω)) − f (t1, x2(t1,ω))∥B ≤ ∥x1(t1,ω) − x2(t1,ω)∥
− ϱ(x1(t1,ω), x2(t1,ω)) (4.4)

for any x1(t1,ω), x2(t1,ω) ∈ Q(ρ);

(3) h(t1;ω) ∈ D,

then a unique stochastic solution of (4.1) exist in Q(ρ) provided

∥h(t1,ω)∥D + ς(ω)∥f (t1, 0)∥B ≤ ρ(1 − ς(ω)),

where the norm of T (ω) is denoted by ς(ω).
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Proof. Let a mapping U(ω) : Q(ρ) → D defined by

(Ux)(t1,ω) = h(t1,ω) +
∫

S
k(t1, t2,ω)f (s, x(t2,ω))dµ0(s).

Then we get

∥(Ux)(t1,ω)∥D ≤ ∥h(t1,ω)∥D + ς(ω)∥f (t1, x(t1,ω))∥B

= ∥h(t1,ω)∥D + ς(ω)∥f (t1, 0) + f (t1, x(t1,ω)) − f (t1, 0)∥B

≤ ∥h(t1,ω)∥D + ς(ω)∥f (t1, 0)∥B + ς(ω)∥f (t1, x(t1,ω)) − f (t1, 0)∥B .

Thus, it follows by (4.4) that

∥f (t1, x(t1,ω)) − f (t1, 0)∥B < ∥x(t1,ω)∥D − ϱ(ω, x(t1,ω), 0)

which implies that

∥f (t1, x(t1,ω)) − f (t1, 0)∥B < ∥x(t1,ω)∥D .

Therefore, we obtained

∥f (t1, x(t1,ω)) − f (t1, 0)∥B < ρ. (4.5)

Thus, by (4.5), we have

∥(Ux)(t1,ω)∥D ≤ ∥h(t1,ω)∥D + ς(ω)∥f (t1, 0)∥B + ς(ω)∥f (t1, x(t1,ω)) − f (t1, 0)∥B

< ∥h(t1,ω)∥D + ς(ω)∥f (t1, 0)∥B + ς(ω)ρ
< ρ (4.6)

and so, by (4.6), (Ux)(t1,ω) ∈ Q(ρ). Thus, for any x1(t1,ω), x2(t1,ω) ∈ Q(ρ) and, by
condition (2), we get

∥(Ux1)(t1,ω) − (Ux2)(t1,ω)∥D =
∥∥∥∫

S
k(t1, t2,ω)[f (t2, x1(t2,ω)) − f (t2, x2(t2,ω))]dµ0(s)

∥∥∥
D

≤ ς(ω)∥f (t2, x1(t2,ω)) − f (t2, x2(t2,ω))∥B

≤ ∥x1(t1,ω) − x2(t1,ω)∥D .

Consequently, U(ω) is a random contraction mapping over Q(ρ). Therefore, by Theorem 3.2,
there is a unique x∗(t1,ω) ∈ Q(ρ), which is a random fixed point of U , i.e., x∗ is a stochastic
solution of equation (4.1). This completes the proof.

Example 4.5. Consider the non-linear stochastic integral equation as follows:

x(t1;ω) =
∫ ∞

0

e−t1−t2

8(1 + |x(t2;ω)|)dt2. (4.7)

Next, we compare between equations (4.1) and (4.7), we get that h(t1;ω) = 0, k(t1; t2;ω) =
1
2 e−t1−t2 and f (t2; x(t2;ω)) = 1

4(1+|x(t2;ω)|) . Then, the equation (4.4) is hold.
Also, comparing with integral equation (4.3), we get that ς(ω) = 1

2 which ς(ω) is the norm
of T (ω). Thus, all assumption of Theorem 4.4 are satisfied and therefore, random operator
T has a random fixed point.
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