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ABSTRACT
Many real-world problems can be formulated as systems of nonlinear
equations. Thus, finding their solutions is of paramount importance.
Traditional approaches such as Newton and quasi-Newton methods for
solving these systems require computing Jacobian matrix or an ap-
proximation to it at every iteration, which is very expensive especially
when the dimension of the systems is large. In this work, we propose
a derivative-free algorithm for solving these systems. The proposed al-
gorithm is a combination of the popular conjugate gradient method for
unconstrained optimization problems and the projection method. We
prove the global convergence of the proposed algorithm under Lipschitz
continuity and monotonicity assumptions on the underlying mapping.
We perform numerical experiments on some test problems, and the pro-
posed algorithm proves to be more efficient in comparison with some
existing works. Finally, we give an application of the proposed algo-
rithm in signal recovery.
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1. Introduction
In recent years, spectral and conjugate gradient projection based methods have received

much attention in solving convex constrained systems of nonlinear monotone equations given
as:

J(x) = 0, subject to x ∈ Λ ⊆ Rn, (1.1)
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where Λ is nonempty, closed and convex, and J : Rn → Rn is continuous and monotone.
Monotone means

⟨J(x) − J(y), x − y⟩ ≥ 0 for all x , y ∈ Rn.

Problem (1.1) arises in a number of applications from engineering and other branches of
sciences. For example, in economic equilibrium problems [11], power flow equations [28]
and chemical equilibrium systems [22]. Moreover, algorithms for solving systems of nonlinear
monotone equations are used in signal and image recovery, (see [14, 29, 30, 3, 1, 4, 17, 2, 6]).

Classical methods for solving (1.1) include Newton and quasi-Newton methods which have
fast convergence from good initial guess. However, the main problem associated with these
methods include solving linear system using a Jacobian matrix or its approximation at every
iteration. As a result, these methods are not suitable to handle large scale problems. On the
other hand, spectral and conjugate gradient methods proposed for unconstrained optimization
problems do not require any Jacobian matrix or its approximation and are simple to implement.
These important properties make them suitable for solving large scale optimization problems.
Motivated by these nice properties, researchers extended these methods to solve system of
nonlinear equations [9, 18, 19]. Conjugate gradient method produces sequence of iterations
using the formula:

xk+1 = xk + αkdk , (1.2)
where αk is a step size, and dk is a search direction. To solve (1.1), the definition of the
search direction is given as:

dk =
{
−J(xk), if k = 0,
−J(xk) + βkdk−1, if k ≥ 1,

(1.3)

where the parameter βk is a scalar known as the conjugate gradient parameter.
Following the success of the projection technique proposed by Solodov and Svaiter [26],

many conjugate gradient projection based methods have been proposed to handle large scale
systems of nonlinear equations. For example, Cheng [8] combined the projection technique in
[26] and the Polak–Ribière–Polyak (PRP) method [24, 25] to propose a conjugate gradient
projection based method for solving nonlinear monotone equations. They proved the global
convergence of the method under monotonicity and Lipschitz continuity assumption of the
mapping considered. The numerical results presented proved that their method is promising in
solving large scale problems. In the work of Xiao and Zhou [30], based on the projection tech-
nique in [26], an extension of the popular descent conjugate gradient method (CG_Descent)
[15] is proposed for solving convex constrained monotone nonlinear equations. Liu and Li [21]
presented another extension of the CG_Descent method to solve convex constrained nonlinear
monotone equations. They showed that their proposed method is globally convergent and has
some advantages numerically when compared with the method proposed in [30]. Liu and Feng
[20] propose a spectral conjugate gradient method for solving convex constrained monotone
nonlinear equations. Their work is also a combination of the projection technique [26] and
the popular Dai-Yuan conjugate gradient parameter [10]. The numerical results proved that
their method is more efficient than the ones proposed in [31] and [21].

Inspired by the above contributions, and the success of the projection technique in [26], we
propose a spectral conjugate gradient projection based method for solving (1.1). Among the
advantages of the proposed method is that it inherits the low storage requirement property of
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the spectral conjugate gradient method, and thus, it is suitable to solve large scale nonlinear
monotone equations. It is derivative-free, and the global convergence is established without
any differentiability assumption. Moreover, we perform numerical experiments on some test
problems to depict the efficiency of the proposed algorithm in comparison with the ones
proposed in [20] and [33]. Additionally, we apply the proposed algorithm in signal recovery
problems, and the quality of the recovered signal proves that the proposed algorithm is more
efficient than some existing methods.

The remaining part of this paper is organized as follows. In the next section, we introduce
the proposed algorithm, some important definitions and prove global convergence. Then, in
section 3, we present some numerical experiments of the proposed algorithm and compare
it performance with two existing ones. This is followed by a section where we show the
application of the proposed algorithm in signal recovery. In the last section, we give the
conclusion of the work.

2. Algorithm and Convergence Analysis
We begin this section by defining the projection operator as follows:

Definition 2.1. Let Λ ⊂ Rn be a nonempty closed convex set. Then for any x ∈ Rn, its
projection onto Λ, denoted by PΛ(x), is defined by

PΛ(x) = arg min{∥x − y∥ : y ∈ Λ}.

The projection operator PΛ has the properties

∥PΛ(x) − PΛ(y)∥ ≤ ∥x − y∥, ∀x , y ∈ Rn, (2.1)

and
∥PΛ(x) − y∥ ≤ ∥x − y∥, ∀y ∈ Λ. (2.2)

In this work, we define a new search direction as follows:

dk =
{
−J(xk), if k = 0,
−τkJ(xk) + ∥J(xk )∥2

−J(xk−1)T dk−1
sk−1, if k ≥ 1,

(2.3)

where sk−1 = αk−1dk−1, and the parameter τk is obtained such that the direction (2.3)
satisfies

J(xk)T dk ≤ −c∥J(xk)∥2, (2.4)
which is an important property in establishing the global convergence.

