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ABSTRACT
A generalized cohypersubstitution σ of type τ = (ni )i∈I is a mapping
which maps every ni -ary cooperation symbol fi to the coterm σ(f ) of
type τ . We denoted the set of all generalized cohypersubstitutions
of type τ by CohypG(τ). In this study, we focus on the semigroups
(CohypG(2), +CG) and (CohypG(2),⊕CG) where +CG and ⊕CG are bi-
nary operations the set CohypG(2). We characterize the set of all idem-
potent and regular elements of these semigroups.
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1. Introduction
The concept of cohypersubstitution of type τ was first introduced by K. Denecke and K.

Saengsura [3] in 2009. They used as the main tool in the study of cohyperidentities. They
defined coalgebras, coidentities, cohyperidentities and applied all the concepts to construct
the monoid of cohypersubstitutions of type τ . After that, in 2013, S. Jermjitpornchai and
N. Seangsura [5] generalized the concepts of K. Denecke and K. Saengsura [3] by studying
on the generalized cohypersubstitutions of type τ = (ni)i∈I , introduced coterms, generalized
superpositions, some algebraic-structural properties and constructed the monoid of generalized
cohypersubstitutions. Later that, in the same year, N. Seangsura and S. Jermjitpornchai [8]
fixed type τ = (2) and characterized all idempotent and regular elements of the generalized
cohypersubstitutions of type τ = (2). After the study, the structural properties and special
elements of the monoid of generalized cohypersubstitutions of type τ = (2), τ = (3) and
τ = (n) have been stydied by many other authors, see in [1], [5] and [8]. Moreover, in
2021, N. Chansuriya and S. Phuapong gave some structural properties and the relationship
among submonoids of the monoid of generalized cohypersubstitutions of type τ by using
the concepts in [6] and [7]. They also defined two new binary operations +CG and ⊕CG
on the set of all generalized cohypersubstitutions of type τ , CohypG(τ), and showed that
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(CohypG(τ), +CG),(CohypG(τ),⊕CG) were semigroups.
In this study, we fix type τ = (2) and focus on the semigroups (CohypG(2), +CG) and

(CohypG(2),⊕CG). We characterize the set of all idempotent and regular elements of this
semigroups.

2. Preliminaries
In this section, we provide the basic concept of the monoid of set of all generalized

cohypersubstitutions which is very useful to this research.
Let A be a non-empty set and n ∈ N+ = N ∪ {0}. Define the union of n disjoint copies

of A by A⊔n := n × A where n = {1, 2, ... , n}, so it is called the n-th copower of A. An
element (i , a) in this copower corresponds to the element a in the i-th copy of A where i ∈ n.
A mapping f A : A → A⊔n is a co-operation on A; the natural number n is called the arity of
the co-operation f A. Every n-ary co-operation f A on the set A can be uniquely expressed as
the pair of mappings (f A

1 , f A
2 ) where f A

1 : A → n gives the labelling used by f A in mapping
elements to copies of A, and f A

2 : A → A shows what element of A any element is mapped
to, so f A(a) = (f A

1 (a), f A
2 (a)). We denote the set of all n-ary co-operations defined on A by

cO(n)
A = {f A : A → A⊔n}.
Let τ = (ni)i∈I and let (fi)i∈I be an indexed set of co-operation symbols which fi has arity

ni for each i ∈ I. Let
∪

{en
j | n ≥ 1, n ∈ N+, 0 ≤ j ≤ n−1} be a set of symbols which disjoint

from {fi | i ∈ I} such that en
j has arity n for each 0 ≤ j ≤ n − 1. An coterms of type τ are

defined as follows:

(i) For every i ∈ I, the co-operation symbol fi is an n-ary coterm of type τ .

(ii) For every n ≥ 1 and 0 ≤ j ≤ n − 1 the symbol en
j is an n-ary coterm of type τ .

(iii) If t1, ... , tni are n-ary coterms of type τ , then fi [t1, ... , tni ] is an n-ary coterm of type τ
for every i ∈ I, and if t0, ... , tn−1 are m-ary coterms of type τ , then en

j [t0, ... , tn−1] is
an n-ary coterm of type τ for every 0 ≤ j ≤ n − 1.

Let CT (n)
τ be the set of all n-ary coterms of type τ , and CTτ :=

∪
n≥1

CT (n)
τ the set of all

coterms of type τ .
For example, let us consider the type τ = (2) with one binary co-operation symbol f and

the set of all injection symbols E := {en
j | n, j ∈ N+ := N ∪ {0}}. Then some example of

coterm of type τ = (2) are:

e2
0 , e2

1 , f [e2
0 , e2

1 ], f [e2
1 , e2

2 ], f [f [e2
1 , e2

0 ], e2
2 ], f [e2

0 , f [e2
1 , e2

1 ]], f [f [e2
0 , e2

3 , f [e2
1 , e2

4 ]].

