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ABSTRACT
In this work, we propose a family of conjugate gradient projection method
for nonlinear monotone equations with convex constraints. Under some ap-
propriate assumptions, the global convergence of the method is established.
Numerical examples reported shows that the method is competitive and ef-
ficient for solving monotone nonlinear equations. Furthermore, we apply
the proposed algorithm to solve the sparse signal reconstruction problem
in compressive sensing.
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1. Introduction
Consider finding a point x ∈ Ω such that

F (x) = 0, (1.1)

where F : Rn → Rn is continuous and monotone, that is, ⟨F (x)−F (y), (x−y)⟩ ≥ 0, ∀x , y ∈ Rn,
Ω ⊂ Rn is nonempty and convex. The corresponding unconstrained problem when Ω = Rn have
been discussed extensively, and many iterative methods have been proposed by many researchers.
Some examples are; Newton method, quasi-Newton method, Gauss-Newton, Levenberg-Marquardt
method and their variants (see[1, 5, 6, 17, 7, 9, 14, 15, 16, 19, 21, 22, 24, 27, 28]). With a good
initial guess, these algorithms are very attractive as they have fast convergence rate. However,
there are relatively scanty literatures on constrained problem (1.1).

Constrained problem (1.1) has so many practical applications, for example in chemical equi-
librium systems and economic equilibrium problems (see[20, 8]). Iterative methods for solv-
ing constrained monotone nonlinear equations have recently receive relatively high attention
[18, 26, 34, 30, 32, 36, 33]. For example, in [26] Wang et al. proposed a projection method
which requires no differentiability and regularity conditions for solving (1.1). Numerical experi-
ments presented in the paper indicates the efficiency of the method. Ma and Wang [18] proposed
a modified extragradient method for solving constrained monotone equations. A spectral gradi-
ent approach and a projection technique was presented by Yu et al. [33] for convex constrained
problems. Using similar projection technique approach, Zheng [36] proposed a spectral gradient
method for constrained problems. Also, Yu et al. in [32] proposed a multivariate spectral gradient
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projection (SGP) for solving problems of the form (1.1). A remarkable property of these gradient-
type algorithms is that the direction does not depend on the gradient information, therefore can
be applied to solve nonsmooth equations. However, Xiao and Zhu [30] proposed a projected con-
jugate gradient (CGD) to solve constrained problems. This method can be viewed as an extension
of the CG−Descent method for solving convex constrained problems.

Motivated by these methods, we propose a family of conjugate gardient projection method
for constrained nonlinear monotone equations, which is an extension of the method of Feng et al.
[10] for solving convex constrained problems. The method possesses some properties, which are;
(1) the method is derivative-free which implies its applicability in handling nonsmooth equations;
(2) the global convergence was established without differentiability assummption and (3) it is
independent of any merit function.

The remaining part of the paper is organized as follows. Section 2 provides the proposed
method and its algorithm. Section 3 gives the global convergence and in Section 4 we report
numerical results to show its practical performance, and apply it to solve the sparse signal recon-
struction in compressive sensing.

2. Preliminaries and algorithm
In this section, we first give some basic concepts and properties. Let Ω be a nonempty closed

convex subset of Rn. Then for all x ∈ Rn, its projection onto Ω is defined as

PΩ(x) = arg min{∥x − y∥ : y ∈ Ω}.

The map PΩ : Rn → Ω is called a projection operator and has the nonexpansive property, that
is, for all x , y ∈ Rn,

∥PΩ(x) − PΩ(y)∥ ≤ ∥x − y∥ ∀x , y ∈ Rn. (2.1)
The following propositions [31, 35] give some basic properties of the projection operator PΩ.

Proposition 2.1. Let Ω ⊂ Rn be nonempty, closed and convex. Then for all x ∈ Rn and y ∈ Ω,

(PΩ(x) − x)T (y − PΩ(x)) ≥ 0.

Proposition 2.2. Let Ω ⊂ Rn be nonempty, closed and convex. Then for all x , d ∈ Rn and
α ≥ 0, define x(α) := PΩ(x − αd). Then dT (x(α) − x) is nonincreasing with respect to α ≥ 0.

The following assumptions hold throughout this paper.

Assumption A (i) The solution set of problem (1.1) is nonempty. (ii) The function F is
Lipschitz continuous, that is there exists a positive constant L such that

∥F (x) − F (y)∥ ≤ L∥x − y∥, (2.2)

for all x , y ∈ Rn.

Assumption (ii) implies there is a positive constant τ such that

∥F (xk)∥ ≤ τ ∀k ≥ 0. (2.3)

Now all is set to describe our proposed algorithm, which is an extension of the method in [10] to
solve convex constrained problems.
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Algorithm 1: Family of Conjugate Gradient Projection Method (FCG)
Step 0. Given an arbitrary initial point x0 ∈ Rn, parameters 0 < r < 1, η ≥ 0, σ > 0,
t > 0, ρ > 0, ϵ > 0, and set k := 0.

