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ABSTRACT
The purpose of this paper is to establish and study an accelerated hybrid
Mann-type algorithm for the fixed point of nonexpansive mappings and
variational inequality problems of monotone operators with the Lipschitz
condition. Based on the Mann algorithm that generates a new iterative
vector by a convex combination of the previous two iterative vectors, the
advantageous behavior in the construction of a new iterative vector was
observed due to the convex combination of three iterative vectors. Fur-
thermore, by combining with the method known as the inertial Tseng’s
extragradient method, the accelerated hybrid Mann-type algorithm was es-
tablished. To demonstrate the efficiency and advantages of this new algo-
rithm, we have created some numerical results to compare the advantages
of different areas with the previous existing results.

Article History
Received 28 Feb 2022
Accepted 31 May 2022
Keywords:
Mann-type algorithm;
inertial method;
monotone operator;
variational inequality
problem; fixed point
problem
Keywords
47H05; 47H09; 47H10;
47J25; 47J30; 65K15

1. Introduction
Let H be a real Hilbert space with the inner product ⟨·, ·⟩ and the induced norm ∥ · ∥. Let

C be a nonempty closed convex subset in H. Let U : H → H be a mapping. A point x∗ ∈ H is
called a fixed point of U if Ux∗ = x∗. The set of fixed points of U is denoted by Fix(U).

A mapping U : H → H is said to be nonexpansive if ∥Ux − Uy∥ ≤ ∥x − y∥ for all x , y ∈ H.
A mapping U : H → H with Fix(U) ̸= ∅ is said to be quasi-nonexpansive if ∥Ux − p∥ ≤ ∥x − p∥
for all x ∈ H and p ∈ Fix(U).

Iterative method of fixed points of quasi-nonexpansive mappings has been studied and ex-
tended by many authors (see, for example, [9–12, 26, 33]). Notice that every nonexpansive map-
ping with a nonempty set of fixed points is a quasi-nonexpansive. It is well know that the fixed
point problem for the mapping U : H → H is as follows:

Find x∗ ∈ H such that Ux∗ = x∗.

Most of the problems in nonlinear analysis can be changed the forms to be the problems of finding
a fixed point of a nonexpansive mapping and its generalizations. In 1953, Mann [22] created and
introduced the explicit iteration procedure for a nonexpansive mapping as follows:

xn+1 = µnxn + (1 − µn)Uxn, n ≥ 0, (1.1)
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where {µn} ⊆ (0, 1) satisfying
∞∑

n=1
µn(1 − µn) = ∞ if Fix(U) ̸= ∅, then the sequence {xn}

generated by (1.1) converges weakly to a fixed point of U.
Let F : H → H be an operator. The variational inequality problem (VIP) for F on C is to

find a point x∗ ∈ C such that

⟨Fx∗, x − x∗⟩ ≥ 0, ∀x ∈ C . (1.2)

The solution set of VIP (1.2) is denoted by VI(C , F ). Variational inequality problems are funda-
mental in a broad range of mathematical and applied sciences; the theoretical and algorith-
mic foundations as well as the applications of variational inequality problems have been ex-
tensively studied in the literature and continue to attract intensive research, see for instance
[2, 13,18,19,23,36,37,39] and the extensive list of references there in.

There are several methods for finding the a common solution of fixed point and variational
inequality problem such as the projected gradient method, extragradient method, subgradient
extragradient method. Many authors have discovered and introduced several iterative methods
for solving VIP (1.2). One of the easiest methods is the following projection method, which can
be seen as an extension of the projected gradient method for optimization problems:

xn+1 = PC (xn − τFxn) (1.3)

where PC is denoted by the metric projection from H onto C . Convergence results for (1.3)
need F to be Lipschitz continuous with Lipschitz constant L and α−strongly monotone and
τ ∈ (0, (2α/L2)). In [16], He et al. showed that if the strong monotonicity assumption is relaxed
to the monotonicity, then the projected gradient method may diverge. Note that, method (1.3)
also works for strongly pseudo-monotone VIPs and co-coercive VIPs. To deal with the weakness of
the method defined by (1.3). Korpelevich [20] proposed the extragradient method. The method
is of the form:

x0 ∈ C , yn = PC (xn − τFxn), xn+1 = PC (xn − τFyn) (1.4)
where F : H → H is L−Lipschitz continuous and monotone, τ ∈ (0, (1/L)). Korpelevich showed
that if VI(C , F ) is nonempty then the sequence {xn} generated by (1.4) converges weakly to
an element of VI(C , F ). To see the variant forms of the method (1.4), the reader could refer
to the recent papers of He et al. [17], Gárciga Otero and Iuzem [14], Solodov and Svaiter [28],
Solodov [27]. Recently, Censor et al. [6–8] introduced the subgradient extragradient method as
follows:

yn = PC (xn − τFxn), xn+1 = PTn(xn − τFyn) (1.5)
where Tn = {x ∈ H | xn − τFxn − yn, x − yn ≤ 0} and τ ∈ (0, (1/L)). In method (1.5), they
replaced two projections onto C by one projection onto C and one onto a half-space.

In [35], Tseng presented the extragradient method as follows:

yn = PC (xn − τFxn), xn+1 = yn − τ(Fyn − Fxn). (1.6)

The method (1.6) and subgradient extragradient method need only to compute one projection
onto C in each update. Later, the method (1.6) has gained attention and popularity to solve VIP
from many authors (see, e.g. [4, 30,31,34,38] and the references therein).

In 2019, Thong and Hieu [32] introduced some Mann-type algorithms for variational inequality
and fixed point problems. They obtained new theorems and good behavior of the numerical results.
One of the interesting main theorems is stated as follows:
Theorem 3.1. Let F : H → H be a monotone and L−Lipchitz mapping on H. Assume that
the sequence {µn} ⊆ [0,µ], µ < 1

3 is non-decreasing and {αn} ⊆ (α, 0.5],α > 0 is a sequence
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of real numbers. Let λ ∈ (0, (1/L)) and U : H → H be a quasi-nonexpansive mapping such
that I − U is demiclosed at zero and Fix(U) ∩ VI(C , F ) ̸= ∅. Let x0, x1 ∈ H, the sequence
{xn} is defined by 

wn = xn + µn(xn − xn−1),
yn = PC (wn − λFwn),
zn = yn − λ(Fyn − Fwn),
xn+1 = (1 − αn)wn + αnUzn.

Then the sequence {xn} converges weakly to an element of Fix(U) ∩ VI(C , F ). Notice that the
term µn(xn − xn−1) is called an inertial extrapolation term by making use of the previous two
iterates xn and xn−1. The inertial extrapolation term µn(xn − xn−1) is employed in algorithm for
the purpose of speeding up the rate of convergence of the algorithm. The vector (xn − xn−1) is
acting as an impulsion term and µn is acting as a speed regulator (see, e.g. [21, 25]).

On the other hand, for observing the above method especially for the last line updating, we
found an anonymous example in the Euclidean space R2 that provides some advantage geometrical
structures of the convex combination of the previous three iterative vectors; wn, zn, Uzn, for
updating the new iterative vector xn+1. It can be illustrated via the figures as below:

Fig. 1. xn+1 lies on a straight line
formed by a convex combination of
two vectors wn and Uzn.

Fig. 2. xn+1 lies on a triangle formed
by a convex combination of three vec-
tors wn, zn and Uzn.

It is explained by the visual indication of the geometric structure from Figure 1 and Figure 2
that the new vector xn+1 that obtained form the convex combination of three iterative vectors is
likely to provide better performance than the convex combination of two iterative vectors.

Motivated by the directions mentioned above, in this paper, we aim to introduce and study a
new accelerated hybrid Mann-type algorithm by using the convex combination of three iterative
vectors for finding a solution of fixed point and variational inequality problems in the framework
of Hilbert spaces. Further, we intend to establish some numerical experiments to illustrate the
behavior of the new obtained algorithm. For representing the advantage of the main results, we
have created some numerical results to compare advantages of different areas with the previous
existing results.