Observe that from (2.3), when k = 0, J(xk)T dk = −∥J(xk)∥2, thus, (2.4) is satisfied with
c = 1. However, when k ≥ 1,

J(xk)T dk = −τk∥J(xk)∥2 − ∥J(xk)∥2J(xk)T sk−1
J(xk−1)T dk−1

= −(τk + J(xk)T sk−1
J(xk−1)T dk−1

)∥J(xk)∥2
(2.5)
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To satisfy (2.4), we only need τk + J(xk )T sk−1
J(xk−1)T dk−1

≥ c, c > 0. That is, τk ≥ c − J(xk )T sk−1
J(xk−1)T dk−1

. In
this work, we choose

τk = c − J(xk)T sk−1
J(xk−1)T dk−1

. (2.6)

Thus, it is not difficult to see that ∀k ≥ 1, multiplying (2.3) by J(xk)T and substituting
τk = c − J(xk )T sk−1

J(xk−1)T dk−1
gives

J(xk)T dk = −c∥J(xk)∥2. (2.7)
Furthermore, taking absolute value from (2.7), we get |J(xk)T dk | = c∥J(xk)∥2, ∀k and
consequently,

|J(xk−1)T dk−1| = c∥J(xk−1)∥2. (2.8)
We now give the steps of our proposed algorithm as follows:

Algorithm 1: Spectral Conjugate Gradient Projection Method (SCD)
Input : Choose initial point x0 ∈ Λ, γ ∈ (0, 2),σ ∈ (0, 1), κ ∈ (0, 1], c > 0, Tol > 0

and β ∈ (0, 1). Set k := 0
Step 1: If ∥J(xk)∥ ≤ Tol , stop, otherwise go to Step 2.
Step 2: Compute dk using equation (2.3).
Step 3: Compute the step size αk = max{κβi : i = 0, 1, 2, · · · } such that

− J(xk + κβidk)T dk ≥ σκβ i∥dk∥2. (2.9)

Step 4: Set zk = xk + αkdk . If zk ∈ Λ and ∥J(zk)∥ = 0, stop. Else compute

xk+1 = PΛ[xk − γζkJ(zk)],

where

ζk = J(zk)T (xk − zk)
∥J(zk)∥2 .

Step 5: Let k = k + 1 and go to Step 1.

In order to establish the global convergence of the proposed algorithm, we assumed the
following:

(Q1) The mapping J is monotone.

(Q2) The mapping J is Lipschitz continuous, that is there exists a positive constant L such
that

∥J(x) − J(y)∥ ≤ L∥x − y∥, ∀x , y ∈ Rn.

(Q3) The solution set of (1.1), denoted by Λ, is nonempty.
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Lemma 2.2. Suppose that assumptions (Q1)-(Q3) hold, then the sequences {xk} and {zk}
generated by Algorithm 1 are bounded. Moreover, we have

lim
k→∞

∥xk − zk∥ = 0, (2.10)

and
lim

k→∞
∥xk+1 − xk∥ = 0. (2.11)

Proof. Let—x be the solution of (1.1). Then, by monotonicity of the mapping J , we get

⟨J(zk), xk −—x⟩ = ⟨J(zk), xk − zk + zk −—x⟩
= ⟨J(zk), xk − zk⟩ + ⟨J(zk) − J(—x), zk −—x⟩
≥ ⟨J(zk), xk − zk⟩.

(2.12)

Using xk+1 definition from Step 4, equation (2.2) and (2.12) we obtain

∥xk+1 −—x∥2 = ∥PΛ[xk − γζkJ(zk)] −—x∥2 ≤ ∥xk − γζkJ(zk) −—x∥2

= ∥xk −—x∥2 − 2γζkJ(zk)T (xk −—x) + γ2ζ2
k∥J(zk)∥2

= ∥xk −—x∥2 − 2γ J(zk)T (xk − zk)
∥J(zk)∥2 J(zk)T (xk −—x) + γ2

(
J(zk)T (xk − zk)

∥J(zk)∥

)2

≤ ∥xk −—x∥2 − 2γ J(zk)T (xk − zk)
∥J(zk)∥2 J(zk)T (xk − zk) + γ2

(
J(zk)T (xk − zk)

∥J(zk)∥

)2

= ∥xk −—x∥2 − γ(2 − γ)
(

J(zk)T (xk − zk)
∥J(zk)∥

)2

≤ ∥xk −—x∥2 − γ(2 − γ)σ
2∥xk − zk∥4

∥J(zk)∥2 . (2.13)

This shows that the sequence {∥xk −—x∥} is a decreasing sequence, and hence {xk} is bounded.
In addition, combining this with continuity of J , we can find n1 > 0 such that

∥J(xk)∥ ≤ n1. (2.14)

Since (J(xk) − J(zk))T (xk − zk) ≥ 0, using Cauchy-Schwarz inequality, we obtain

∥J(xk)∥∥xk − zk∥ ≥ J(xk)T (xk − zk) ≥ J(zk)T (xk − zk) ≥ σ∥xk − zk∥2,

where the above inequality follows from the definition of the line search and setting zk =
xk + αkdk which gives

J(zk)T (xk − zk) = −αkJ(zk)dk ≥ σα2
k∥dk∥2 = σ∥xk − zk∥2.

Therefore,
σ∥xk − zk∥ ≤ ∥J(xk)∥ ≤ n1,

showing that {zk} is bounded.
Again, using the continuity of J , we can find another constant n2 > 0 such that ∥J(zk)∥ ≤ n2
for all k ≥ 0 this, together with (2.13) give us

γ(2 − γ)σ
2

n2
2
∥xk − zk∥4 ≤ ∥xk −—x∥2 − ∥xk+1 −—x∥2, (2.15)
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adding (2.15) for k = 0, 1, 2, · · · , we have

γ(2 − γ)σ
2

n2
2

∞∑
k=0

∥xk − zk∥4 ≤
∞∑

k=0
(∥xk −—x∥2 − ∥xk+1 −—x∥2) ≤ ∥x0 −—x∥2, (2.16)

which implies
lim

k→∞
∥xk − zk∥ = 0.

