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ABSTRACT
We present a two-step cyclic algorithm for solving convex feasibility
problems on Hadamard manifolds in this study. On Hadamard man-
ifolds, the convergent result and linear convergent results are proven.
In addition, to support the main results, a numerical example on the
Poincaré plane is provided.

Article History
Received 15 Feb 2022
Accepted 03 Mar 2022
Keywords:
Hadamard manifold;
convex feasibility
problem; firmly
nonexpansive mapping;
projection algorithm
Keywords
47H05; 47J25

1. Introduction
Let H be a Hilbert space and C1, ... , Cm are closed convex subsets of H with nonempty

intersection
∩m

i=1 Ci . Finding a point at the intersection of convex sets is a challenge in
mathematics and physical sciences. The problem is known as a convex feasibility problem,
and it is defined as follows:

Find a point x ∈
m∩

i=1
Ci .

A point x solving this problem is said to be a feasibility point. The projection algorithm,
in which each iterative step is to project onto an individual set corresponding to a control
sequence (see, for example, [7] for the definition of the control sequence), is one of the
most widely studied methods for determining such feasibility points. For more information,
see [4, 3, 13, 12, 28, 22, 2] and the references therein. Convex inequalities [17, 18], convex
minimization problems [32, 26, 31], medical imaging [8] and computerized tomography [24, 1]
are some of the applications of the projection method.
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Many nonlinear problems, such as fixed point theory, convex analysis, variational in-
equalities, equilibrium problems, and optimization problems, have been extended from linear
spaces to the setting of manifolds in the last decade because the problems cannot be posted
in linear space and necessarily require a Riemannian manifold structure, see for examples
[30, 19, 23, 15, 5, 11, 27, 20, 10] and the reference therein.

Returning to the convex feasibility problems, Bauschke et al. [4] proposed the following
general procedure with an initial point x0 ∈ H in Hilbert spaces:

xn+1 := (1 − αn)xn + αn

m∑
i=1

µ
(n)
i T (n)

i (xn), ∀n ∈ N, (1.1)

where each αn ∈ [0, 2] is a relaxation parameter, {µ(n)
i : 1, ... , m} ⊆ [0, 1] is weight satisfying∑m

i=1 µ
(n)
i = 1, and each T (n)

i : H → H is a firmly nonexpansive satisfying FixT (n)
i ⊇ Ci .

Some works [7, 16, 21] discuss the case where the weights
{
µ

(n)
i

}
satisfy the condition that

µ
(n)
i = δin,i :=

{
1, if i = in,
0, otherwise,

where {in}∞n=0 is a so-called control sequence, and each T (n)
i is the projection onto a hyperplane

separating Cin from xn. Censor [9] proposed the cyclic subgradient projection algorithm for
the case where each convex is given as a sublevel set of a convex function, i.e., the algorithm
uses weights {µ(n)

i } satisfying the following condition

µ
(n)
i :=

{
1, if i = n (mod m) + 1,
0, otherwise, (1.2)

and each T (n)
i is the projection operator of the corresponding subgradient. In the Hadamard

manifolds, Wang et al. [30] extended the cyclic method (1.1) using the weights {µ(n)
i }

satisfying the condition (1.2). The following is the Riemannian version of the cyclic algorithm:

Algorithm 1.1. Let M be an Hadamard manifold and x0 ∈ M be an initial point. Define
xn+1 by

xn+1 := expxn αn exp−1
xn

T (n)
in (xn), ∀n ∈ N, (1.3)

where T (n)
in : M → M be a family of firmly nonexpansive mapping, {αn} ⊆ (0, 2) is a

relaxation parameter sequence, and set in = n (mod m)+1. The authors [30] also established
that Algorithm 1.1 is convergent and linearly convergent in Hadamard manifolds.

The goal of this paper is to extend the cyclic algorithm (1.3) to two-step projection
cyclic algorithms on Hadamard manifolds, as motivated and inspired by the previous efforts.
Furthermore, we show that Algorithm 3.1 is convergent under certain conditions. We show
that this approach is linearly convergent when the algorithm is linearly focusing and the family
of convex sets is linearly regular. On the Poincar’e plane, a numerical example is shown.

The rest of this paper is organized in the following: Section 2, we give some basic concept
and fundamental results of Riemannian geometry. For solving convex feasibility problems, the
two-step cyclic algorithm is described in Section 3. Furthermore, we show that any sequence
generated by the proposed method converges to feasibility points. The linear convergence of
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the two-step projection cyclic projection algorithm is given in Section 4. Finally, Section 5 gives
a numerical example of our method for approximating convex feasibility problem solutions on
the Poincaré plane.

2. Preliminaries
In this section, we recall some fundamental definitions, properties, useful results, and no-

tations of Riemannian geometry. For more information, readers can consult several textbooks
[25, 14, 29].

Let M be a connected finite-dimensional manifold. For p ∈ M, we denote TpM the tangent
space of M at p which is a vector space of the same dimension as M, and by TM =

∪
p∈M TpM

the tangent bundle of M. We always suppose that M can be endowed with a Riemannian
metric ⟨·, ·⟩p, with corresponding norm denoted by ∥ · ∥p, to become a Riemannian manifold.
The angle ∠p(u, v) between u, v ∈ TpM (u, v ̸= 0) is set by cos∠p(u, v) = ⟨u, v⟩p

∥u∥p∥v∥p
. If

there is no confusion, we denote ⟨·, ·⟩ := ⟨·, ·⟩p, ∥ · ∥ := ∥ · ∥p and ∠(u, v) := ∠p(u, v). Let
γ : [a, b] → M be a piecewise smooth curve joining γ(a) = p to γ(b) = q, we define the
length of the curve γ by using the metric as

L(γ) =
∫ b

a
∥γ

′
(t)∥dt,

minimizing the length function over the set of all such curves, we obtain a Riemannian distance
d(p, q) which induces the original topology on M.