2. Preliminaries
Let H be a real Hilbert space and C be a nonempty closed convex subset of H. The weak

convergence of {xn}∞n=1 to x is denoted by xn⇀x as n → ∞ while the strong convergence of
{xn}∞n=1 to x is written as xn → x as n → ∞. For each x , y , z ∈ H and α,β, γ ∈ R such that
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α + β + γ = 1, we have
∥αx + βy + γz∥2 = α∥x∥2 + β∥y∥2 + γ∥z∥2 − αβ∥x − y∥2 − αγ∥x − z∥2 − βγ∥y − z∥2.

(2.1)
For each point x ∈ H, there exists the unique nearest point in C , denoted by PCx such that
∥x − PCx∥ = inf

y∈C
∥x − y∥ ≤ ∥x − ~y∥ , ∀~y ∈ C . PC is called the metric projection of H onto

C . It is known that PC is nonexpansive.
Lemma 2.1. [3, 5, 15] Let C be a nonempty closed convex subset of a real Hilbert space H.
Given x ∈ H and z ∈ C . Then z = PCx ⇔ ⟨x − z , z − y⟩ ≥ 0, ∀y ∈ C .
Lemma 2.2. T31,T32,T33 Let C be a closed and convex subset in a real Hilbert space H, x ∈ H.
Then

(1) ∥PCx − PCy∥2 ≤ ⟨PCx − PCy , x − y⟩ , ∀y ∈ C ;

(2) ∥PCx − y∥2 ≤ ∥x − y∥2 − ∥x − PCx∥2, ∀y ∈ C .
Definition 2.3. [3, 5, 15] Assume that T : H → H is a nonlinear operator with Fix(T ) ̸= ∅.
Then I −T is said to be demiclosed at zero if for any {xn} in H, the following implication holds:

xn ⇀ x and (I − T ) xn → 0 ⇒ x ∈ Fix (T ) .
Definition 2.4. [3, 5, 15] Let T : H → H be an operator. Then

• T is called L−Lipschitz continuous with L > 0 if
∥Tx − Ty∥ ≤ ∥x − y∥ , ∀x , y ∈ H.

• T is called monotone if
⟨Tx − Ty , x − y⟩ ≥ 0, ∀x , y ∈ H.

Lemma 2.5. [1] Let {ϕn}, {δn} and {αn} be sequences in [0, + ∞) such that

ϕn+1 ≤ ϕn + αn (ϕn − ϕn−1) + δn, ∀n ≥ 1,
+∞∑
n=1

δn < +∞,

and there exists a real number α with 0 ≤ αn ≤ α < 1 for all n ∈ N. Then the following hold:

(1)
+∞∑
n=1

[ϕn−ϕn−1]+ < +∞, where [t]+ := max{t, 0};

(2) there exist ϕ∗ ∈ [0, +∞) such that lim
n→+∞

ϕn = ϕ∗.

Definition 2.6. Let H be a real Hilbert space. Then the set
{z ∈ H | ∃ {xnk} ⊆ {xn} such that xnk ⇀ z }

is called the set of all sequential weak cluster point of {xn}.
Lemma 2.7. [24] Let C be a nonempty set of H and {xn} be a sequence in H such that the
following two conditions hold:

(1) for every x ∈ C , lim
n→∞

∥xn − x∥ exists;

(2) every sequential weak cluster point of {xn} is in C . Then {xn} converges weakly to a point
in C .

Lemma 2.8. [29] Assume that F : C → H is a continuous and monotone operator. Then x∗ is
a solution of (1.2) if and only if x∗ is a solution of the following problem:

find x ∈ C such that ⟨Fy , y − x⟩ ≥ 0, ∀y ∈ C .
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3. Main Results
In this section, we introduce the new Mann-type algorithm called the accelerated hybrid

Mann-type algorithm for solving some fixed point problems of a quasi-nonexpansive mapping and
variational inequality problems of a monotone and L−Lipchitz mapping in the frame work of real
Hilbert spaces.