This and the definition of zk implies

lim
k→∞

αk∥dk∥ = 0. (2.17)

From the definition of projection operator, we get

lim
k→∞

∥xk+1 − xk∥ = lim
k→∞

∥PΛ[xk − γζkJ(zk)] − xk∥

≤ lim
k→∞

∥xk − γζkJ(zk) − xk∥

≤ γ lim
k→∞

∥ζkJ(zk)∥

≤ γ lim
k→∞

∥xk − zk∥

= 0.

(2.18)

Lemma 2.3. Suppose assumptions (Q1)-(Q3) hold, and the sequences {xk} and {zk} are
generated by Algorithm 1. Then

αk ≥ max
{
κ, cβ∥J(xk)∥2

(L + σ)∥dk∥2

}
. (2.19)

Proof. From the line search (2.9), if αk ̸= κ, then α
′

k = αkβ
−1 does not satisfy (2.9), that

is,
−J(xk + α

′

kdk)T dk < σα
′

k∥dk∥2.

Using (2.7) and assumption (Q2), we have

c∥J(xk)∥2 = −J(xk)T dk

= (J(xk + α
′

kdk) − J(xk))T dk − J(xk + α
′

kdk)T dk

≤ α
′

k(L + σ)∥dk∥2.

Replacing α
′

k = αkβ
−1 and solving for αk gives the required result.

Theorem 2.4. Suppose that assumptions (Q1)-(Q3) hold, and let the sequence {xk} be
generated by Algorithm 1, then

lim inf
k→∞

∥J(xk)∥ = 0. (2.20)
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Proof. Suppose by contradiction the relation (2.20) is not satisfied, then there exist a positive
constant r1 such that ∀k ≥ 0,

∥J(xk)∥ ≥ r1. (2.21)
From (2.7) and (2.21), we have that ∀k ≥ 0,

∥dk∥ ≥ cr1. (2.22)

From (2.3), (2.6), (2.8), (2.14) and (2.21), we have

∥dk∥ =
∥∥∥∥−(

c − J(xk)T sk−1
J(xk−1)T dk−1

)
J(xk) − ∥J(xk)∥2sk−1

J(xk−1)T dk−1

∥∥∥∥
≤ c∥J(xk)∥ + 2∥J(xk)∥2∥sk−1∥

c∥J(xk−1)∥2

≤ cn1 + 2n2
1αk−1∥dk−1∥

cr2
1

.

(2.23)

Equation (2.17) implies ∀ϵ0 > 0 there exist k0 such that αk−1∥dk−1∥ ≤ ϵ0 ∀k > k0. Therefore,
choosing ϵ0 = r2

1 and N = max{∥d0∥, ∥d1∥, ∥d2∥, · · · , ∥dk0∥, M1} where M1 = cn1 + 2n2
1

c , we
have ∥dk∥ ≤ N. Multiplying both sides of (2.19) with ∥dk∥ we get

αk∥dk∥ ≥ max
{
κ, cβ∥J(xk))∥2

(L + σ)∥dk∥2

}
∥dk∥

≥ max
{
κcr1 , cβr2

1
(L + σ)N

}
.

Taking the limit as k → ∞ on both sides, we get

lim
k→∞

αk∥dk∥ > 0. (2.24)

This contradicts (2.17). Hence,
lim inf
k→∞

∥J(xk)∥ = 0. (2.25)

3. Numerical Experiments
In this section, we present the numerical experiments of our proposed SCD algorithm in

comparison with two existing algorithms, specifically, the PDY algorithm proposed by Liu and
Feng [20], and the algorithm (which we called LLY for simplicity) proposed by Zheng et al.
[33]. All codes are written on Matlab R2019b and are run on a PC of corei3-4005U processor,
4 GB RAM and 1.70 GHZ CPU.

In PDY and LLY algorithms, we fixed the parameters as reported in the respective papers
[20] and [33]. However, in our SCD algorithm, we choose β = 0.6, σ = 0.0001, κ = 1,
c = 1 and γ = 1.8. We perform the experiments on seven test problems with eight ini-
tial points. These problems are tested on five different dimensions: n = 1000, n = 5000,
n = 10000, n = 50000 and n = 100000. We used ∥J(xk)∥ ≤ 10−5 as a stopping criteria.We
now state the test problems considered for the experiment, where the function J is taken as
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J(x) = (j1(x), j2(x), ... , jn(x))T .

Problem 1 [18] Exponential Function.

j1(x) = ex1 − 1,
ji(x) = exi + xi − 1, for i = 2, 3, ..., n,
and Λ = Rn

+.

Problem 2 [18] Modified Logarithmic Function.

ji(x) = ln(xi + 1) − xi
n , for i = 2, 3, ..., n,

and Λ = {x ∈ Rn :
n∑

i=1
xi ≤ n, xi > −1, i = 1, 2, ... , n}.

Problem 3 [18] Strictly Convex Function I.

ji(x) = exi − 1, for i = 1, 2, ..., n,
and Λ = Rn

+.

Problem 4
ji(x) = i

n exi − 1, for i = 1, 2, ..., n,

and Λ = Rn
+.

Problem 5 [7] Tridiagonal Exponential Function.

j1(x) = x1 − ecos(h(x1+x2)),
ji(x) = xi − ecos(h(xi−1+xi +xi+1)), for i = 2, ..., n − 1,
jn(x) = xn − ecos(h(xn−1+xn)),

h = 1
n + 1 and Λ = Rn

+.