Step 1. If ∥F (xk)∥ ≤ ϵ, stop, otherwise go to Step 2.
Step 2. Compute

dk =
{
−F (xk), if k = 0,
−
(

1 + βk
F (xk)T dk−1
∥F (xk)∥2

)
F (xk) + βkdk−1, if k ≥ 1,

(2.4)

where βk is such that

|βk | ≤ t ∥F (xk)∥
∥dk−1∥

, ∀k ≥ 1, t > 0. (2.5)

Step 3. Find the trial point yk = xk + αkdk , where αk = ρrmk and mk is the smallest
nonnegative integer m such that

− ⟨F (xk + ρrmdk), dk⟩ ≥ σρrm∥dk∥. (2.6)

Step 4. If yk ∈ Ω and ∥F (yk)∥ ≤ ϵ, stop. Else compute the next iterate

xk+1 = PΩ[xk − ζkF (yk)]

where

ζk = F (yk)T (xk − yk)
∥F (yk)∥2 .

Step 5. Let k = k + 1 and go to Step 1.

Remark 2.3. From the definition of dk , we have

⟨F (xk), dk⟩ = −F (xk)T F (xk) − βkF (xk)T F (xk)F (xk)T dk−1
∥F (xk)∥2 + βkF (xk)T dk−1 = −∥F (xk)∥2

(2.7)
which means the direction dk is sufficiently descent.

Remark 2.4. Remark 2.3 together with the Cauchy-Schwartz inequality implies that ∥dk∥ ≥
∥F (xk)∥. Furthermore, by (2.4) and (2.5), we get

∥dk∥ ≤ ∥F (xk)∥ + |βk |
∥F (xk)∥∥dk−1∥

∥F (xk)∥2 ∥F (xk)∥ + |βk |∥dk−1∥

≤ ∥F (xk)∥ + t∥F (xk)∥ + t∥F (xk)∥

≤ (1 + 2t)∥F (xk)∥.

Therefore,
∥F (xk)∥ ≤ ∥dk∥ ≤ (1 + 2t)∥F (xk)∥, ∀k ≥ 0, (2.8)

which implies boundedness of the search direction.
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3. Convergence analysis
To prove the global convergence of Algorithm 1, the following lemmas are needed. The

following lemma shows that Algorithm 1 is well-defined.

Lemma 3.1. Suppose F is continuous, monotone and Assumption A (i) hold, then there exists
a step-length αk satisfying the line search (2.6) ∀k ≥ 0.

Proof. Suppose there exists k0 ≥ 0 such that (2.6) does not hold for any nonnegative integer i ,
i.e.,

− ⟨F (xk + ρr idk), dk⟩ < σρr i∥dk∥.

Using Assumption A and allowing i → ∞, we get

− ⟨F (xk0), dk0⟩ ≤ 0. (3.1)

Also from (2.7), we have
− ⟨F (xk0), dk0⟩ ≥ ∥F (xk)∥2 > 0,

which contradicts (3.1). The proof is complete.

The following theorem establishes the global convergence of Algorithm 1.

Theorem 3.2. Let F be continuous and monotone, then the sequence {xk} generated by Algo-
rithm 1 converges globally to a solution of (1.1).

Proof. We start by showing that the sequences {xk} and {yk} are bounded. Let x∗ be an arbitrary
solution of (1.1), then by monotonicity of F , we get

⟨F (yk), xk − x∗⟩ ≥ ⟨F (yk), xk − yk⟩. (3.2)

Also by definition of yk and the line search (2.6), we have

⟨F (yk), xk − yk⟩ ≥ σαk∥dk∥2 ≥ 0. (3.3)

So, we have

∥xk+1 − x∗∥2 = ∥PΩ[xk − ζkF (yk)] − x∗∥2 ≤ ∥xk − ζkF (yk) − x∗∥

= ∥xk − x∗∥2 − 2ζ⟨F (yk), xk − x∗⟩ + t∥ζF (yk)∥2

≤ ∥xk − x∗∥2 − 2ζ⟨F (yk), xk − yk⟩ + t∥ζF (yk)∥2

= ∥xk − x∗∥2 − ⟨F (yk), xk − yk⟩2

∥F (yk)∥2

= ∥xk − x∗∥2 −
σ2α4

k∥dk∥4

∥F (yk)∥4 .