Theorem 3.1. Let F : H → H be a monotone and L−Lipchitz mapping on H. Assume that
the sequence {µn} ⊆ [0,µ], µ < 1

5 is non-decreasing, {αn} ⊆ (α, 0.5],α > 0, {βn} ⊆ [0, 0.5]
and {γn} ⊆ [0.5, 1) is a sequence of real numbers. Let λ ∈ (0, (1/L)) and U : H → H be a
quasi-nonexpansive mapping such that I−U is demiclosed at zero and Fix(U) ∩ VI(C , F ) ̸= ∅.
Let x0, x1 ∈ H, the sequence {xn} is defined by

wn = xn + µn(xn − xn−1),
yn = PC (wn − λFwn),
zn = yn − λ(Fyn − Fwn),
xn+1 = γnwn + βnzn + αnUzn,

(3.1)

where αn + βn + γn = 1. Then the sequence {xn} converges weakly to an element of Fix(U) ∩
VI(C , F ).

Proof. We split the proof into three claims. Let x∗ ∈ Fix(U) ∩ VI(C , F ).
Claim 1.

∥zn − x∗∥2 ≤ ∥wn − x∗∥2 − (1 − λ2L2)∥yn − wn∥2, ∀n ∈ N. (3.2)
We have

∥zn − x∗∥2 = ∥yn − λ(Fyn − Fwn) − x∗∥2

= ∥yn − x∗∥2 + λ2∥Fyn − Fwn∥2 − 2λ⟨yn − x∗, Fyn − Fwn⟩
= ∥wn − x∗∥2 + ∥wn − yn∥2 + 2 ⟨yn − wn, wn − x∗⟩

+ λ2∥Fyn − Fwn∥2 − 2λ⟨yn − x∗, Fyn − Fwn⟩
= ∥wn − x∗∥2 + ∥wn − yn∥2 − 2 ⟨yn − wn, yn − wn⟩

+ 2 ⟨yn − wn, yn − x∗⟩ + λ2∥Fyn − Fwn∥2

− 2λ⟨yn − x∗, Fyn − Fwn⟩
= ∥wn − x∗∥2 − ∥wn − yn∥2 + 2 ⟨yn − wn, yn − x∗⟩

+ λ2∥Fyn − Fwn∥2 − 2λ⟨yn − x∗, Fyn − Fwn⟩. (3.3)

Since yn = PC (wn − λFwn), we get

⟨yn − wn + λFwn, yn − x∗⟩ ≤ 0,

equivalently
⟨yn − wn, yn − x∗⟩ ≤ −λ ⟨Fwn, yn − x∗⟩ . (3.4)

Combining (3.3) and (3.4), we obtain

∥zn − x∗∥2 ≤ ∥wn − x∗∥2 − ∥wn − yn∥2 − 2λ ⟨Fwn, yn − x∗⟩
+ λ2∥Fyn − Fwn∥2 − 2λ⟨yn − x∗, Fyn − Fwn⟩

= ∥wn − x∗∥2 − ∥wn − yn∥2 + λ2∥Fyn − Fwn∥2 − 2λ⟨yn − x∗, Fyn⟩
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≤ ∥wn − x∗∥2 − ∥wn − yn∥2 + λ2L2∥yn − wn∥2

− 2λ⟨yn − x∗, Fyn − Fx∗⟩ − 2λ⟨yn − x∗, Fx∗⟩
≤ ∥wn − x∗∥2 − (1 − λ2L2)∥yn − wn∥2. (3.5)

Claim 2.
lim

n→∞
∥Uzn − zn∥ = 0. (3.6)

From (3.2), we have
∥zn − x∗∥ ≤ ∥wn − x∗∥ . (3.7)

Consider ∥xn+1 − wn∥2 = ∥γnwn + βnzn + αnUzn − wn∥2 and (2.1), we have

∥xn+1 − wn∥2 = ∥γnwn + βnzn + αnUzn − wn∥2

= ∥γn(wn − wn) + βn(zn − wn) + αn(Uzn − wn)∥2

≤ βn∥zn − wn∥2 + αn∥Uzn − wn∥2.