Problem 6 [32] Nonsmooth Function.

ji(x) = xi − sin |xi − 1|, i = 1, 2, 3, ..., n.

and Λ = {x ∈ Rn :
n∑

i=1
xi ≤ n, xi ≥ −1, i = 1, 2, ... , n}.

Problem 7 Pursuit-Evasion problem.

ji(x) =
√

8x1 − 1, i = 1, 2, 3, ..., n.
and Λ = Rn

+.

The results of the experiments are tabulated in the following tables where ITER denotes the
number of iterations, FVAL denotes the number of function evaluation, TIME denotes the
CPU time and NORM denotes the norm of the function when an approximate solution is
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obtained. From the tables, it can be observed that all the three algorithms solved the seven
test problems considered. However, our proposed SCD algorithm proved to be more efficient
by solving most of the problems with less ITER, FVAL and TIME.

Table 1. Numerical Results of the SCD, PDY and LLY Algorithms on Problem 1 with given
initial points and dimensions

SCD PDY LLY
DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 1 3 0.0023 0.00E+00 24 71 0.0552 7.80E-06 16 47 0.1044 6.27E-06
x2 1 3 0.0026 0.00E+00 21 62 0.0250 8.99E-06 14 41 0.0233 9.50E-06
x3 9 27 0.0065 5.95E-06 27 80 0.0211 7.48E-06 18 54 0.0327 7.62E-06
x4 10 30 0.0121 2.20E-07 26 77 0.0269 8.98E-06 17 50 0.0301 8.58E-06
x5 10 30 0.0083 2.13E-07 22 65 0.0326 5.66E-06 17 50 0.0348 8.19E-06
x6 5 15 0.0048 5.31E-07 37 110 0.0416 8.03E-06 22 65 0.0286 6.98E-06
x7 10 30 0.0111 2.20E-07 26 77 0.0267 8.98E-06 17 50 0.0214 8.58E-06
x8 10 30 0.0097 1.99E-07 22 65 0.0216 5.67E-06 17 50 0.0187 8.25E-06

5000

x1 1 3 0.1281 0.00E+00 24 71 0.0649 7.57E-06 16 47 0.1032 5.24E-06
x2 1 3 0.0051 0.00E+00 21 62 0.2491 9.56E-06 15 44 0.0707 8.28E-06
x3 9 27 0.0214 5.95E-06 27 80 0.0522 7.48E-06 18 54 0.1663 7.62E-06
x4 10 30 0.1192 4.67E-07 25 74 0.0595 7.95E-06 18 53 0.6757 7.35E-06
x5 10 30 0.0356 4.63E-07 23 68 0.1996 6.33E-06 18 53 0.0589 7.26E-06
x6 5 15 0.0151 5.36E-07 37 110 0.1605 8.02E-06 22 65 0.5717 7.00E-06
x7 10 30 0.4784 4.67E-07 25 74 0.0927 7.95E-06 18 53 0.1644 7.35E-06
x8 10 30 0.0508 4.57E-07 23 68 0.0572 6.34E-06 18 53 0.0556 7.27E-06

10000

x1 1 3 0.0882 0.00E+00 24 71 0.6136 8.67E-06 16 47 0.1069 5.63E-06
x2 1 3 0.0119 0.00E+00 22 65 0.1816 6.24E-06 16 47 0.2273 4.62E-06
x3 9 27 0.1883 5.95E-06 27 80 0.1676 7.48E-06 18 54 1.0679 7.62E-06
x4 10 30 0.0738 6.56E-07 25 74 0.1600 7.11E-06 19 56 0.1169 4.09E-06
x5 10 30 0.0415 6.53E-07 23 68 0.1979 8.96E-06 19 56 0.4385 4.06E-06
x6 5 15 0.2782 5.37E-07 37 110 1.1591 8.02E-06 22 65 0.5424 7.00E-06
x7 10 30 0.0558 6.56E-07 25 74 0.2842 7.11E-06 19 56 1.4820 4.09E-06
x8 10 30 0.0568 6.49E-07 23 68 0.1104 8.96E-06 19 56 0.0980 4.06E-06

50000

x1 1 3 0.1613 0.00E+00 73 218 2.4883 9.05E-06 16 47 1.2844 9.30E-06
x2 1 3 0.0400 0.00E+00 23 68 0.4548 5.67E-06 17 50 0.4646 4.07E-06
x3 9 27 0.1168 5.95E-06 27 80 0.5052 7.48E-06 18 54 0.6553 7.62E-06
x4 10 30 0.9183 1.46E-06 25 74 0.4628 7.52E-06 19 56 0.5190 9.09E-06
x5 10 30 0.1708 1.46E-06 25 74 0.6266 5.01E-06 19 56 0.4309 9.08E-06
x6 5 15 0.0923 5.37E-07 37 110 0.6462 8.02E-06 22 65 1.5992 7.00E-06
x7 10 30 0.2276 1.46E-06 25 74 0.4413 7.52E-06 19 56 0.5693 9.09E-06
x8 10 30 0.3395 1.45E-06 25 74 1.2421 5.01E-06 19 56 0.3643 9.08E-06

100000

x1 1 3 0.0782 0.00E+00 163 488 5.5216 9.42E-06 17 50 1.0319 4.97E-06
x2 1 3 0.0638 0.00E+00 23 68 0.6252 7.60E-06 17 50 0.7126 5.76E-06
x3 9 27 0.9063 5.95E-06 27 80 0.9798 7.48E-06 18 54 0.6714 7.62E-06
x4 10 30 0.5563 2.06E-06 73 218 2.9124 9.73E-06 20 59 0.8634 5.08E-06
x5 10 30 0.4564 2.06E-06 60 179 1.8583 8.93E-06 20 59 1.1861 5.07E-06
x6 5 15 0.1634 5.37E-07 37 110 1.1625 8.02E-06 22 65 0.8905 7.00E-06
x7 10 30 0.2648 2.06E-06 73 218 2.3206 9.73E-06 20 59 0.8795 5.08E-06
x8 10 30 1.4084 2.06E-06 60 179 1.7355 8.93E-06 20 59 0.9313 5.07E-06
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Table 2. Numerical Results of the SCD, PDY and LLY Algorithms on Problem 2 with given
initial points and dimensions