Definition 2.1. [5] Let m ∈ N+ = N ∪ {0}. A generalized superposition of coterms Sm :
CT m+1

τ → CTτ is defined inductively by the following steps:

(i) If t = en
i and 0 ≤ i ≤ m − 1, then Sm(en

i , t0, ... , tm−1) = ti , where t0, ... , tm−1 ∈ CTτ .

(ii) If t = en
i and 0 < m ≤ i ≤ n − 1, then Sm(en

i , t0, ... , tm−1) = en
i , where t0, ... , tm−1 ∈

CTτ .
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(iii) If t = fi [s1, ... , sni ] , then Sm(t, t1, ... , tm) = fi(Sm(s1, t1, ... , tm), ... , Sm(sni , t1, ... , tm)),
where Sm(s1, t1, ... , tm), ... , Sm(sni , t1, ... , tm) ∈ CTτ .

The above definition can be written as the following forms:

(i) If t = en
i and 0 ≤ i ≤ m − 1, then en

i [t0, ... , tm−1] = ti , where t0, ... , tm−1 ∈ CTτ .

(ii) If t = en
i and 0 < m ≤ i ≤ n − 1, then en

i [t0, ... , tm−1] = en
i , where t0, ... , tm−1 ∈ CTτ .

(iii) If t = fi [s1, ... , sni ], then (fi [s1, ... , sni ])[t1, ... , tm] = fi(s1[t1, ... , tm], ... , sni [t1, ... , tm]),
where s1[t1, ... , tm], ... , sni [t1, ... , tm] ∈ CTτ .

Definition 2.2. [5] A generalized cohypersubstitution of type τ is a mapping σ : {fi | i ∈
I} → CTτ . The extension of σ is a mapping σ̂ : CTτ → CTτ which is inductively defined by
the following steps :

(i) σ̂(en
j ) := en

j for every n ≥ 1 and 0 ≤ j ≤ n − 1,

(ii) σ̂(fi) := σ(fi) for every i ∈ I,

(iii) σ̂(fi [t1, ... , tni ]) := σ(fi)[σ̂(t1), ... , σ̂(tni )] for t1, ... tni ∈ CT (n)
τ .

Let CohypG(τ) be the set of all generalized cohypersubstitutions of type τ .

Proposition 2.3. [5] If t, t1, ... , tn ∈ CTτ and σ ∈ CohypG(τ), then

σ̂(t[t1, ... , tn]) = σ̂(t)[σ̂(t1), ... , σ̂(tn)].

On the set CohypG(τ) of all generalized cohypersubstitutions of type τ , we may define
an operation ◦CG : CohypG(τ) × CohypG(τ) → CohypG(τ) by σ1 ◦CG σ2 := σ̂1 ◦ σ2 for all
σ1,σ2 ∈ CohypG(τ) where ◦ is the usual composition of mappings. Let σid be the generalized
cohypersubstitution such that σid(fi) := fi [en

0 , en
1 , ... , en

ni−1] for all i ∈ I. Then σid is an identity
element in CohypG(τ). Thus CohypG(τ) := (CohypG(τ), ◦CG ,σid) is a monoid and called the
monoid of generalized cohypersubstitutions of type τ . A algebraic-structural properties of the
monoid CohypG(τ) can be found in [5].

In [2], a new binary operation ”+CG” on the set CohypG(τ) was defined by

(σ1 +CG σ2)(fi) := σ2(fi)[σ1(fi), ... ,σ1(fi)︸ ︷︷ ︸
ni−terms

] ∈ CT(τ),

for all σ1,σ2 ∈ CohypG(τ). Then (CohypG(τ), +CG) is a semigroup. Furthermore, they also
defined another new binary operation ”⊕CG” on the set CohypG(τ) by

(σ1 ⊕CG σ2)(fi) := σ1(fi)[σ2(fi), ... ,σ2(fi)︸ ︷︷ ︸
ni−terms

] ∈ CT(τ),

for all σ1,σ2 ∈ CohypG(τ). So, (CohypG(τ),⊕CG) forms a semigroup.
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Example 2.4. Let τ = (2) and t = f [f [e2
0 , e2