Thus the sequence {∥xk − x∗∥} is non increasing and convergent, and hence {xk} is bounded.
On the other hand (2.8) implies {dk} is bounded. Then, by yk = xk + αkdk , the sequence {yk}
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is also bounded. Now, since F is continuous, there exists M > 0 such that ∥F (yk)∥ ≤ M for all
k. So,

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 −
σ2α4

k∥dk∥4

M4 , (3.4)

and we can deduce that
lim

k→∞
αk∥dk∥ = 0. (3.5)

If lim inf
k→∞

∥dk∥ = 0, we have lim inf
k→∞

∥F (xk)∥ = 0. By continuity of F , the sequence {xk} has some
accumulation point ~x such that F (~x) = 0. Since {∥xk − x∗∥} converges and ~x is an accumulation
point of {xk}, it follows that {xk} converges to ~x .

If lim inf
k→∞

∥dk∥ > 0, we have lim inf
k→∞

∥F (xk)∥ > 0. By (3.5), it holds that lim
k→∞

αk = 0. Using the
line search (2.6), −F (xk +ρrmi−1dk)T dk < σρrmi−1∥dk∥2 and the boundedness of {xk}, {dk}, we
can choose a subsequence such that allowing k to go to infinity in the above inequality results

− ⟨F (~x), ~d⟩ ≤ 0. (3.6)

On the other hand, from (2.7) we have

− ⟨F (~x), ~d⟩ = ∥F (~x)∥2 > 0. (3.7)

Clearly, (3.6) contradicts (3.7). Therefore, lim inf
k→∞

∥F (xk)∥ > 0 does not hold and the proof is
complete.

4. Numerical Experiment
In this section, for convenience sake, we denote Algorithm 1 by FCG method. We also

divided this section into two. First we compare FCG method with CGD method [30] by solving
some monotone nonlinear equations with convex constraints using different initial points and
several dimensions. Secondly, the FCG method is applied to solve the ℓ1−regularization problem
that arises from compressive sensing. All codes were written in MATLAB R2017a and run on a
PC with intel COREi5 processor with 4GB of RAM and CPU 2.3GHZ.

4.1. Experiment on some convex constrained nonlinear monotone equations

FCG and CGD methods have same line search implementation. The specific parameters for
each method are as follows:

FCG method: ρ = 1, r = 0.5, σ = 0.01, t = 1 and βk = ∥F (xk)∥
∥dk−1∥ .

CGD method: ρ = 1, r = 0.39, σ = 0.0001.

All runs were stopped whenever

∥F (xk)∥ < 10−5.

We test problems 1 to 6 with dimensions of n = 1000, 5000, 10, 000, 50, 000, 100, 000 and dif-
ferent initial points: x1 = (1, 1, ..., 1)T , x2 = (2, 2, ..., 2)T , x3 = (3, 3, ..., 3)T , x4 = (5, 5, ..., 5)T ,
x5 = (8, 8, ..., 8)T , x6 = (0.5, 0.5, ...0.5)T , x7 = (0.1, 0.1, ..., 0.1)T , x8 = (10, 10, ..., 10)T . The
results of experiment reported in Tables 1-6, which contain the number of iterations (ITER),
number of function evaluations (FVAL), CPU time in seconds (TIME) and the norm at the ap-
proximate solution (NORM). The symbol ’−’ is used to indicate that the number of iterations
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exceeds 1000 and/or the number of function evaluations exceeds 2000.

The problems F (x) = (f1(x), f2(x), ..., fn(x))T , where x = (x1, x2, ..., xn)T , tested are listed
as follows:

Problem 1 Modified exponential function

F1(x) = ex1 − 1
Fi(x) = exi + xi−1 − 1 for i = 2, 3, ..., n

and Ω = Rn
+.

Problem 2 Logarithmic Function

Fi(x) = ln(|xi | + 1) − xi
n , for i = 2, 3, ..., n and Ω = Rn

+.

Problem 3 [37]

Fi(x) = 2xi − sin |xi |, i = 1, 2, 3, ..., n and Ω = Rn
+.

Problem 4 Strictly convex function [26]

Fi(x) = exi − 1, for i = 2, 3, ..., n and Ω = Rn
+.

Problem 5 Linear monotone problem

F1(x) = 2.5x1 + x2 − 1
Fi(x) = xi−1 + 2.5xi + xi+1 − 1 for i = 2, 3, ..., n − 1
Fn(x) = xn−1 + 2.5xn − 1

and Ω = Rn
+.

Problem 6 Tridiagonal Exponential Problem [3]

F1(x) = x1 − ecos(h(x1+x2))

Fi(x) = xi − ecos(h(xi−1+xi +xi+1)) for i = 2, 3, ..., n − 1
Fn(x) = xn − ecos(h(xn−1+xn)),

where h = 1
n + 1

and Ω = Rn
+.