SCD PDY LLY
DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 7 20 0.0887 3.54E-06 5 9 0.0165 3.60E-08 9 25 0.0173 9.20E-06
x2 6 17 0.0108 9.88E-06 3 5 0.0068 5.17E-07 7 19 0.0114 2.66E-06
x3 7 19 0.0106 7.53E-06 18 50 0.0253 5.39E-06 9 25 0.0101 4.43E-06
x4 9 25 0.0161 4.48E-06 22 60 0.0337 7.42E-06 28 82 0.0440 3.94E-06
x5 9 25 0.0175 4.48E-06 22 60 0.0206 7.42E-06 28 82 0.0445 3.94E-06
x6 8 22 0.0142 5.70E-06 19 53 0.0319 7.68E-06 21 61 0.0281 4.81E-06
x7 9 25 0.0363 4.48E-06 22 60 0.0583 7.42E-06 28 82 0.1102 3.94E-06
x8 9 25 0.0156 4.49E-06 25 66 0.0886 6.32E-06 28 82 0.2167 3.75E-06

5000

x1 7 20 0.1270 8.48E-06 5 9 0.2202 6.26E-09 10 28 0.1341 3.18E-06
x2 7 19 0.1724 9.33E-06 3 5 0.0160 1.75E-07 7 19 0.0248 5.70E-06
x3 7 19 0.0422 7.72E-06 18 50 0.0524 5.37E-06 9 25 0.0287 3.98E-06
x4 9 26 0.2498 2.08E-06 23 66 0.0857 5.26E-06 30 88 1.0625 3.86E-06
x5 9 26 0.2010 2.08E-06 23 66 0.4698 5.26E-06 30 88 0.1174 3.86E-06
x6 8 22 0.2322 6.45E-06 19 53 0.6032 7.43E-06 21 61 0.3431 6.36E-06
x7 9 26 0.0440 2.08E-06 23 66 0.0918 5.26E-06 30 88 0.3690 3.86E-06
x8 9 26 0.0336 2.08E-06 23 66 0.0886 5.26E-06 30 88 0.1348 3.87E-06

10000

x1 8 22 0.2472 4.84E-06 5 9 0.6819 3.62E-09 10 28 0.0891 4.48E-06
x2 7 20 0.5338 2.65E-06 3 5 0.1175 1.21E-07 7 19 0.0432 8.03E-06
x3 7 19 0.1134 7.74E-06 18 50 0.6410 5.37E-06 10 28 1.0279 4.40E-06
x4 9 26 0.3269 2.95E-06 23 66 0.7092 7.43E-06 30 88 0.2219 5.48E-06
x5 9 26 0.1460 2.95E-06 23 66 0.2032 7.43E-06 30 88 0.8150 5.48E-06
x6 8 22 0.2239 6.55E-06 19 53 0.1378 7.40E-06 21 61 0.1314 6.51E-06
x7 9 26 0.1494 2.95E-06 23 66 0.3822 7.43E-06 30 88 0.1683 5.48E-06
x8 9 26 0.6483 2.96E-06 23 66 0.5253 7.43E-06 30 88 0.1853 5.49E-06

50000

x1 8 23 0.4542 2.18E-06 26 77 1.0290 7.75E-06 10 28 0.7978 9.97E-06
x2 7 20 0.3154 5.97E-06 3 5 0.0983 6.32E-08 8 22 0.2194 2.86E-06
x3 7 19 0.6218 7.76E-06 18 50 0.3373 5.36E-06 11 31 0.7054 8.67E-06
x4 9 26 0.4564 6.64E-06 24 69 1.4849 8.30E-06 32 94 2.7029 4.59E-06
x5 9 26 1.1128 6.64E-06 24 69 0.4811 8.30E-06 32 94 0.9953 4.59E-06
x6 8 22 0.1500 6.63E-06 19 53 0.5591 7.37E-06 21 61 0.5683 6.63E-06
x7 9 26 0.5885 6.64E-06 24 69 0.5904 8.30E-06 32 94 1.5171 4.59E-06
x8 9 26 0.1896 6.64E-06 24 69 1.0501 8.30E-06 32 94 1.0207 4.59E-06

100000

x1 8 23 0.8410 3.08E-06 63 188 2.8714 7.77E-06 11 31 0.6148 2.26E-06
x2 7 20 0.3791 8.45E-06 3 5 0.1158 5.40E-08 8 22 0.6978 4.04E-06
x3 7 19 0.7152 7.76E-06 18 50 1.7273 5.36E-06 13 37 0.8367 3.15E-06
x4 9 26 0.5317 9.39E-06 26 77 1.1706 5.19E-06 32 94 2.1078 6.49E-06
x5 9 26 0.5580 9.39E-06 26 77 1.2016 5.19E-06 32 94 2.1205 6.49E-06
x6 8 22 0.6292 6.64E-06 19 53 0.9325 7.36E-06 21 61 1.2519 6.65E-06
x7 9 26 1.6351 9.39E-06 26 77 1.2891 5.19E-06 32 94 2.1439 6.49E-06
x8 9 26 0.4745 9.39E-06 26 77 1.1348 5.19E-06 32 94 2.1427 6.49E-06
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Table 3. Numerical Results of the SCD, PDY and LLY Algorithms on Problem 3 with given
initial points and dimensions