2 ], e2
1 ], s = f [e2

3 , f [e2
0 , e2

1 ]] ∈ CT(2). Then

(σf [f [e2
0 ,e2

2 ],e2
1 ] +CG σf [e2

3 ,f [e2
0 ,e2

1 ]])(f ) = σf [e2
3 ,f [e2

0 ,e2
1 ]](f )[σf [f [e2

0 ,e2
2 ],e2

1 ](f ),σf [f [e2
0 ,e2

2 ],e2
1 ](f )]

= f [e2
3 , f [e2

0 , e2
1 ]][f [f [e2

0 , e2
2 ], e2

1 ], f [f [e2
0 , e2

2 ], e2
1 ]]

= f [e2
3 , f [f [f [e2

0 , e2
2 ], e2

1 ], f [f [e2
0 , e2

2 ], e2
1 ]]], and

(σf [f [e2
0 ,e2

2 ],e2
1 ] ⊕CG σf [e2

3 ,f [e2
0 ,e2

1 ]])(f ) = σf [f [e2
0 ,e2

2 ],e2
1 ](f )[σf [e2

3 ,f [e2
0 ,e2

1 ]](f ),σf [e2
3 ,f [e2

0 ,e2
1 ]](f )]

= f [f [e2
0 , e2

2 ], e2
1 ][f [e2

3 , f [e2
0 , e2

1 ]], f [e2
3 , f [e2

0 , e2
1 ]]]

= f [f [f [e2
3 , f [e2

0 , e2
1 ]], e2

2 ], f [e2
3 , f [e2

0 , e2
1 ]]].

Throughout this paper, we denote:
σt := the generalized cohypersubstitution σ of type τ which maps f to the coterm t,
en

j := the injection symbol for all 0 ≤ j ≤ n − 1, n ∈ N,
E := the set of all injection symbols, i.e., E := {en

j | n, j ∈ N+ := N ∪ {0}},
E (t) := the set of all injection symbols occuring in the coterm t.

3. Main Results
In this section, we focus on the set CohypG(2) of all generalized cohypersubstitutions

of type τ = (2) with a binary operation ”+CG” on the set CohypG(2) defined by (σ1 +CG
σ2)(f ) := (σ2(f ))[σ1(f ),σ1(f )] for all σ1,σ2 ∈ CohypG(2). Then we have (CohypG(2), +CG)
is a semigroup. We describe idempotent and regular elements in CohypG(2). Firstly, we recall
the definition of an idempotent element in the semigroup (CohypG(2), +CG).
Definition 3.1. Let (CohypG(2), +CG) be a semigroup. An element σt ∈ CohypG(2) is
called idempotent if σt +CG σt = σt . Denoted by E+CG (CohypG(2)) the set of all idempotent
elements of CohypG(2).
Theorem 3.2. Let t, s ∈ CT(2). Then the following statements hold.

(i) If E (t) ∩ {e2
0 , e2

1} = {e2
0}, then t[s, s] = t if and only if s = e2

0 .

(ii) If E (t) ∩ {e2
0 , e2

1} = {e2
1}, then t[s, s] = t if and only if s = e2

1 .

(iii) If E (t) ∩ {e2
0 , e2

1} = ∅, then t[s, s] = t.

Proof. (i) Let t, s ∈ CT(2) where E (t) ∩ {e2
0 , e2

1} = {e2
0}.

Let t = f [t1, t2] where t1, t2 ∈ CT(2) and assume that t[s, s] = t. Suppose that s ̸= e2
0 .

Then
t[s, s] = (f [t1, t2])[s, s] = f [t1[s, s], t2[s, s]].

Since E (t) ∩ {e2
0 , e2

1} = {e2
0} and s ̸= e2

0 , this force that t1[s, s] ̸= t1 and t2[s, s] ̸= t2.
Thus t[s, s] = (f [t1, t2])[s, s] = f [t1[s, s], t2[s, s]] ̸= f [t1, t2] = t, which is a contradiction.
Hence, s = e2

0 .
Conversely, assume that s = e2

0 . We give a proof by indection on the complexity of
the coterm t. If t = e2

0 , then e2
0 [s, s] = e2

0 . If t = e2
j for j ≥ 2, then e2

j [s, s] = e2
j . If

t = f [t1, t2] and suppose that t1[s, s] = t1 and t2[s, s] = t2, then t[s, s] = (f [t1, t2])[s, s] =
f [t1[s, s], t2[s, s]] = f [t1, t2] = t.

Similarly, we can proof (ii) and (iii).
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Theorem 3.3. The generalized cohypersustitution σt of type τ = (2) is idempotent if and
only if t[σt(f ),σt(f )] = t.