Using (2.1) and (3.7) we have

∥xn+1 − x∗∥2 = ∥γnwn + βnzn + αnUzn − x∗∥2

= ∥γn(wn − x∗) + βn(zn − x∗) + αn(Uzn − x∗)∥2

= γn∥wn − x∗∥2 + βn ∥zn − x∗∥2 + αn∥Uzn − x∗∥2

− γnβn∥zn − wn∥2 − γnαn∥Uzn − wn∥2 − βnαn∥Uzn − zn∥2

≤ γn∥wn − x∗∥2 + βn ∥zn − x∗∥2 + αn∥zn − x∗∥2

− γnβn∥zn − wn∥2 − γnαn∥Uzn − wn∥2 − βnαn∥Uzn − zn∥2

≤ γn∥wn − x∗∥2 + βn ∥wn − x∗∥2 + αn∥wn − x∗∥2

− γnβn∥zn − wn∥2 − γnαn∥Uzn − wn∥2 − βnαn∥Uzn − zn∥2

= ∥wn − x∗∥2 − γnβn∥zn − wn∥2 − γnαn∥Uzn − wn∥2

− βnαn∥Uzn − zn∥2

≤ ∥wn − x∗∥2 − γnβn∥zn − wn∥2 − γnαn∥Uzn − wn∥2

= ∥wn − x∗∥2 − γn
(
βn∥zn − wn∥2 + αn∥Uzn − wn∥2

)
≤ ∥wn − x∗∥2 − γn∥xn+1 − wn∥2. (3.8)

Moreover

∥wn − x∗∥2 = ∥(1 + µn)(xn − x∗) − µn(xn−1 − x∗)∥2

= (1 + µn)∥xn − x∗∥2 − µn∥xn−1 − x∗∥2 + µn(1 + µn)∥xn − xn−1∥2. (3.9)

We also have

∥xn+1 − wn∥2 = ∥xn+1 − xn − µn(xn − xn−1)∥2

= ∥xn+1 − xn∥2 + µ2
n∥xn − xn−1∥2 − 2µn ⟨xn+1 − xn, xn − xn−1⟩

≥ ∥xn+1 − xn∥2 + µ2
n∥xn − xn−1∥2 − 2µn ∥xn+1 − xn∥ ∥xn − xn−1∥

≥ (1 − µn)∥xn+1 − xn∥2 + (µ2
n − µn)∥xn − xn−1∥2. (3.10)
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Combining (3.8), (3.9) and (3.10) we obtain

∥xn+1 − x∗∥2 ≤ (1 + µn)∥xn − x∗∥2 − µn∥xn−1 − x∗∥2 + (1 + µn)µn∥xn − xn−1∥2

− γn(1 − µn)∥xn+1 − xn∥2 − γn(µ2
n − µn)∥xn − xn−1∥2

= (1 + µn)∥xn − x∗∥2 − µn∥xn−1 − x∗∥2 − γn(1 − µn)∥xn+1 − xn∥2

(µn + µ2
n − γnµ

2
n + γnµn)∥xn − xn−1∥2

≤ (1 + µn)∥xn − x∗∥2 − µn∥xn−1 − x∗∥2 − γn(1 − µn)∥xn+1 − xn∥2

((1 − γn)µ2
n + (1 + γn)µn)∥xn − xn−1∥2

≤ (1 + µn)∥xn − x∗∥2 − µn∥xn−1 − x∗∥2

− γn(1 − µn)∥xn+1 − xn∥2 + 2µn∥xn − xn−1∥2

≤ (1 + µn+1)∥xn − x∗∥2 − µn∥xn−1 − x∗∥2

− γn(1 − µn)∥xn+1 − xn∥2 + 2µn∥xn − xn−1∥2. (3.11)

This follows that

∥xn+1 − x∗∥2 − µn+1∥xn − x∗∥2 + 2µn+1∥xn+1 − xn∥2

≤ ∥xn − x∗∥2 − µn∥xn−1 − x∗∥2

+ 2µn∥xn − xn−1∥2 + 2µn+1∥xn+1 − xn∥2 − γn(1 − µn)∥xn+1 − xn∥2.