SCD PDY LLY
DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 1 3 0.0162 0.00E+00 20 59 0.0298 7.37E-06 21 62 0.0354 6.57E-06
x2 1 3 0.0018 0.00E+00 19 56 0.0182 5.45E-06 8 23 0.0138 2.78E-06
x3 1 3 0.0062 2.22E-16 16 48 0.0131 5.62E-06 25 75 0.0253 8.99E-06
x4 15 44 0.0069 8.85E-06 20 59 0.0233 8.76E-06 22 65 0.0222 5.38E-06
x5 15 44 0.0070 8.85E-06 20 59 0.0414 8.76E-06 22 65 0.0406 5.38E-06
x6 13 38 0.0636 7.75E-06 17 50 0.0235 6.76E-06 17 50 0.0187 9.63E-06
x7 15 44 0.0124 8.85E-06 20 59 0.0125 8.76E-06 22 65 0.0197 5.38E-06
x8 15 44 0.0125 8.94E-06 20 59 0.0120 8.77E-06 22 65 0.0217 5.42E-06

5000

x1 1 3 0.0222 0.00E+00 21 62 0.2091 8.24E-06 22 65 0.3812 7.28E-06
x2 1 3 0.0041 0.00E+00 20 59 0.1648 6.10E-06 8 23 0.0397 6.21E-06
x3 1 3 0.0049 2.22E-16 16 48 0.0373 5.62E-06 25 75 0.9425 8.99E-06
x4 16 47 0.0427 6.99E-06 21 62 0.0509 9.80E-06 23 68 1.7854 5.99E-06
x5 16 47 0.2445 6.99E-06 21 62 0.5293 9.80E-06 23 68 0.0538 5.99E-06
x6 13 38 0.0480 7.75E-06 17 50 0.0411 6.76E-06 17 50 0.0412 9.63E-06
x7 16 47 0.0308 6.99E-06 21 62 0.0425 9.80E-06 23 68 0.0838 5.99E-06
x8 16 47 0.0378 7.01E-06 21 62 0.4519 9.80E-06 23 68 0.4262 6.00E-06

10000

x1 1 3 0.0104 0.00E+00 22 65 0.0911 5.83E-06 23 68 0.0913 5.11E-06
x2 1 3 0.1023 0.00E+00 20 59 0.0625 8.62E-06 8 23 0.0547 8.79E-06
x3 1 3 0.0114 2.22E-16 16 48 0.0557 5.62E-06 25 75 1.2883 8.99E-06
x4 16 47 0.0475 9.89E-06 22 65 0.3407 6.93E-06 23 68 0.0952 8.47E-06
x5 16 47 0.0495 9.89E-06 22 65 0.9084 6.93E-06 23 68 0.1117 8.47E-06
x6 13 38 0.0592 7.75E-06 17 50 0.0576 6.76E-06 17 50 0.0766 9.63E-06
x7 16 47 0.0475 9.89E-06 22 65 0.0776 6.93E-06 23 68 0.3569 8.47E-06
x8 16 47 0.1758 9.90E-06 22 65 0.7398 6.93E-06 23 68 0.1712 8.48E-06

50000

x1 1 3 0.0287 0.00E+00 57 170 1.7362 8.87E-06 24 71 1.5008 5.67E-06
x2 1 3 0.0194 0.00E+00 21 62 0.2404 9.64E-06 9 26 0.2185 3.14E-06
x3 1 3 0.0236 2.22E-16 16 48 0.1844 5.62E-06 25 75 0.5480 8.99E-06
x4 17 50 0.4714 7.79E-06 56 167 1.0036 7.97E-06 24 71 0.6973 9.40E-06
x5 17 50 0.7310 7.79E-06 56 167 1.2997 7.97E-06 24 71 0.6250 9.40E-06
x6 13 38 0.2250 7.75E-06 17 50 0.3479 6.76E-06 17 50 0.8318 9.63E-06
x7 17 50 0.7120 7.79E-06 56 167 1.7737 7.97E-06 24 71 0.9931 9.40E-06
x8 17 50 0.2993 7.79E-06 56 167 0.7052 7.97E-06 24 71 0.6573 9.40E-06

100000

x1 1 3 0.0709 0.00E+00 126 377 3.1485 9.15E-06 24 71 0.6936 8.01E-06
x2 1 3 0.0773 0.00E+00 22 65 0.4317 6.82E-06 9 26 0.5340 4.45E-06
x3 1 3 0.2186 2.22E-16 16 48 0.3266 5.62E-06 25 75 1.4667 8.99E-06
x4 17 51 0.7640 6.06E-06 57 170 1.9869 8.46E-06 25 74 1.7901 6.59E-06
x5 17 51 0.3707 6.06E-06 57 170 1.3907 8.46E-06 25 74 1.2399 6.59E-06
x6 13 38 0.3836 7.75E-06 17 50 0.3276 6.76E-06 17 50 0.5267 9.63E-06
x7 17 51 0.4190 6.06E-06 57 170 2.3809 8.46E-06 25 74 1.2321 6.59E-06
x8 17 51 0.6001 6.06E-06 57 170 1.3800 8.46E-06 25 74 1.5502 6.59E-06
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Table 4. Numerical Results of the SCD, PDY and LLY Algorithms on Problem 4 with given
initial points and dimensions