The results of the numerical performance indicate that the FCG method is more efficient than
the CGD method for the given test problems as it solves more problems than CGD method which
fails to solve most of the problems. In particular CGD method fails to solve problems 5 and 6
completely while FCG was able to solve the problems. Thus, FCG method is an effective tool for
solving nonlinear monotone equations with convex constraints, especially for large-scale problems.
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Table 1. Numerical Results for FCG and CGD for Problem 1 with given initial points and
dimensions

DIMENSION INITIAL POINT FCG CGD
ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 30 151 0.029034 9.97E-06 - - - -
x2 32 162 0.032225 8E-06 - - - -
x3 29 147 0.024743 8.25E-06 - - - -
x4 30 154 0.024078 8.98E-06 - - - -
x5 32 169 0.024838 9.5E-06 - - - -
x6 29 146 0.020169 9.09E-06 3 21 0.002236 0
x7 26 131 0.019619 6.87E-06 3 21 0.001834 0
x8 117 519 0.058816 9.57E-06 3 21 0.001666 0

5000

x1 27 136 0.07062 9.27E-06 - - - -
x2 29 147 0.069378 6.35E-06 - - - -
x3 26 132 0.062323 9.74E-06 - - - -
x4 27 139 0.056432 7.86E-06 - - - -
x5 29 154 0.073783 9.28E-06 - - - -
x6 26 131 0.057241 9.8E-06 3 21 0.00279 0
x7 24 121 0.061208 6.53E-06 3 21 0.001789 0
x8 225 945 0.359843 6.08E-06 3 21 0.001659 0

10000

x1 27 136 0.110866 6.55E-06 - - - -
x2 28 142 0.105131 6.99E-06 - - - -
x3 26 132 0.095317 7.65E-06 - - - -
x4 26 134 0.096757 9.22E-06 - - - -
x5 29 154 0.10975 6.59E-06 - - - -
x6 26 131 0.091813 7.43E-06 3 21 0.002557 0
x7 23 116 0.081306 9.74E-06 3 21 0.001912 0
x8 207 872 0.667213 9.86E-06 3 21 0.002028 0

50000

x1 27 136 0.416897 5.45E-06 - - - -
x2 28 142 0.4511 5.54E-06 - - - -
x3 26 132 0.41667 7.7E-06 - - - -
x4 26 134 0.42627 8.15E-06 - - - -
x5 29 154 0.504924 5.43E-06 - - - -
x6 26 131 0.414027 7.1E-06 3 21 0.002425 0
x7 24 121 0.44835 6.42E-06 3 21 0.001936 0
x8 193 816 2.51444 9.92E-06 3 21 0.001939 0

100000

x1 27 136 0.991751 6.37E-06 - - - -
x2 28 142 1.260811 6.4E-06 - - - -
x3 26 132 1.424801 9.41E-06 - - - -
x4 26 134 1.530526 9.67E-06 - - - -
x5 29 154 1.381487 6.31E-06 - - - -
x6 26 131 1.004984 8.59E-06 3 21 0.002641 0
x7 24 121 0.854936 8.11E-06 3 21 0.003401 0
x8 78 370 2.377291 9.74E-06 3 21 0.001946 0
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Table 2. Numerical Results for FCG and CGD for Problem 2 with given initial points and
dimensions

DIMENSION INITIAL POINT FCG CGD
ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 6 19 0.004914 3.6E-08 3 10 0.004752 0
x2 7 22 0.006036 1.74E-08 - - - -
x3 7 22 0.004458 2.21E-06 - - - -
x4 8 25 0.004995 5.45E-06 - - - -
x5 10 31 0.009144 8.47E-08 - - - -
x6 5 16 0.004309 4.37E-07 12 37 0.003022 0
x7 4 13 0.003884 5.17E-07 10 31 0.003156 0
x8 11 34 0.008439 2.64E-08 10 31 0.002395 0

5000

x1 6 19 0.013848 6.26E-09 3 10 0.010011 0
x2 7 22 0.015027 2.36E-09 - - - -
x3 7 22 0.01877 8.93E-07 - - - -
x4 8 25 0.01957 2.58E-06 - - - -
x5 10 31 0.023509 1.74E-08 6 19 0.018264 0
x6 5 16 0.011425 1.42E-07 12 37 0.003034 0
x7 4 13 0.008892 1.75E-07 10 31 0.002234 0
x8 11 34 0.019901 3.7E-09 10 31 0.002247 0

10000

x1 6 20 0.025059 3.62E-09 3 10 0.017026 0
x2 7 23 0.027807 1.24E-09 - - - -
x3 7 22 0.0271 6.86E-07 - - - -
x4 8 25 0.024772 2.22E-06 - - - -
x5 10 32 0.034177 1.07E-08 12 48 0.056075 0
x6 5 17 0.021084 9.73E-08 12 37 0.004599 0
x7 4 13 0.016566 1.21E-07 10 31 0.002371 0
x8 11 35 0.038309 2E-09 10 31 0.002892 0