Let ∇ be a Levi-Civita connection associated to (M, ⟨·, ·⟩). Given γ a smooth curve, a
smooth vector field X along γ is said to be parallel if ∇γ′ X = 0, where 0 is the zero section
of TM. If γ′ itself is parallel, we say that γ is a geodesic, and in this case ∥γ′∥ is a constant.
When ∥γ′∥ = 1, then γ is said to be normalized. A geodesic joining p to q in M is said to be
a minimal geodesic if its length equals to d(p, q).

A Riemannian manifold is complete if for any p ∈ M all geodesic emanating from p are
defined for all t ∈ R. From the Hopf-Rinow theorem we know that if M is complete then
any pair of points in M can be joined by a minimal geodesic. Moreover, (M, d) is a complete
metric space and every bounded closed subset is compact.

Let M be a complete Riemannian manifold and p ∈ M. The exponential map expp :
TpM → M is defined as expp v = γv (1, x), where γ(·) = γv (·, x) is the geodesic starting
at p with velocity v (i.e., γv (0, p) = p and γ

′

v (0, p) = v). Then, for any value of t, we
have expp tv = γv (t, p) and expp 0 = γv (0, p) = p. Note that the exponential expp is
differentiable on TpM for all p ∈ M. It well known that the derivative D expp(0) of expp(0)
is equal to the identity vector of TpM. Therefore, by the inverse mapping theorem, there
exists an inverse exponential map exp−1 : M → TpM. Moreover, for any p, q ∈ M, we have
d(p, q) = ∥ exp−1

p q∥.
A complete simply connected Riemannian manifold of non-positive sectional curvature is

said to be an Hadamard manifold. Throughout the remainder of the paper, we always assume
that M is a finite-dimensional Hadamard manifold. The following proposition is well-known
and will be useful.

Proposition 2.1. [25] Let p ∈ M. The expp : TpM → M is a diffeomorphism, and for any
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two points p, q ∈ M there exists a unique normalized geodesic joining p to q, which is can be
expressed by the formula

γ(t) = expp t exp−1
p q, ∀t ∈ [0, 1].

This proposition yields that M is diffeomorphic to the Euclidean space Rn. Then, M has same
topology and differential structure as Rn. Moreover, Hadamard manifolds and Euclidean
spaces have some similar geometrical properties. One of the most important proprieties is
illustrated in the following propositions.

A geodesic triangle △(p1, p2, p3) of a Riemannian manifold M is a set consisting of
three points p1, p2 and p3, and three minimal geodesics γi joining pi to pi+1 where i =
1, 2, 3 (mod3).

Proposition 2.2. [25] Let △(p1, p2, p3) be a geodesic triangle in Hadamard manifolds M.
For each i = 1, 2, 3 (mod3), given γi : [0, li ] → M the geodesic joining pi to pi+1 and set
li := L(γi), αi : ∠(γ′

i (0),−γ
′

i−1(li−1)). Then

α1 + α2 + α3 ≤ π; (2.1)

l2
i + l2

i+1 − 2li li+1 cosαi+1 ≤ l2
i−1. (2.2)

In the terms of the distance and the exponential map, the inequality (2.2) can be rewritten
as

d2(pi , pi+1) + d2(pi+1, pi+2) − 2⟨exp−1
pi+1

pi , exp−1
pi+1

pi+2⟩ ≤ d2(pi−1, pi), (2.3)

where ⟨exp−1
pi+1

pi , exp−1
pi+1

pi+2⟩ = d(pi , pi+1)d(pi+1, pi+2) cosαi+1.

The following relation between geodesic triangles in Riemannian manifolds and triangles
in R2 can be referred to [6].

Lemma 2.3. [6] Let △(p1, p2, p3) be a geodesic triangle in M. Then there exists a triangle
△(p1, p2, p3) for △(p1, p2, p3) such that d(pi , pi+1) = ∥pi − pi+1∥, indices taken modulo 3;
it is unique up to an isometry of R2.

The triangle △(p1, p2, p3) in Lemma 2.3 is said to be a comparison triangle for △(p1, p2, p3).
The geodesic side from x to y will be denoted [x , y ]. A point x ∈ [p1, p2] is said to be a
comparison point for x ∈ [p1, p2] if ∥x − p1∥ = d(x , p1). The interior angle of △(p1, p2, p3)
at p1 is said to be the comparison angle between p2 and p3 at p1 and is denoted ∠p1(p2, p3).
With all notation as in the statement of Proposition 2.2, according to the law of cosine, (2.2)
is valid if and only if

⟨p2 − p1, p3 − p1⟩R2 ≤ ⟨exp−1
p1

p2, exp−1
p1

p3⟩ (2.4)

or,
α1 ≤ ∠p1(p2, p3)

or, equivalent, △(p1, p2, p3) satisfies the CAT(0) inequality and that is, given a comparison
triangle △ ⊂ R2 for △(p1, p2, p3) for all x , y ∈ △,

d(x , y) ≤ ∥x − y∥, (2.5)

where x , y ∈ △ are the respective comparison points of x , y .
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Definition 2.4. A subset Q is said to be geodesic convex if for any two points p and q in
Q, the geodesic joining p to q is contained in Q, that is, if γ : [a, b] → M is a geodesic such
that p = γ(a) and q = γ(b), then γ((1 − t)a + tb) ∈ Q for all t ∈ [0, 1].