Put Λn := ∥xn − x∗∥2 − µn∥xn−1 − x∗∥2 + 2µn∥xn − xn−1∥2. We get

Λn+1 − Λn ≤ −(γn(1 − µn) − 2µn+1)∥xn+1 − xn∥2.

It follows from µn ≤ µ < 1
5 that γn(1−µn)− 2µn+1 ≥ 0.5− 2.5µ > 0. Therefore, we obtain

Λn+1 − Λn ≤ −δ∥xn+1 − xn∥2 ≤ 0 (3.12)

where δ = 0.5 − 2.5µ. This implies that the sequence {Λn} is nonincreasing. And we have

Λn = ∥xn − x∗∥2 − µn∥xn−1 − x∗∥2 + 2µn∥xn − xn−1∥2

≥ ∥xn − x∗∥2 − µn∥xn−1 − x∗∥2.

This implies that

∥xn − x∗∥2 ≤ µn∥xn−1 − x∗∥2 + Λn

≤ µ∥xn−1 − x∗∥2 + Λ1

≤ . . . ≤ µn∥x0 − x∗∥2 + Λ1(µn−1 + . . . + 1)

≤ µn∥x0 − x∗∥2 + Λ1
1 − µ

. (3.13)

We have

Λn+1 = ∥xn+1 − x∗∥2 − µn+1∥xn − x∗∥2 + 2µn+1∥xn+1 − x∗∥2

≥ −µn+1∥xn − x∗∥2. (3.14)

From (3.13) and (3.14) we obtain

−Λn+1 ≤ µn+1∥xn − x∗∥2 ≤ µ∥xn − x∗∥2 ≤ µn+1∥x0 − x∗∥2 + µΛ1
1 − µ

.
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It follows from (3.12) that

δ

k∑
n=1

∥xn+1 − xn∥2 ≤ Λ1 − Λk+1 ≤ µk+1∥x0 − x∗∥2 + Λ1
1 − µ

≤ ∥x0 − x∗∥2 + Λ1
1 − µ

.

This implies
∞∑

n=1
∥xn+1 − xn∥2 < +∞ . (3.15)

We obtain
lim

n→∞
∥xn+1 − xn∥ = 0. (3.16)

We have

∥xn+1 − wn∥ = ∥xn+1 − xn − µn(xn − xn−1)∥ ≤ ∥xn+1 − xn∥ + µn ∥xn − xn−1∥
≤ ∥xn+1 − xn∥ + µ ∥xn − xn−1∥ . (3.17)

From (3.16) and (3.17) we obtain

lim
n→∞

∥xn+1 − wn∥ = 0.

From (3.11) we get

∥xn+1 − x∗∥2 ≤ (1 + µn)∥xn − x∗∥2 − µn∥xn−1 − x∗∥2 + 2µ∥xn − xn−1∥2. (3.18)

By (3.15), (3.18) and Lemma 2.7 we have

lim
n→∞

∥xn − x∗∥ = l . (3.19)

And by (3.9) we obtain
lim

n→∞
∥wn − x∗∥ = l . (3.20)

We also have
0 ≤ ∥xn − wn∥ ≤ µ ∥xn − xn−1∥ → 0. (3.21)

From

∥xn+1 − x∗∥2 ≤ γn∥wn − x∗∥2 + βn∥zn − x∗∥2 + αn∥Uzn − x∗∥2

≤ γn∥wn − x∗∥2 + βn∥zn − x∗∥2 + αn∥zn − x∗∥2

= (1 − (αn + βn))∥wn − x∗∥2 + (αn + βn)∥zn − x∗∥2.