50000

x1 8 29 0.113023 8.3E-06 3 10 0.066789 0
x2 7 24 0.092315 1E-05 - - - -
x3 17 64 0.238282 5.77E-06 - - - -
x4 19 71 0.27681 7.15E-06 - - - -
x5 14 49 0.198167 6.54E-06 - - - -
x6 12 46 0.167172 7.79E-06 12 37 0.003578 0
x7 11 43 0.154196 9.67E-06 10 31 0.002085 0
x8 12 40 0.161888 8.52E-06 10 31 0.002224 0

100000

x1 9 33 0.237879 5.71E-06 3 10 0.123028 0
x2 8 28 0.211838 6.74E-06 - - - -
x3 17 64 0.507595 8.14E-06 - - - -
x4 20 75 0.580962 5.05E-06 - - - -
x5 14 49 0.394332 9.09E-06 - - - -
x6 13 50 0.380856 5.48E-06 12 37 0.003665 0
x7 12 47 0.348441 6.8E-06 10 31 0.002801 0
x8 13 44 0.392105 5.8E-06 10 31 0.002108 0
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Table 3. Numerical Results for FCG and CGD for Problem 3 with given initial points and
dimensions

DIMENSION INITIAL POINT FCG CGD
ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 23 93 0.010923 6.1E-06 13 42 0.010427 0
x2 23 93 0.013051 6.55E-06 - - - -
x3 20 81 0.01293 8.5E-06 9 39 0.009423 0
x4 24 98 0.014461 5.63E-06 - - - -
x5 23 93 0.01694 7.07E-06 - - - -
x6 22 89 0.021464 7.14E-06 7 26 0.001876 0
x7 20 81 0.014054 6.02E-06 10 42 0.002722 0
x8 25 103 0.017473 5.94E-06 9 39 0.002248 0

5000

x1 24 97 0.041347 6.82E-06 - - - -
x2 24 97 0.040248 7.32E-06 - - - -
x3 21 85 0.037918 9.51E-06 - - - -
x4 25 102 0.043526 6.29E-06 - - - -
x5 24 97 0.04303 7.9E-06 - - - -
x6 23 93 0.03983 7.98E-06 7 26 0.002126 0
x7 21 85 0.038976 6.73E-06 10 42 0.003248 0
x8 26 107 0.044616 6.64E-06 9 39 0.002423 0

10000

x1 24 97 0.069348 9.65E-06 - - - -
x2 25 101 0.077087 5.18E-06 - - - -
x3 22 89 0.065376 6.72E-06 - - - -
x4 25 102 0.079566 8.9E-06 - - - -
x5 25 101 0.072858 5.59E-06 - - - -
x6 24 97 0.070883 5.64E-06 7 26 0.002492 0
x7 21 85 0.058127 9.52E-06 10 42 0.00411 0
x8 26 107 0.086316 9.39E-06 9 39 0.002452 0

50000

x1 26 105 0.326713 5.39E-06 - - - -
x2 26 105 0.300343 5.79E-06 - - - -
x3 23 93 0.271562 7.52E-06 - - - -
x4 26 106 0.308558 9.95E-06 - - - -
x5 26 105 0.342744 6.25E-06 - - - -
x6 25 101 0.310528 6.31E-06 7 26 0.002338 0
x7 23 93 0.266319 5.32E-06 10 42 0.002626 0
x8 28 115 0.3389 5.25E-06 9 39 0.00371 0

100000

x1 26 105 0.609266 7.63E-06 - - - -
x2 26 105 0.640604 8.19E-06 - - - -
x3 24 97 0.604267 5.31E-06 - - - -
x4 27 110 0.666098 7.04E-06 - - - -
x5 26 105 0.622149 8.84E-06 - - - -
x6 25 101 0.621465 8.92E-06 7 26 0.002508 0
x7 23 93 0.567894 7.52E-06 10 42 0.00269 0
x8 28 115 0.724637 7.42E-06 9 39 0.002607 0
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Table 4. Numerical Results for FCG and CGD for Problem 4 with given initial points and
dimensions

DIMENSION INITIAL POINT FCG CGD
ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 21 85 0.010375 7.37E-06 - - - -
x2 22 90 0.01171 7.98E-06 11 45 0.008779 0
x3 22 91 0.009893 9.46E-06 3 21 0.004732 0
x4 22 93 0.016824 7.88E-06 3 21 0.004487 0
x5 23 102 0.012653 5.28E-06 3 21 0.005234 0
x6 21 85 0.016972 8.87E-06 3 21 0.001853 0
x7 20 81 0.012323 5.45E-06 3 21 0.00177 0
x8 2 18 0.005313 0 3 21 0.001968 0