Definition 2.5. A real function f defined on M is said to be geodesic convex if for any
geodesic γ of M, the composition function f ◦ γ : [a, b] → R is convex, that is,

(f ◦ γ)(ta + (1 − t)b) ≤ t(f ◦ γ)(a) + (1 − t)(f ◦ γ)(b)

where a, b ∈ R, and t ∈ [0, 1].

Proposition 2.6. [25] Let d : M × M → R be the distance function. Then d is a convex
function with respect to the Riemannian metric, that is, for any pair of geodesics γ1 : [0, 1] →
M and γ2 : [0, 1] → M the following inequality holds for all t ∈ [0, 1]

d(γ1(t), γ2(t)) ≤ (1 − t)d(γ1(0)γ2(0)) + td(γ1(t), γ2(t)).

In particular, for each p ∈ M, the function d(·, p) : M → R is a geodesic convex function.
A nonempty, closed geodesic convex set in M shall be denoted by Q from here on. Let

T : Q → M be a mapping. We say that T is nonexpansive if for any two points x , y ∈ Q
such that

d(T (x), T (y)) ≤ d(x , y).

Let F (T ) denote the set of all fixed points of T , i.e.,

F (T ) := {x ∈ Q : T (x) = x}.

The definition of firmly nonexpansive mappings on Hadamard manifolds was introduce by
Li et.al. [23].

Definition 2.7. [23] Let T : Q → M be a mapping. Then T is said to be firmly nonexpansive
if for any x , y ∈ Q, the function σ : [0, 1] → [0, +∞] defined by

σ(t) : d(expx t exp−1
x T (x), expx t exp−1

y T (y)), ∀t ∈ [0, 1],

is nonincreasing.

By definition, it easy to see that any firmly nonexpansive mapping T is nonexpansive.
Next, we follow the definition of a distance function d(·, Q) : M → R and a projection

operator PQ(·) : M → Q, which are defined for every x ∈ M by

d(x , Q) := inf
y∈Q

d(x , y)

and
PQ(x) := {z : d(x , z) ≤ d(x , y), ∀y ∈ Q},

respectively. The projection operator PQ is firmly nonexpansive as described in the following
proposition.

Proposition 2.8. [23] Let Q ⊆ M be a nonempty, closed and convex set. Then the following
assertions holds:
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(i) PQ is single valued and firmly nonexpansive;

(ii) For every x ∈ M, z = PQ(x) if and only if

⟨exp−1
z x , exp−1

z y⟩ ≤ 0, ∀y ∈ Q.

We end this section with the following crucial results.
A sequence {xn} is said to br Fejér monotone w.r.t. Q if for all x ∈ Q and n ∈ N,

d(xn+1, x) ≤ d(xn, x).

The following lemma provides some properties of Fejér monotonicity sequences that are useful
for establishing convergence and linear convergence results.

Lemma 2.9. [30] Let {xn} ⊆ M be a Fejér monotone sequence w.r.t Q. Then the following
conditions hold:

(i) {xn} is bounded, and, limn→+∞ xn = x if x is a cluster point of {xn} and x ∈ Q.

(ii) Let α > 0 be such that

αd2(xn, Q) ≤ d2(xn, Q) − d2(xn+1, Q), ∀n ∈ N. (2.6)

Then {xn} converges linearly to a point x in Q:

d(xn, x) ≤ 2(
√

1 − α)nd(x0, Q), ∀n ∈ N. (2.7)

3. Two-step Cyclic Algorithm and Its Convergence
In this section, we introduce an iterative method for solving convex feasibility problems in

the setting of Hadamard manifolds.
We first recall the concept of convex feasibility problem in Hadamard manifolds. Let

I := {1, 2, ... m} and {Ci : i ∈ I} be a family of nonempty closed geodesic convex subset of
M. Then the problem is to find

x∗ ∈ C :=
m∩

i=1
Ci , (3.1)

where C is assumed to be a nonempty set. Set in := n (mod m) + 1 and let {T (n)
in } be a

family of firmly nonexpansive mappings from M to itself satisfying

F
(

T (n)
in

)
⊇ Cin , ∀n ∈ N.

The multi-step cyclic algorithm is defined as follows:

Algorithm 3.1. Let x0 ∈ M be an initial point and define a sequence {xn} by{
xn+1 = expxn αn exp−1

xn
T (n)

in (yn)
yn = expxn βn exp−1

xn
T (n)

in (xn), ∀n ∈ N,
(3.2)

where {αn}, {βn} ⊆ (0, 1) are relaxation parameter sequences.
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The following lemma is required to prove our main convergent theorem.