This implies that

∥zn − x∗∥2 ≥ ∥xn+1 − x∗∥2 − ∥wn − x∗∥2

(αn + βn) + ∥wn − x∗∥2

>
∥xn+1 − x∗∥2 − ∥wn − x∗∥2

α
+ ∥wn − x∗∥2. (3.22)

It implies from (3.19), (3.20) and (3.22) that

lim
n→∞

∥zn − x∗∥2 ≥ lim
n→∞

∥wn − x∗∥2 = l . (3.23)
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By (3.7) we get
lim

n→∞
∥zn − x∗∥2 ≤ lim

n→∞
∥wn − x∗∥2 = l . (3.24)

Combining (3.23) and (3.24) we obtain

lim
n→∞

∥zn − x∗∥2 = l .

From (3.5) we have

(1 − λ2L2)∥yn − wn∥2 ≤ ∥wn − x∗∥2 − ∥zn − x∗∥2.

This implies that
lim

n→∞
∥yn − wn∥ = 0. (3.25)

It also holds
∥zn − yn∥ = λ ∥Fyn − Fwn∥ ≤ λL ∥yn − wn∥ → 0. (3.26)

Combining (3.25) and (3.26) we obtain

lim
n→∞

∥zn − wn∥ = 0. (3.27)

From

Uzn − wn = 1
αn

(xn+1 − wn − βn(zn − wn))

we have

∥Uzn − wn∥ =
∥∥∥∥ 1
αn

(xn+1 − wn − βn(zn − wn))
∥∥∥∥ ≤ 1

αn
∥xn+1 − wn∥ + βn

αn
∥zn − wn∥ . (3.28)

From αn ≥ α, it follows from (3.16), (3.27) and (3.28) that

lim
n→∞

∥Uzn − wn∥ = 0. (3.29)

Combining (3.27) and (3.29) we obtain

∥Uzn − zn∥ ≤ ∥Uzn − wn∥ + ∥zn − wn∥ → 0 .

Claim 3. The sequence {xn} converges weakly to an element of Fix(U) ∩ VI(C , F ). Indeed,
since {xn} is a bounded sequence, there exists a subsequence {xnk} of {xn} and z ∈ H such that
xnk⇀z . By (3.21) we get wnk⇀z and by (3.27) znk⇀z . It follows from (3.6) and demiclosedness
of I − U that z ∈ Fix(U) .

From ynk = PC (wnk − λFwnk ) and F is monotone, we have for every x ∈ C that

0 ≤ ⟨ynk − wnk + λFwnk , x − ynk ⟩
= ⟨ynk − wnk , x − ynk ⟩ + λ ⟨Fwnk , x − ynk ⟩
= ⟨ynk − wnk , x − ynk ⟩ + λ ⟨Fwnk , wnk − ynk ⟩ + λ ⟨Fwnk , x − wnk ⟩
≤ ⟨ynk − wnk , x − ynk ⟩ + λ ⟨Fwnk , wnk − ynk ⟩ + λ ⟨Fx , x − wnk ⟩ .

Passing to the limit, we get
⟨Fx , x − z⟩ ≥ 0 ∀x ∈ C .

By Lemma 2.8 we have z ∈ VI(C , F ). Therefore, we have shown that for every x∗ ∈ Fix(U) ∩
VI(C , F ), lim

n→∞
∥xn − x∗∥ exists and each sequential weak cluster point of sequence {xn} is in

Fix(U) ∩ VI(C , F ). By Lemma 2.7 the sequence {xn} converges weakly to z ∈ Fix(U) ∩
VI(C , F ).



106 P. Thammasiri and K. Ungchittrakool

Corollary 3.2 (Thong and Hieu [32, Theorem 3.1]). Let F : H → H be a monotone and
L−Lipchitz mapping on H. Assume that the sequence {µn} ⊆ [0,µ], µ < 1

5 is non-decreasing,
{αn} ⊆ (α, 0.5], α > 0 is a sequence of real numbers. Let λ ∈ (0, (1/L)) and U : H → H be a
quasi-nonexpansive mapping such that I−U is demiclosed at zero and Fix(U) ∩ VI(C , F ) ̸= ∅.
Let x0, x1 ∈ H the sequence {xn} is defined by

wn = xn + µn(xn − xn−1)
yn = PC (wn − λFwn)
zn = yn − λ(Fyn − Fwn)
xn+1 = (1 − αn)wn + αnUzn.