5000

x1 22 89 0.037557 8.24E-06 - - - -
x2 23 94 0.033656 8.93E-06 - - - -
x3 24 99 0.033578 5.29E-06 3 21 0.010306 0
x4 23 97 0.035841 8.81E-06 3 21 0.012105 0
x5 24 106 0.047643 5.9E-06 3 21 0.012359 0
x6 22 89 0.03202 9.91E-06 3 21 0.00166 0
x7 21 85 0.050125 6.1E-06 3 21 0.001721 0
x8 2 18 0.009803 0 3 21 0.001635 0

10000

x1 23 93 0.065522 5.83E-06 - - - -
x2 24 98 0.053947 6.31E-06 - - - -
x3 24 99 0.060434 7.48E-06 3 21 0.018915 0
x4 24 101 0.05745 6.23E-06 3 21 0.017853 0
x5 24 106 0.074314 8.35E-06 3 21 0.016733 0
x6 23 93 0.054277 7.01E-06 3 21 0.001641 0
x7 21 85 0.057827 8.62E-06 3 21 0.00238 0
x8 2 18 0.018646 0 3 21 0.001563 0

50000

x1 24 97 0.264969 6.51E-06 - - - -
x2 25 102 0.242806 7.06E-06 - - - -
x3 25 103 0.253747 8.36E-06 3 21 0.072756 0
x4 25 105 0.242377 6.96E-06 3 21 0.071677 0
x5 25 110 0.24953 9.33E-06 3 21 0.072242 0
x6 24 97 0.235073 7.84E-06 3 21 0.001643 0
x7 22 89 0.214897 9.64E-06 3 21 0.002218 0
x8 2 18 0.064875 0 3 21 0.002332 0

100000

x1 24 97 0.450026 9.21E-06 - - - -
x2 25 102 0.496804 9.98E-06 - - - -
x3 26 107 0.529191 5.91E-06 3 21 0.155644 0
x4 25 105 0.515341 9.85E-06 3 21 0.146987 0
x5 26 114 0.553523 6.6E-06 3 21 0.141577 0
x6 25 101 0.465119 5.54E-06 3 21 0.001987 0
x7 23 93 0.420296 6.82E-06 3 21 0.001702 0
x8 2 18 0.135172 0 3 21 0.002578 0
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Table 5. Numerical Results for FCG and CGD for Problem 5 with given initial points and
dimensions

DIMENSION INITIAL POINT FCG CGD
ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 152 802 0.075299 9.2E-06 - - - -
x2 139 736 0.073897 7.3E-06 - - - -
x3 136 726 0.072044 6.7E-06 - - - -
x4 165 872 0.093292 7.4E-06 - - - -
x5 165 873 0.084202 8.2E-06 - - - -
x6 150 793 0.080311 7.2E-06 - - - -
x7 153 808 0.077297 7.4E-06 - - - -
x8 183 964 0.09986 7E-06 - - - -

5000

x1 151 796 0.302958 9.1E-06 - - - -
x2 108 580 0.222843 8.5E-06 - - - -
x3 133 711 0.244279 9.8E-06 - - - -
x4 155 822 0.268972 9.7E-06 - - - -
x5 177 934 0.331852 7.1E-06 - - - -
x6 143 758 0.247833 1E-05 - - - -
x7 145 768 0.260931 9.8E-06 - - - -
x8 177 934 0.376048 9.4E-06 - - - -

10000

x1 151 796 0.582134 9.1E-06 - - - -
x2 101 545 0.405084 7.5E-06 - - - -
x3 150 796 0.59398 9.5E-06 - - - -
x4 172 908 0.666833 9.1E-06 - - - -
x5 158 839 0.60491 9.3E-06 - - - -
x6 159 839 0.594092 9.9E-06 - - - -
x7 150 793 0.561624 9.7E-06 - - - -
x8 171 905 0.651769 7.7E-06 - - - -

50000

x1 147 776 2.228341 9E-06 - - - -
x2 89 486 1.463798 8.6E-06 - - - -
x3 147 780 2.378053 9.1E-06 - - - -
x4 156 829 2.491981 6.7E-06 - - - -
x5 176 930 2.74415 8.2E-06 - - - -
x6 177 930 2.722724 8.6E-06 - - - -
x7 151 799 2.321288 7.7E-06 - - - -
x8 159 845 2.448193 9.8E-06 - - - -

100000

x1 148 782 5.294027 7.9E-06 - - - -
x2 89 486 3.293977 7.9E-06 - - - -
x3 132 707 4.714172 9.5E-06 - - - -
x4 144 769 5.166183 9.4E-06 - - - -
x5 165 875 5.898258 7.3E-06 - - - -
x6 171 900 5.94172 8E-06 - - - -
x7 152 805 5.387028 6.7E-06 - - - -
x8 165 875 5.867254 9.7E-06 - - - -
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Table 6. Numerical Results for FCG and CGD for Problem 6 with given initial points and
dimensions