Lemma 3.2. Let {xn} be a sequence generated by Algorithm 3.1 and x ∈ C :=
∩m

i=1 Ci .
Then the following assertions hold for all n ∈ N

(i)
d2(xn+1, xn) ≤ αn

1 − αn
(d2(xn, x) − d2(xn+1, x)). (3.3)

(ii) The sequence {xn} is Fejér monotone w.r.t C . If furthermore

lim inf
n→+∞

αn(1 − αn) > 0, (3.4)

then
lim

n→+∞
d(xn+1, xn) = 0, (3.5)

and
lim inf
n→+∞

αnβn(1 − βn) > 0, (3.6)

then
lim

n→+∞
d(xn, yn) = 0. (3.7)

Proof. (i) Fix n ∈ N, let x ∈ C and γn : [0, 1] → M be geodesic joining xn to T (n)
in (xn). Thus,

(3.2) can be written as yn = γn(βn). By using geodesic convexity of Riemannian distance, we
get

d(yn, x) = d(γn(βn), x)

≤ (1 − βn)d(xn, x) + βnd
(

T (n)
in (xn), T (n)

in (x)
)

≤ (1 − βn)d(xn, x) + βnd(xn, x)
= d(xn, x). (3.8)

Let △
(

x , xn, T (n)
in (yn)

)
⊆ M be a geodesic triangle with vertices x , xn and T (n)

in (yn), and

△
(

x , xn, T (n)
in (xn)

)
⊆ R2 be the corresponding comparison triangle. Then, we have

d(x , xn) = ∥x − xn∥, d
(

xn, T (n)
in (yn)

)
=
∥∥∥xn − T (n)

in (yn)
∥∥∥ , and

d
(

T (n)
in (yn), x

)
=
∥∥∥T (n)

in (yn) − x
∥∥∥ .

(3.9)

Recall from (3.2) that xn+1 = expxn αn exp−1
xn

T (n)
in (yn), then

xn+1 = (1 − αn)xn + αnT (n)
in (yn).

In view of (2.5), we have
d(xn+1, x) ≤ ∥xn+1 − x∥. (3.10)
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From expression (3.9), yields

d2(xn+1, x) ≤ ∥xn+1 − x∥2

=
∥∥∥(1 − αn)xn + αnT (n)

in (yn) − x
∥∥∥2

=
∥∥∥(1 − αn)(xn − x) + αn

(
T (n)

in (yn) − x
)∥∥∥2

= (1 − αn)∥xn − x∥2 + αn

∥∥∥T (n)
in (yn) − x

∥∥∥2
− αn(1 − αn)

∥∥∥xn − T (n)
in (yn)

∥∥∥2

= (1 − αn)d2(xn, x) + αnd2
(

T (n)
in (yn), x

)
− αn(1 − αn)d2

(
xn, T (n)

in (yn)
)

≤ (1 − αn)d2(xn, x) + αnd2 (yn, x) − αn(1 − αn)d2
(

xn, T (n)
in (yn)

)
. (3.11)

Since xn+1 = expxn αn exp−1
xn

T (n)
in (yn), then

d(xn+1, xn) = αnd
(

xn, T (n)
in (yn)

)
. (3.12)

Substituting (3.8) and (3.12) into (3.11), we have

d2(xn+1, x) ≤ (1 − αn)d2(xn, x) + αnd2 (xn, x) − (1 − αn)
αn

d2 (xn+1, xn)

= d2(xn, x) − (1 − αn)
αn

d2(xn+1, xn), (3.13)

and we further have

d2(xn+1, xn) ≤ αn
1 − αn

(d2(xn, x) − d2(xn+1, x)). (3.14)

As a result, condition (i) holds.

(ii) From (3.14), we have

d2(xn+1, xn) ≤ αn
1 − αn

d2(xn, x) − αn
1 − αn

d2(xn+1, x),

which implies that
αn

1 − αn
d2(xn+1, x) ≤ αn

1 − αn
d2(xn, x) − d2(xn+1, xn)

≤ αn
1 − αn

d2(xn, x).

Thus, d(xn+1, x) ≤ d(xn, x) for all n ∈ N, which means that {xn} is Fejér monotone w.r.t. C .
Next, we show that limn→+∞ d(xn+1, xn) = 0. Suppose that (3.4) holds. Then there exists
N ∈ N and ϵ > 0 such that αn(1 − αn) ≥ ϵ for each n ≥ N. Furthermore, we can verify that

αn
1 − αn

≤ 1
ϵ

, ∀n ≥ N.
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From (3.14), we have

d2(xn+1, xn) ≤ 1
ϵ

(d2(xn, x) − d2(xn+1, x)), ∀n ≥ N.

Since {xn} is a Fejér monotone w.r.t. C , it follows that limn→+∞ d(xn, x) exists. By letting
n → ∞ to the last inequality, we can have limn→+∞ d(xn+1, xn) = 0.

Assume that (3.6) holds. Now, we show that limn→+∞ d(xn, yn) = 0. Fix n ∈ N, let
△
(

x , xn, T (n)
in (xn)

)
⊆ M be a geodesic triangle with vertices x , xn and T (n)

in (xn), and let

△
(

x , xn, T (n)
in (xn)

)
⊆ R2 be the corresponding comparison triangle. Then, we obtain

d(x , xn) = ∥x − xn∥, d
(

xn, T (n)
in (xn)

)
=
∥∥∥xn − T (n)

in (xn)
∥∥∥ , and

d
(

T (n)
in (xn), x

)
=
∥∥∥T (n)

in (xn) − x
∥∥∥ .