SCD PDY LLY
DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 11 32 0.0329 4.63E-06 25 74 0.0168 5.22E-06 23 68 0.0270 9.92E-06
x2 16 44 0.0171 9.38E-06 25 68 0.0149 7.57E-06 28 79 0.0285 8.26E-06
x3 31 89 0.0455 9.48E-06 24 65 0.0402 5.51E-06 26 73 0.0334 3.80E-06
x4 15 42 0.0148 6.35E-06 24 65 0.0214 8.15E-06 24 67 0.0297 3.74E-06
x5 17 50 0.0185 7.34E-06 28 83 0.0436 5.81E-06 26 76 0.1502 5.06E-06
x6 30 87 0.0350 7.98E-06 25 67 0.0415 6.04E-06 30 85 0.0413 5.71E-06
x7 15 42 0.0115 6.35E-06 24 65 0.0289 8.15E-06 24 67 0.0251 3.74E-06
x8 17 50 0.0155 6.93E-06 28 83 0.0216 5.78E-06 26 76 0.0445 5.04E-06

5000

x1 11 32 0.0300 4.34E-06 27 80 0.8318 5.74E-06 25 74 0.0834 9.78E-06
x2 13 36 0.1954 8.58E-07 26 70 0.0767 5.44E-06 28 79 0.0832 7.83E-06
x3 13 36 0.0910 2.86E-06 26 70 0.1027 8.59E-06 20 55 1.0185 2.06E-06
x4 30 86 0.4084 9.99E-06 24 65 0.2713 8.94E-06 25 70 0.0703 8.60E-06
x5 18 53 0.1808 5.69E-06 30 89 0.1591 6.71E-06 27 79 0.0681 7.40E-06
x6 18 50 0.4918 7.40E-06 30 79 0.2369 6.40E-06 26 73 0.7855 8.49E-06
x7 30 86 0.0633 9.99E-06 24 65 0.6722 8.94E-06 25 70 0.0644 8.60E-06
x8 18 53 0.0559 5.64E-06 30 89 0.3491 6.70E-06 27 79 0.1182 7.39E-06

10000

x1 11 32 0.0422 5.65E-06 28 83 0.1617 5.41E-06 26 77 0.3622 8.92E-06
x2 12 32 0.3794 7.21E-06 26 70 0.1132 5.55E-06 25 70 0.4465 9.01E-06
x3 12 32 0.0459 6.50E-06 26 70 0.9694 5.32E-06 29 82 0.3014 8.43E-06
x4 31 90 0.1584 7.88E-06 25 68 0.1102 5.39E-06 30 86 1.9858 5.65E-06
x5 18 53 0.3939 8.01E-06 31 92 0.4441 6.42E-06 28 82 0.2502 5.95E-06
x6 20 56 0.0879 9.91E-06 27 73 0.1085 6.00E-06 29 82 0.2371 3.01E-06
x7 31 90 0.0993 7.88E-06 25 68 0.3265 5.39E-06 30 86 1.1008 5.65E-06
x8 18 53 0.5774 7.98E-06 31 92 0.1272 6.42E-06 28 82 0.1615 5.95E-06

50000

x1 11 33 0.1342 2.36E-06 75 224 1.4491 9.99E-06 28 83 2.0269 9.26E-06
x2 12 32 0.1422 6.04E-06 34 101 1.2540 5.92E-06 32 92 0.5892 5.34E-06
x3 12 32 0.7745 5.20E-06 34 101 0.6702 5.01E-06 31 88 0.9940 4.35E-06
x4 18 50 0.2091 9.23E-06 27 74 0.4584 6.13E-06 31 89 0.5563 6.21E-06
x5 19 56 0.4123 6.27E-06 80 239 2.1233 8.32E-06 31 91 2.1652 5.42E-06
x6 12 32 0.4123 7.47E-06 33 98 0.4356 7.79E-06 32 91 0.6577 6.18E-06
x7 18 50 0.4731 9.23E-06 27 74 0.3987 6.13E-06 31 89 0.7467 6.21E-06
x8 19 56 0.2843 6.27E-06 80 239 1.7214 8.32E-06 31 91 0.8834 5.42E-06

100000

x1 11 33 0.2290 3.31E-06 78 233 2.4460 8.43E-06 29 86 1.8326 8.61E-06
x2 12 32 0.5847 7.74E-06 35 104 0.9774 5.62E-06 32 92 1.3910 6.64E-06
x3 12 32 0.3136 6.73E-06 34 101 1.0017 9.54E-06 32 92 1.4917 7.45E-06
x4 18 51 0.4862 5.77E-06 33 98 1.1617 8.46E-06 30 86 1.2599 6.09E-06
x5 19 56 1.3369 8.88E-06 82 245 2.3141 9.35E-06 31 92 1.2728 6.75E-06
x6 12 32 0.3084 7.97E-06 34 101 0.9639 7.42E-06 32 92 1.2935 7.42E-06
x7 18 51 0.3937 5.77E-06 33 98 1.1212 8.46E-06 30 86 1.5763 6.09E-06
x8 19 56 0.4793 8.87E-06 82 245 3.9044 9.35E-06 31 92 1.3877 6.75E-06
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Table 5. Numerical Results of the SCD, PDY and LLY Algorithms on Problem 5 with given
initial points and dimensions

SCD PDY LLY
DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 7 20 0.0890 5.73E-06 23 68 0.1312 6.47E-06 16 47 0.0781 6.49E-06
x2 7 20 0.0116 8.72E-06 23 68 0.0344 9.86E-06 16 47 0.0283 6.84E-06
x3 7 20 0.0125 9.05E-06 24 71 0.0322 5.11E-06 15 44 0.0300 6.34E-06
x4 7 20 0.0123 7.46E-06 23 68 0.0261 8.42E-06 15 44 0.0232 8.75E-06
x5 7 20 0.0126 7.46E-06 23 68 0.1559 8.42E-06 15 44 0.0274 8.75E-06
x6 7 20 0.0088 9.03E-06 24 71 0.0258 5.10E-06 15 44 0.0249 6.98E-06
x7 7 20 0.0107 7.46E-06 23 68 0.1476 8.42E-06 15 44 0.0412 8.75E-06
x8 7 20 0.0119 7.45E-06 23 68 0.0293 8.42E-06 15 44 0.0228 8.74E-06