DIMENSION INITIAL POINT FCG CGD
ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 24 97 0.018177 6.47E-06 - - - -
x2 23 93 0.020801 5.41E-06 - - - -
x3 21 85 0.018842 8.49E-06 - - - -
x4 24 97 0.017617 8.59E-06 - - - -
x5 25 101 0.018456 9.94E-06 - - - -
x6 24 97 0.017399 8.35E-06 - - - -
x7 24 97 0.018177 9.86E-06 - - - -
x8 26 105 0.028836 6.85E-06 - - - -

5000

x1 25 101 0.071229 7.24E-06 - - - -
x2 24 97 0.069072 6.05E-06 - - - -
x3 22 89 0.062428 9.5E-06 - - - -
x4 25 101 0.093955 9.62E-06 - - - -
x5 27 109 0.072351 5.56E-06 - - - -
x6 25 101 0.065859 9.35E-06 - - - -
x7 26 105 0.090732 5.52E-06 - - - -
x8 27 109 0.071772 7.67E-06 - - - -

10000

x1 26 105 0.154804 5.12E-06 - - - -
x2 24 97 0.117887 8.56E-06 - - - -
x3 23 93 0.114087 6.72E-06 - - - -
x4 26 105 0.148228 6.8E-06 - - - -
x5 27 109 0.144108 7.87E-06 - - - -
x6 26 105 0.129431 6.61E-06 - - - -
x7 26 105 0.130249 7.8E-06 - - - -
x8 28 113 0.149137 5.43E-06 - - - -

50000

x1 27 109 0.635653 5.73E-06 - - - -
x2 25 101 0.533873 9.57E-06 - - - -
x3 24 97 0.550562 7.51E-06 - - - -
x4 27 109 0.605892 7.6E-06 - - - -
x5 28 113 0.636995 8.8E-06 - - - -
x6 27 109 0.613244 7.39E-06 - - - -
x7 27 109 0.602482 8.72E-06 - - - -
x8 29 117 0.645397 6.07E-06 - - - -

100000

x1 27 109 1.250775 8.1E-06 - - - -
x2 26 105 1.246817 6.77E-06 - - - -
x3 25 101 1.158025 5.31E-06 - - - -
x4 28 113 1.301028 5.38E-06 - - - -
x5 29 117 1.338954 6.22E-06 - - - -
x6 28 113 1.324453 5.23E-06 - - - -
x7 28 113 1.299459 6.17E-06 - - - -
x8 29 117 1.355021 8.58E-06 - - - -
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4.2. Experiments on the ℓ1−norm regularization problem in compressive sensing

There are many problems in signal processing and statistical inference involving finding sparse
solutions to ill-conditioned linear systems of equations. Among popular approach is minimizing an
objective function which contains quadratic (ℓ2) error term and a sparse ℓ1−regularization term,
i.e.,

min
x

1
2∥y − Ax∥2

2 + ω∥x∥1, (4.1)

where x ∈ Rn, y ∈ Rk is an observation, A ∈ Rk×n (k << n) is a linear operator, ω is a
nonnegative parameter, ∥x∥2 denotes the Euclidean norm of x and ∥x∥1 =

∑n
i=1 |xi | is the

ℓ1−norm of x . It is easy to see that problem (4.1) is a convex unconstrained minimization
problem. Due to the fact that if the original signal is sparse or approximately sparse in some
orthogonal basis, problem (4.1) frequently appears in compressive sensing, and hence an exact
restoration can be produced by solving (4.1).

Iterative methods for solving (4.1) have been been presented in many literatures, (see [11, 13,
2, 12, 25, 4]). The most popular method among these methods is the gradient based method
and the earliest gradient projection method for sparse reconstruction (GPRS) was proposed by
Figueiredo et al. [12]. The first step of the GPRS method is to express (4.1) as a quadratic
problem using the following process. Let x ∈ Rn and splitting it into its positive and negative
parts. Then x can be formulated as

x = u − v , u ≥ 0, v ≥ 0,

where ui = (xi)+, vi = (−xi)+ for all i = 1, 2, ..., n, and (.)+ = max{0, .}. By definition of
ℓ1-norm, we have ∥x∥1 = eT

n u + eT
n v , where en = (1, 1, ..., 1)T ∈ Rn. Now (4.1) can be written

as
min
u,v

1
2∥y − A(u − v)∥2

2 + ωeT
n u + ωeT

n v , u ≥ 0, v ≥ 0, (4.2)

which is a bound-constrained quadratic program. However, from [12], equation (4.2) can be
written in standard form as

min
z

1
2zT Bz + cT z , such that z ≥ 0, (4.3)

where z =
(

u
v

)
, c = ωe2n +

(
−b
b

)
, b = AT y , B =

(
AT A −AT A
−AT A AT A

)
.