(3.15)

Recall from (3.2) that yn = expxn βn exp−1
xn

T (n)
in (xn) and set

yn = (1 − βn)xn + βnT (n)
in (xn).

In view of (2.5) and (3.15), yields
d2(yn, x) ≤ ∥yn − x∥2

=
∥∥∥(1 − βn)xn + βnT (n)

in (xn) − x
∥∥∥2

=
∥∥∥(1 − βn)(xn − x) + βn

(
T (n)

in (xn) − x
)∥∥∥2

= (1 − βn)∥xn − x∥2 + βn

∥∥∥T (n)
in (xn) − x

∥∥∥2
− βn(1 − βn)

∥∥∥xn − T (n)
in (xn)

∥∥∥2

= (1 − βn)d2(xn, x) + βnd2
(

T (n)
in (xn), x

)
− βn(1 − βn)d2

(
xn, T (n)

in (xn)
)

≤ (1 − βn)d2(xn, x) + βnd2 (xn, x) − βn(1 − βn)d2
(

xn, T (n)
in (xn)

)
= d2(xn, x) − βn(1 − βn)d2

(
xn, T (n)

in (xn)
)

. (3.16)

Since yn = expxn βn exp−1
xn

T (n)
in (xn), we deduce that

d(xn, yn) = βnd
(

xn, T (n)
in (xn)

)
. (3.17)

Substitution (3.17) into (3.16), we get

d2(yn, x) ≤ d2(xn, x) − (1 − βn)
βn

d2 (xn, yn) . (3.18)

By combining (3.11) and (3.18), we have
d2(xn+1, x) ≤ (1 − αn)d2(xn, x) + αnd2(yn, x)

≤ (1 − αn)d2(xn, x) + αn

(
d2(xn, x) − (1 − βn)

βn
d2(xn, yn)

)
= d2(xn, x) − αn(1 − βn)

βn
d2(xn, yn),
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and we further have

d2(xn, yn) ≤ βn
αn(1 − βn) (d2(xn, x) − d2(xn+1, x)). (3.19)

Since (3.6) holds, then there exists N ∈ N and η > 0 such that αnβn(1 − βn) ≥ η for all
n ≥ N. It is easy to check that

βn
αn(1 − βn) ≤ 1

η
, ∀n ≥ N.

From (3.19), implies that

d2(xn, yn) ≤ 1
η

(d2(xn, x) − d2(xn+1, x)), ∀n ≥ N.

Recall that {xn} is Fejér monotone w.r.t. C so that limn→+∞ d(xn, x) exists. Hence, from
the above inequality, we have limn→+∞ d(xn, yn) = 0. The proof is therefore completed.

Following the definitions of focusing algorithm and linearly focusing algorithm, we will
prove that the sequence {xn} generated by Algorithm 3.1 converges to a point in C .

Definition 3.3. [4] An algorithm is said to be

(i) focusing if for all j ∈ I and every subsequence {xnk} of {xn},

xnk → x
d(xnk , T (nk )

j (xnk )) → 0
ink = j for all k ∈ N.

 =⇒ x ∈ Cj ; (3.20)

(ii) linearly focusing if there is λ > 0 such that

λd(xn, Cin ) ≤ d(xn, C (n)
in ) for all n ∈ N, (3.21)

where {xn} is a sequence generated by Algorithm 3.1 and C (n)
in is a closed geodesic convex

nonempty set containing Cin .

Every a linearly focusing algorithm is a focusing algorithm.

Remark 3.4. [30] In the case when the sequence
{

T (n)
in

}
of firmly nonexpansive mappings

satisfies that F (Tin ) = Cin and T (n)
in = Tin for all n ∈ N, the algorithm is linearly focusing; in

particular the algorithm is linearly focusing when T (n)
in = PCin

for all n ∈ N.

We can now present the main result as follows.

Theorem 3.5. Let {xn} be a sequence generated by Algorithm 3.1. Assume that Algorithm
3.1 is focusing and {αn}, {βn} satisfy (3.4), (3.6), respectively. Then the sequence {xn}
converges to a point in C .
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Proof. As a consequence of Lemma 3.2, {xn} is Fejér monotone w.r.t C and is bounded by
Lemma 2.9. Thus there exists a subsequence {xnk} of {xn} such that limk→+∞ xnk = x∗ ∈ M.
We shall verify x∗ ∈ C in this proof.

Noting the definition of {ink}, without loss of generality we suppose that ink = m for all
k. Let j ∈ I and consider the subsequence {xnk +j}∞k=0. From (3.5), we have

lim
k→∞

xnk +j = x∗ and ink +j = j . (3.22)

Because {βn} ⊆ (0, 1) then {βn} is bounded below by some positive numbers. In view of
(3.17) and the fact that limn→+∞ d(xn, yn) = 0, we get

lim
k→+∞

d
(

xnk +j , T (nk +j)
j (xnk +j)

)
= lim

k→+∞

1
βnk

d (xnk +j , ynk +j)

= 0.

This, together with (3.22), yields that x∗ ∈ Cj since Algorithm 3.1 is focusing. Therefore,
x∗ ∈ C as j ∈ I arbitrary. Moreover, by Lemma 2.9, limn→+∞ xn = x∗ as required. The proof
is therefore completed.

According ot Remark 3.4, we can have the following corollary.