(3.30)

Then the sequence {xn} converges weakly to an element of Fix(U) ∩ VI(C , F ).

Proof. If we set βn = 0 for all n ∈ N, then γn = 1−αn. Therefore, Theorem 3.1 can be reduced
to Corollary 3.2 as required.

4. Numerical Experiments
In this section, we compare the advantages of the new algorithm with the previous exiting

algorithm introduced by Thong and Hieu [32, Theorem 3.1].

Example 4.1. [32] Let H = R, C = [−2, 5] and F : R → R be given by

Fx := x − 3 + sin(x − 3)

and U : R → R be given by

Ux = x + 3
x2

9 + 1
∀x ∈ R.

The solution of the problem is x∗ = 3. The stopping criterion is defined by Error =
∥xn+1 − xn∥ < 10−4. Choose x0 = 5 and x1 = 4. Figure 3 and figure 4 show a comparison of
the numerical behavior of an accelerated hybrid Mann-type algorithm (3.1) with an advantage
over Mann-type algorithm (3.30).

Fig. 3. Convergence behavior of {xn} of Example 4.1.
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Fig. 4. x−update converges to solution x∗ of Example 4.1.

Example 4.2. [32] Consider a nonlinear operator F : R2 → R2 defined by

F (x , y) = (x + y + sin x ,−x + y + sin y)

and the feasible set C is a box defined by C = [−2, 5]× [−2, 5]. Let E be a 2× 2 matrix defined
by

E =
(

1 0
0 2

)
.

Mapping U : R2 → R2 by Uz = ∥E∥−1Ez , where z = (x , y)T . The solution of the problem
is x∗ = (0, 0)T . The stopping criterion is defined by Error = ∥xn+1 − xn∥ < 10−4. Choose
x0 = (7, 7)T and x1 = (4, 3)T . By using this example, Figure 5 - Figure 9 show the advantage of
(3.1) via numerical results.

Fig. 5. The behavior of each x-update which
lies on a straight line formed by a convex com-
bination of two iterative vectors wn and Uzn.

Fig. 6. The behavior of each x-update which
lies on a triangle formed by a convex combi-
nation of three iterative vectors wn, zn and
Uzn.
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Fig. 7. Convergence behavior of {xn} of Example 4.2.

Fig. 8. Mann-type: x-update converges to solution x∗ = (0, 0)T of Example 4.2.
.

Fig. 9. Hybrid Mann-type: x-update converges to solution x∗ = (0, 0)T of Example 4.2.
.
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5. Conclusions
We introduced and studied the new Mann-type algorithm which is called the accelerated hybrid

Mann-type algorithm and established the main theorem as follows:
Theorem 3.1. Let F : H → H be a monotone and L−Lipchitz mapping on H. Assume that
the sequence {µn} ⊆ [0,µ], µ < 1

5 is non-decreasing, {αn} ⊆ (α, 0.5],α > 0, {βn} ⊆ [0, 0.5]
and {γn} ⊆ [0.5, 1) is a sequence of real numbers. Let λ ∈ (0, (1/L)) and U : H → H be a
quasi-nonexpansive mapping such that I−U is demiclosed at zero and Fix(U) ∩ VI(C , F ) ̸= ∅.
Let x0, x1 ∈ H, the sequence {xn} is defined by

wn = xn + µn(xn − xn−1),
yn = PC (wn − λFwn),
zn = yn − λ(Fyn − Fwn),
xn+1 = γnwn + βnzn + αnUzn,

where αn + βn + γn = 1. Then the sequence {xn} converges weakly to an element of Fix(U) ∩
VI(C , F ).

The above theorem not only extends the theoretical concepts of the previous research work,
but also provides numerical results that have an advantage over the previous work proposed by
Thong and Hieu [32, Theorem 3.1]. It can be clearly seen in section 4 of this paper.
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