Clearly, B is a positive semidefinite matrix, which implies that equation (4.3) is a convex quadratic
problem.

Xiao et al. [30] translated (4.3) into a linear variable inequality problem which is equivalent
to a linear complementarity problem. Furthermore, they pointed out that z is a solution of the
linear complementarity problem if and only if it is a solution of the nonlinear equation:

F (z) = min{z , Bz + c} = 0. (4.4)

It was proved in [29, 23] that F (z) is continuous and monotone. Therefore problem (4.1) can be
translated into problem (1.1) and thus FCG method can be applied to solve (4.1).

In this experiment, we consider a simple compressive sensing possible situation, where our
goal is to reconstruct a sparse signal of length n from k observations. The quality of restoration
is assessed by mean of squared error (MSE) to the original signal ~x ,

MSE = 1
n∥~x − x∗∥2,
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where x∗ is the recovered or restored signal. The signal size is choosen as n = 212, k = 210 and
the original signal contains 27 randomly nonzero elements. A is the Gaussian matrix generated by
the command rand(m, n) in MATLAB. In addition, the measurement y is distributed with noise,
that is, y = A~x +µ, where µ is the Gaussian noise distributed normally with mean 0 and variance
10−4 (N(0, 10−4)).

To show the performance of the FCG method in compressive sensing, we compare it with the
CGD method. The parameters in both FCG and CGD methods are chosen as ρ = 10, σ = 10−4

and r = 0.5, which came from [30]. After series of experiments, we observe that for FCG method,
the parameter η has a great impact on the restoration of signal. Finally, we choose η = 0.2 in
our experiment and the merit function used is f (x) = 1

2∥y − Ax∥2
2 + ω∥x∥1. To achieve fairness

in comparison, each code was run from same initial point, same continuation technique on the
parameter ω, and observed only the behaviour of the convergence of each method to have a
similar accurate solution. The experiment is initialized by x0 = AT y and terminates when

∥fk−fk−1∥
∥fk−1∥ < 10−5,

where fk is the function evaluation at xk .
In Fig. 1, FCG and CGD methods recovered the disturbed signal almost exactly. In order to

show visually the performance of both methods, four figures were plotted to demonstrate their
convergence behaviour based on MSE, objective function values, number of iterations and CPU
time, see Fig. 2 − 5. Furthermore, the experiment was repeated for 10 different noise samples
and the average was also computed, see Table 7. From the Table, it can be observed that the
FCG is more efficient as it has fewer iterations and CPU time than CGD method in most cases.

0 500 1000 1500 2000 2500 3000 3500 4000
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0
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0 100 200 300 400 500 600 700 800 900 1000
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0

0.5
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0 500 1000 1500 2000 2500 3000 3500 4000

-2
0
2

CGD (MSE = 3.02e-05, Iter=223, Time=8.44s)

0 500 1000 1500 2000 2500 3000 3500 4000

-2
0
2

FCG (MSE = 1.65e-04,Iter=134, Time=5.38s)

Fig. 1. From top to bottom: the original image, the measurement, and the recovered signals by
CGD and FCG methods.
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Table 7. Ten experiment results together with average result of ℓ1−norm regularization problem
for FCG and CGD methods

FCG CGD
MSE ITER CPU(s) MSE ITER CPU(s)

η = 0.2

2.31E-04 100 3.98 3.40E-05 196 7.31
1.65E-04 134 5.38 3.02E-05 223 8.44
1.40E-04 130 5.14 5.21E-05 164 6.3
1.65E-04 134 5.59 3.02E-05 223 8.69
1.75E-04 127 4.83 4.48E-05 218 8.14
6.78E-04 169 6.38 1.85E-05 215 8.44
1.47E-04 137 5.28 4.94E-05 191 8.66
2.72E-04 94 4.53 4.33E-05 224 8.83
1.67E-04 117 4.89 1.26E-05 135 5.55
1.07E-04 119 4.64 2.78E-05 181 6.91

Average 2.25E-04 126.1 5.064 3.43E-05 197 7.727

5. Conclusions
In this article, a family of conjugate gradient projection method for solving nonlinear monotone

equation with convex constraints was proposed. The proposed method is suitable for for solving
nonsmooth equations as it does not require Jacobian information of the nonlinear equations. The
global convergence of the proposed method was established under suitable conditions.

We can view the the proposed method as an extension of the method in [10] to solve convex
constrained problems. Numerical results show that the proposed method is more efficient than
the CGD method for the given constrained problems. Furthermore, the proposed method can be
applied to solve ℓ1−norm regularization problem in compressive sensing.
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