Corollary 3.6. Suppose that T (n)
in :≡ PC in and {αn}, {βn} satisfy condition (3.4) and (3.6),

respectively. Then any sequence {xn} generated by Algorithm 3.1 converges to a point in C .

Proof. From Proposition 2.8, PCi is firmly nonexpansive for any i ∈ I. Furthermore, Algorithm
3.1 is focusing by Remark 3.4. Follows from the proof of Theorem 3.5, and is thus omitted.

4. Linear convergence of Two-step Cyclic Projection Algorithm

In this section, we discuss the linear convergence of the Algorithm 3.1 where each T (n)
in is

the projection onto some closed convex nonempty set C (n)
in containing Cin , i.e.,

T (n)
in := PC (n)

in
and C (n)

in ⊇ Cin , ∀n ∈ N. (4.1)

Next, let us present the concept of linear convergence.

Definition 4.1. Let {xn} ⊂ M such that {xn} converges to a point x ∈ M. Then, the
convergence is said to be linear convergence if and only if there exist a constant θ < 1 and a
positive N ∈ N such that

d(xn, x) ≤ θd(xn−1, x), ∀n > N.

For establishing the linear convergence results, we need the definitions of linear regularity
and bounded linear regularity.

Definition 4.2. [30] A family {Ci : i ∈ I} is called
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(i) linearly regular if there exists τ > 0 such that

d(x , C) ≤ τmax
i∈I

{d(x , Ci)}, (4.2)

for all x ∈ M.

(ii) bounded linearly regular if, for any bounded subset S ⊆ M, there exist τS > 0 such that
(4.2) holds for any x ∈ S with τ = τS .

Next, we present and prove the linear convergence theorem for the two-step cyclic projec-
tion algorithm.

Theorem 4.3. Let {xn} be a sequence generated by Algorithm 3.1. Suppose that Algorithm
3.1 is linearly focusing, the family {Ci : i ∈ I} is bounded linearly regular, and the conditions
(3.4) and (3.6) hold. Then {xn} converges linearly to a point x ∈ C .

Proof. Lemma 3.2 and Theorem 3.5 are applicable according to the assumptions. Then, {xn}
is Fejér monotone w.r.t. C and converges to a point x ∈ C . Next, we show that subsequence
{xkm}+∞

k=0 converges linearly, i.e. there is some γ > 0 and θ ∈ (0, 1) such that

d(xkm, x) ≤ γθk , ∀k ∈ N. (4.3)

To verify (4.3), without loss of generality, since (3.4) holds, then there exists ϵ > 0 such that

αn(1 − αn) ≥ ϵ > 0, ∀n ∈ N. (4.4)

This implies that
αn

1 − αn
≤ 1

ϵ
, ∀n ∈ N. (4.5)

Let i ∈ I and k ∈ N. It is easy to see that

d(xkm, xkm+i) ≤
m−1∑
j=0

d(xkm+j , xkm+j+1).

From the last inequality, we get

d2(xkm, xkm+i) ≤

(m−1∑
j=0

1 · d(xkm+j , xkm+j+1)
)2

≤

(m−1∑
j=0

12

)(m−1∑
j=0

d2(xkm+j , xkm+j+1)
)

= m
m−1∑
j=0

d2(xkm+j , xkm+j+1).

Substitution (3.3) into the last inequality, we obtain

d2(xkm, xkm+i) ≤ m
m−1∑
j=0

αkm+j
1 − αkm+j

(d2(xkm+j , z) − d2(xkm+j+1, z))
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for any z ∈ C , and it follows from (4.5),

d2(xkm, xkm+i) ≤
m
ϵ

(d2(xkm, C) − d2(x(k+1)m, C)). (4.6)

Similarly, from (3.6) holds, then there exist η > 0 such that

αnβn(1 − βn) ≥ η > 0, ∀n ∈ N. (4.7)

This implies that
βn

αn(1 − βn) ≤ 1
η

, ∀n ∈ N. (4.8)

We also have
1

αnβn(1 − βn) ≤ 1
η

=⇒ 1
βn

≤ αn(1 − βn)
η

≤ 1
η

, ∀n ∈ N. (4.9)

For i ∈ I and k ∈ N. It easy to see that

d(xkm+i , ykm+i) ≤
m∑

j=1
d(xkm+j , ykm+j).

Following from the above inequality, we obtain

d2(xkm+i , ykm+i) ≤

( m∑
j=1

1 · d(xkm+j , ykm+j)
)2

≤

( m∑
j=1

12

)( m∑
j=0

d2(xkm+j , ykm+j)
)

= m
m∑

j=1
d2(xkm+j , ykm+j).