Proof. Let t ∈ CT(2). Assume that σt is an idempotent. Then
t[σt(f ),σt(f )] = (σt(f ) +CG σt)(f ) = σt(f ) = t.

Conversely, assume that t[σt(f ),σt(f )] = t. Then (σt+CGσt)(f ) = (σt(f )[σt(f ),σt(f )] =
t[σt(f ),σt(f )] = t = σt(f ). Thus σt is an idempotent.

Next, we study on the set of all projection generalized cohypersubstitutions of type τ = (2)
which define as following.

Definition 3.4. Let τ = (2). A generalized cohypersubstitution σ of type τ = (2) is called a
projection generalized cohypersubstitution if the coterm σ(fi) is the injection symbol for each
i ∈ I. Let σt ∈ P inj

CG(2) be the set of all projection generalized cohypersubstitutions of type
τ = (2), i.e., σt ∈ P inj

CG(2) := {σe2,j | e2
j ∈ E}.

By applying the Theorem 3.2 and Theorem 3.3, we have the following corollary.

Corollary 3.5. Every σt ∈ P inj
CG(2) is idempotent.

Corollary 3.6. If σt ∈ CohypG(2) and E (t) ∩ {e2
0 , e2

1} = ∅, then σt is idempotent.

Lemma 3.7. Let t1, t2 ∈ CT(2) and σt ∈ CohypG(2). Then the following statements hold.

(i) If t = f [e2
0 , t2] where E (t) ∩ {e2

0 , e2
1} = {e2

0}, then σt is not idempotent.

(ii) If t = f [t1, e2
1 ] where E (t) ∩ {e2

0 , e2
1} = {e2

1}, then σt is not idempotent.

(iii) If t = f [t1, t2] where {e2
0 , e2

1} ⊆ E (t), then σt is not idempotent.

Proof. (i) Let σt ∈ CohypG(2) where t = f [e2
0 , t2], E (t) ∩ {e2

0 , e2
1} = {e2

0} and t2 ∈ CT(2).
Consider

(σf [e2
0 ,t2] +CG σf [e2

0 ,t2])(f ) = σf [e2
0 ,t2](f )[σf [e2

0 ,t2](f ),σf [e2
0 ,t2](f )]

= f [e2
0 , t2][f [e2

0 , t2], f [e2
0 , t2]]

= f [f [e2
0 , t2], t2[f [e2

0 , t2], f [e2
0 , t2]]]

̸= f [e2
0 , t2].

Hence, σt is not idempotent.
Similarly, we can proof (ii).
(iii) Let σt ∈ CohypG(2) where t = f [t1, t2], t1, t2 ∈ CT(2) and {e2

0 , e2
1} ⊆ E (t).

Consider

(σf [t1,t2] +CG σf [t1,t2])(f ) = σf [t1,t2](f )[σf [t1,t2](f ),σf [t1,t2](f )]
= f [t1, t2][f [t1, t2], f [t1, t2]]
= f [t1[f [t1, t2], f [t1, t2]], t2[f [t1, t2], f [t1, t2]]].

Since {e2
0 , e2

1} ⊆ E (t), then we have t1[f [t1, t2], f [t1, t2]] ̸= t1 and t2[f [t1, t2], f [t1, t2]] ̸=
t2. So, (σf [t1,t2] +CG σf [t1,t2])(f ) ̸= σf [t1,t2]. Hence, σt is not idempotent.
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Lemma 3.8. Let t1, t2 ∈ CT(2) and σt ∈ CohypG(2). Then the following statements hold.

(i) If t = f [t1, e2
0 ] where E (t) ∩ {e2

0 , e2
1} = {e2

0}, then σt is not idempotent.

(ii) If t = f [e2
1 , t2] where E (t) ∩ {e2

0 , e2
1} = {e2

1}, then σt is not idempotent.

Proof. The proof of this lemma is similarl to Lemma 3.7.

We now set E∗ := {σt |E (t) ∩ {e2
0 , e2

1} = ∅}. So, we have the following theorem.
Theorem 3.9. E+CG (CohypG(2)) := P inj

CG(2) ∪ E∗ is the set of all idempotent elements of
(CohypG(2), +CG).

Proof. The proof is directly optained from Corollary 3.5, Corollary 3.6, Lemma 3.7 and Lemma
3.8.

By applying the method in [1], we have the following lemma.
Lemma 3.10. E+CG (CohypG(2)) is a maximal idempotent subsemigroup of (CohypG(2), +CG).