In view of (3.19), we conclude that

d2(xkm+i , ykm+i) ≤ m
m∑

j=1

βkm+j
αkm+j(1 − βkm+j)

(d2(xkm+j , z) − d2(xkm+j+1, z))

for any z ∈ C . Summing up the last inequality and applying (4.8), we get

d2(xkm+i , ykm+i) ≤
m
η

(d2(xkm, C) − d2(x(k+1)m, C)). (4.10)

From algorithm is linearly focusing, there exists λ > 0 (independent of i and k) such that

λd(xkm+i , Ci) ≤ d
(

xkm+i , C (km+i)
i

)
. (4.11)

In view of (3.2) and (4.1), we get

d(xkm+i , C (km+i)
i ) = d

(
xkm+i , T (km+i)

i (xkm+i)
)

= 1
βkm+i

d(xkm+i , ykm+i). (4.12)
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Substitution (4.9) and (4.10) into the last inequality,

d2(xkm+i , Ci) ≤ 1
λ2β2

km+i

[
m
η

(d2(xkm, C) − d2(x(k+1)m, C))
]

≤ m
λ2η3

(
d2(xkm, C) − d2(x(k+1)m, C)

)
. (4.13)

Consider,

d2(xkm, Ci) ≤ (d(xkm, xkm+i) + d(xkm+i , Ci))2

≤ 2d2(xkm, xkm+i) + 2d2(xkm+i , Ci). (4.14)

By combing (4.6), (4.13) and (4.14), we obtain

d2(xkm, Ci) ≤
(

2m
ϵ

+ 2m
λ2η3

)
(d2(xkm, C) − d2(x(k+1)m, C)). (4.15)

From the fact that the family {Ci : i ∈ I} is bounded linearly regular and {xn} is bounded,
then there exists τ > 0 such that

d(xn, C) ≤ τmax
i∈I

{d(xn, Ci)}, ∀ n ∈ N.

Thereby,

d2(xkm, C) ≤ τ 2max
i∈I

{d2(xkm, Ci)}

≤ τ 2
(

2m
ϵ

+ 2m
λ2η3

)
(d2(xkm, C) − d2(x(k+1)m, C)).

The subsequence {xkm}+∞
k=0 is linearly converges to x ∈ C by using (ii) of Lemma 2.9. This

implies that (4.3) holds. Fix n ∈ N, and set

n = km + r where r ∈ {0, 1, ... , m − 1}.

Then we conclude

d(xn, x) ≤ d(xkm, x) ≤ γ(θ 1
m )km = γ(θ 1

m )km+r

θ
r
m

≤ γ

θ
(θ 1

m )n,

and complete the proof.

We obtain the following corollary from Remark 3.4 and Theorem 4.3 in the spacial case
when C (n)

in = Cin in (4.1) for all n ∈ N.

Corollary 4.4. Let {xn} be a sequence generated by the two-step cyclic projection algorithm.
Suppose that conditions (3.4), (3.6) hold, the family {Ci : i ∈ I} is boundedly linearly regular.
Suppose further that, for all n ∈ N, C (n)

in = Cin in (4.1). Then {xn} converges linearly to a
point in C .
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5. Numerical Example
In this section, we provide a numerical examples in Hadamard manifolds to illustrate the

convergence behavior of Algorithms 3.1. All the programs are written in Matlab R2016b and
computed on PC Intel(R) Core(TM) i7 @1.80 GHz and a 8 GB 1600 MHz DDR3 Mem-
ory.

Let M = H := {(t1, t2) ∈ R2 | t2 > 0} be the Poincaré plane endowed with the Riemannian
metric defined by

g11 = g22 := 1
t2
2

, g12 := 0 for any (t1, t2) ∈ H. (5.1)

The sectional curvature of H is equal to −1 and the geodesics of the Poincaré plane are the
semilines γa : t1 = a, t2 > 0 and the semicircles γb,r : (t1 − b)2 + t2

2 = r2, t2 > 0; or admit
the following natural parameterizations

γa : t1 = a, t2 = es , s ∈ (−∞, +∞);
γb,r : t1 = −r tanh s, t2 = r

cosh s , s ∈ (−∞, +∞); (5.2)

see e.g., [29]. Furthermore, consider two points y = (ty
1 , ty

2 ) and z = (tz
1 , tz

2 ) in H. Then the
Riemannian distance between y , z is given by

dH(y , z) =


∣∣∣∣ln tz

2
ty
2

∣∣∣∣ , if ty
1 = tz

1 ,∣∣∣∣ln ty
1 − b + r

tz
1 − b + r · tz

2
ty
2

∣∣∣∣ , if ty
1 ̸= tz

1 ,

where
b = (ty

1 )2 + (ty
2 )2 − ((tz

1 )2 + (tz
2 )2)

2(ty
1 − tz

1 ) and r =
√

(ty
1 − b)2 + (ty

2 )2.

To get the expression of exp−1
y z , we consider a smooth geodesic curve γ joining y to z defined

by
γ(s) := (γ1(s), γ2(s)), s ∈ [0, 1]

where for each s ∈ [0, 1], γ1(s) and γ2(s) are respectively defined by

γ1(s) :=


ty
1 , if ty

1 = tz
1 ,

b − r tanh
(

(1 − s) · arctanhb − ty
1

r + s · arctanhb − tz
1

r

)
, if ty

1 ̸= tz
1 ,

and

γ2(s) :=


e(1−s)·ln ty

2 +s·ln tz
2 , if ty

1 = tz
1 ,

r

cosh
(

(1 − s) · arctanhb − ty
1

r + s · arctanhb − tz
1

r

) , if ty
1 ̸= tz

1 .

By the Riemannian metric endowed on H (c.f. (5.1)), one checks that

γ
′
(0) =

(
dγ1(s)

ds , dγ2(s)
ds

)∣∣∣∣
s=0

;
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see [14], page 7. Therefore, by elementary calculus, we get that

exp−1
y z = γ

′
(0) =



(
0, ty

2 ln tz
2

ty
2

)
, if ty

1 = tz
1 ,

ty
2

(
arctanhb − ty

1
r − arctanhb − tz

1
r

)
r (ty

2 , b − ty
1 ), if ty

1 ̸= tz
1 .
(5.3)

Example 5.1. Follows from [30], the Example 5.1: Let M = H2 and C1, C2 be closed convex
subsets of M defined as

C1 := {(t1, t2) ∈ M : t2 ≥ 1}

and
C2 := {(t1, t2 ∈ M : t2

1 + t2
2 ≤ 1)}.

From [29], page 301, C1 and C2 are convex because that C1 is level set convex function
f : M → R defined by

f (y) = 1
t2

, ∀y ∈ (t1, t2) ∈ M

and γ := {(t1, t2) ∈ M : t1 +t2 = 1} is a geodesic of M, receptively. Moreover C = C1∩C2 =
{(0, 1)},

PC1(x) = (t1, 1), ∀x = (t1, t2) /∈ C1

and

PC2(x) =
(

2t1

t2
1 + t2

2 + 1,

√
1 −

(
2t1

t2
1 + t2

2 + 1

))
for any x = (t1, t2) /∈ C2.

We implement the projection algorithm to find x∗ = (0, 1) ∈ C1 ∩ C2 which is defined as:
Choose x0 ∈ M and defined xn+1 by{

xn+1 = expxn αn exp−1
xn

T (n)
in (yn)

yn = expxn βn exp−1
xn

T (n)
in (xn), ∀n ∈ N,

where in := (n mod 2) + 1 and {αn}, {βn} ∈ (0, 1) are constants. The numerical results are
listed in Table 1 and Table 2 with an initial point x0 = (1, 1) and x0 = (3, 2), respectively; and
each one shows the results for three different constant relaxation parameters, αn = 0.3, 0.6, 0.9
and βn = 0.3, 0.6, 0.9, respectively. Moreover, the numerical results displayed on Figure 1
and Figure 2 which depicts the “ Distance to Solution” versus “Iteration Number”. The nu-
merical results show the convergence tendency of the algorithm as predicted by Theorem 3.5;
furthermore, we observe that the bigger the relaxation parameters αn and βn, the faster the
algorithm converges.
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Table 1. The comparison of Projection Algorithm for the initial point is x0 = (1, 1) with
relaxation parameters αn and βn.

Iteration No. Initial point x0 = (1, 1)
αn = 0.3,βn = 0.3 αn = 0.6,βn = 0.6 αn = 0.9,βn = 0.9

1 (0.962023, 0.980092) (0.857514, 0.914993) (0.715276, 0.796372)
2 (0.962023, 0.981867) (0.857514, 0.944729) (0.715276, 0.957661)
3 (0.928696, 0.962795) (0.773302, 0.878510) (0.609786, 0.835884)
4 (0.928696, 0.966086) (0.773302, 0.920445) (0.609786, 0.966513)
5 (0.899310, 0.947932) (0.716982, 0.867794) (0.542662, 0.870441)
6 (0.899310, 0.952505) (0.716982, 0.913244) (0.542662, 0.973981)
7 (0.873262, 0.935291) (0.675205, 0.869113) (0.494071, 0.893398)
8 (0.873262, 0.940939) (0.675205, 0.914132) (0.494071, 0.978810)
9 (0.850044, 0.924649) (0.641820, 0.875387) (0.456705, 0.909423)
10 (0.850044, 0.931191) (0.64182, 0.918349) (0.456705, 0.982122)
...

...
...

...
50 (0.630933, 0.904178) (0.382564, 0.970729) (0.232119, 0.995622)
...

...
...

...
100 (0.520102, 0.933159) (0.284848, 0.983952) (0.167478, 0.997740)

Fig. 1. Distance to solution x∗ = (0, 1) of each iteration number where the initial point is
x0 = (1, 1).
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Table 2. The comparison of Projection Algorithm for the initial point is x0 = (3, 2) with
relaxation parameters αn and βn.

Iteration No. Initial point x0 = (3, 2)
αn = 0.3,βn = 0.3 αn = 0.6,βn = 0.6 αn = 0.9,βn = 0.9

1 (2.694926, 1.972871) (1.842587, 1.799538) (0.784290, 1.157324)
2 (2.694926, 1.855837) (1.842587, 1.456475) (0.784290, 1.028150)
3 (2.413940, 1.912864) (1.227856, 1.354538) (0.617482, 0.850046)
4 (2.413940, 1.804398) (1.227856, 1.214357) (0.617482, 0.969603)
5 (2.162268, 1.832029) (0.947803, 1.084283) (0.546490, 0.869407)
6 (2.162268, 1.734876) (0.947803, 1.053153) (0.947803, 1.053153)
7 (1.941625, 1.740411) (0.811160, 0.957026) (0.496873, 0.892178)
8 (1.941625, 1.655744) (0.811160, 0.972280) (0.496873, 0.978556)
9 (1.751247, 1.645610) (0.733998, 0.903834) (0.458905, 0.908521)
10 (1.751247, 1.573466) (0.733998, 0.937339) (0.458905, 0.981937)
...

...
...

...
50 (0.708503, 0.918746) (0.395949, 0.968588) (0.232401, 0.995611)
...

...
...

...
100 (0.552972, 0.924655) (0.290245, 0.983330) (0.167584, 0.997737)

Fig. 2. Distance to solution x∗ = (0, 1) of each iteration number where the initial point is
x0 = (2, 3).
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