Proof. It is easy to see that E+CG (CohypG(2)) ⊂ CohypG(2) and it is closed under the oper-
ation +CG . So, E+CG (CohypG(2)) is an idempotent subsemigroup of (CohypG(2), +CG). We
next to show that it is a maximal idempotent subsemigroup.

Let M be a proper idempotent subsemigroup of (CohypG(2), +CG) such that
E+CG (CohypG(2)) ⊆ M ⊂ CohypG(2). Let σt ∈ M. Then σt is an idempotent element. Sup-
pose that σt ̸= E+CG (CohypG(2)). Then, by Lemma 3.7 and Lemma 3.8, σt is not idempotent,
which is a contradiction. So, σt ∈ E+CG (CohypG(2)). Hence, M = E+CG (CohypG(2)).

Therefore, E+CG (CohypG(2)) is a maximal idempotent subsemigroup of (CohypG(2), +CG).

Now, we will describe regular elements in the semigroup (CohypG(2), +CG).
Definition 3.11. Let (CohypG(2), +CG) be a semigroup. An element σt ∈ CohypG(2) is
call regular if there exists σs ∈ CohypG(2) such that σt +CG σs +CG σt = σt . Denoted by
R+CG (CohypG(2)) the set of all regular elements of CohypG(2).
Theorem 3.12. For any type τ = (2), E+CG (CohypG(2)) = R+CG (CohypG(2)).

Proof. Since every idempotent elements is regular element, so we have E+CG (CohypG(2)) ⊆
R+CG (CohypG(2)). We will show that R+CG (CohypG(2)) = E+CG (CohypG(2)). Let σt ∈
R+CG (CohypG(2)). Then there exists σs ∈ CohypG(2) such that σt +CG σs+CG = σt .

So,
(σt(f ))[(σt +CG σs(f ))(f ), (σt +CG σs(f ))(f )] = σt(f )

t[s[t, t], s[t, t]] = t.

This force that e2
0 , e2

1 /∈ E (t). Thus σt ∈ E∗.
Assume that t ̸= e2

i ; i ∈ N∗, then s[t, t] ̸= e2
i ; i ∈ N∗. So, by Theorem 3.2 (i),(ii), we

obtain that t[s[t, t], s[t, t]] ̸= t. We get a cotradiction. Thus t = e2
i ; i ∈ N∗ which implies

that σt ∈ P inj
CG(2). Hence σt ∈ E∗ ∪ P inj

CG(2) := E+CG (CohypG(2)).
Therefore, E+CG (CohypG(2)) = R+CG (CohypG(2)).
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In the last of this section, we study on the set CohypG(2) of all generalized cohypersub-
stitutions of type τ = (2) together with a binary operation ”⊕CG” on the set CohypG(2)
defined by (σ1 ⊕CG σ2)(f ) := (σ1(f ))[σ2(f ),σ2(f )] for all σ1,σ2 ∈ CohypG(2). Then we
have that (CohypG(2),⊕CG) is a semigroup. We describe idempotent and regular elements
in CohypG(2) by using the following definitions.

Definition 3.13. Let (CohypG(2),⊕CG) be a semigroup. An element σt ∈ CohypG(2) is
call idempotent if σt ⊕CG σt = σt . Denoted by E⊕CG (CohypG(2)) the set of all idempotent
elements of CohypG(2).

Definition 3.14. Let (CohypG(2),⊕CG) be a semigroup. An element σt ∈ CohypG(2) is
call regular if there exists σs ∈ CohypG(2) such that σt ⊕CG σs ⊕CG σt = σt . Denoted by
R⊕CG (CohypG(2)) the set of all regular elements of CohypG(2).

We can see that every idempotent element in (CohypG(2), +CG) is idempotent element in
(CohypG(2),⊕CG) and also regular element. So, we have the following results.

Proposition 3.15. For any type τ = (2), E⊕CG (CohypG(2)) = R⊕CG (CohypG(2)).

Proof. The proof is similar to Theorem 3.12.

So, we have the following corollary.

Corollary 3.16. For any type τ = (2), R+CG (CohypG(2)) = E+CG (CohypG(2)) =
E⊕CG (CohypG(2)) = R⊕CG (CohypG(2)).

4. Conclusion
This study focues on the semigroups (CohypG(2), +CG) and (CohypG(2),⊕CG) of gen-

eralized cohypersubstitutions of type τ = (2). We characterize the idempotent and regular
elements on these semigroups. The main results of the study shown that any regular elements
are idempotent elements. Moreover, we can see that the set of all idempotent and regular
elements of the semigroup (CohypG(2), +CG) equal to the set of all idempotent and regular
elements of the semigroup (CohypG(2),⊕CG).
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