5000

x1 7 21 0.0271 2.55E-06 24 71 0.2577 7.24E-06 12 35 0.1706 2.77E-06
x2 7 21 0.0616 3.88E-06 25 74 0.1040 5.52E-06 12 35 0.1578 4.56E-06
x3 7 21 0.0304 4.03E-06 25 74 0.1218 5.73E-06 12 35 1.1935 3.25E-06
x4 7 21 0.2711 3.32E-06 24 71 0.1051 9.43E-06 12 35 0.1123 5.18E-06
x5 7 21 0.0268 3.32E-06 24 71 0.1291 9.43E-06 12 35 0.0652 5.18E-06
x6 7 21 0.0999 4.03E-06 25 74 0.0876 5.72E-06 12 35 0.0821 1.75E-06
x7 7 21 0.0388 3.32E-06 24 71 0.2387 9.43E-06 12 35 0.0664 5.18E-06
x8 7 21 0.1139 3.32E-06 24 71 0.1726 9.43E-06 12 35 0.0552 5.17E-06

10000

x1 7 21 0.0726 3.60E-06 25 74 0.2084 5.12E-06 11 32 2.6108 9.22E-06
x2 7 21 0.2388 5.49E-06 60 179 0.4705 8.35E-06 12 35 0.1240 8.05E-06
x3 7 21 0.0838 5.70E-06 60 179 0.4566 8.67E-06 12 35 0.1646 2.72E-06
x4 7 21 0.2351 4.69E-06 59 176 0.9589 9.51E-06 15 44 0.2307 2.15E-06
x5 7 21 0.0911 4.69E-06 59 176 0.3671 9.51E-06 15 44 1.4382 2.15E-06
x6 7 21 0.2526 5.70E-06 60 179 0.4100 8.67E-06 12 35 0.1004 3.33E-06
x7 7 21 0.0543 4.69E-06 59 176 0.7330 9.51E-06 15 44 0.1264 2.15E-06
x8 7 21 0.0482 4.69E-06 59 176 0.4571 9.51E-06 15 44 0.2378 2.15E-06

50000

x1 7 21 0.5848 8.06E-06 61 182 2.6156 9.19E-06 11 32 2.0915 4.97E-06
x2 8 23 0.2971 4.91E-06 134 401 3.3776 9.92E-06 11 32 0.7214 7.74E-06
x3 8 23 0.4958 5.10E-06 135 404 3.2328 9.01E-06 11 32 0.5964 7.43E-06
x4 8 23 0.5933 4.20E-06 133 398 3.0908 9.69E-06 12 35 0.6424 2.81E-06
x5 8 23 0.3562 4.20E-06 133 398 3.3884 9.69E-06 12 35 0.6049 2.81E-06
x6 8 23 0.2888 5.10E-06 135 404 3.3171 9.01E-06 11 32 0.3994 6.89E-06
x7 8 23 0.2346 4.20E-06 133 398 3.2587 9.69E-06 12 35 0.6985 2.81E-06
x8 8 23 0.1696 4.20E-06 133 398 3.3766 9.69E-06 12 35 1.7276 2.81E-06

100000

x1 8 23 0.5196 4.56E-06 134 401 6.5738 9.21E-06 11 32 1.6355 2.69E-06
x2 8 23 0.3381 6.95E-06 283 848 20.1453 9.68E-06 11 32 1.2017 4.13E-06
x3 8 23 0.5179 7.21E-06 284 851 14.4649 9.42E-06 11 32 1.1021 4.20E-06
x4 8 23 0.9699 5.93E-06 136 407 7.4457 9.18E-06 11 32 1.0706 6.59E-06
x5 8 23 0.5388 5.93E-06 136 407 6.8313 9.18E-06 11 32 0.8234 6.59E-06
x6 8 23 0.5458 7.21E-06 284 851 13.6980 9.42E-06 11 32 1.2348 4.13E-06
x7 8 23 0.4051 5.93E-06 136 407 6.5345 9.18E-06 11 32 1.2016 6.59E-06
x8 8 23 0.8464 5.93E-06 136 407 6.6888 9.18E-06 11 32 0.8019 6.59E-06
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Table 6. Numerical Results of the SCD, PDY and LLY Algorithms on Problem 6 with given
initial points and dimensions

SCD PDY LLY
DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 10 30 0.0430 6.68E-06 6 17 0.0103 6.75E-07 6 17 0.0164 3.52E-06
x2 10 29 0.0109 4.57E-06 6 17 0.0087 3.28E-06 6 17 0.0259 6.62E-06
x3 10 29 0.0144 4.79E-06 24 71 0.1287 5.35E-06 20 59 0.0222 9.01E-06
x4 11 32 0.0121 3.96E-06 23 68 0.0292 9.21E-06 20 59 0.0293 4.39E-06
x5 11 32 0.0139 3.96E-06 23 68 0.0303 9.21E-06 20 59 0.0206 4.39E-06
x6 10 29 0.0132 4.87E-06 20 59 0.0714 9.10E-06 17 50 0.0216 6.74E-06
x7 11 32 0.0080 3.96E-06 23 68 0.0376 9.21E-06 20 59 0.0279 4.39E-06
x8 11 32 0.0122 3.97E-06 23 68 0.0274 9.23E-06 20 59 0.0179 4.40E-06

5000

x1 11 32 0.0895 4.87E-06 6 17 0.9856 1.51E-06 6 17 0.0242 7.86E-06
x2 10 30 0.0597 6.69E-06 6 17 0.0333 7.33E-06 7 20 0.8547 8.34E-07
x3 10 30 0.1727 7.00E-06 18 53 0.0545 9.70E-06 17 50 0.1656 4.70E-06
x4 11 32 0.0399 8.86E-06 25 74 0.0773 5.83E-06 20 59 0.0785 9.82E-06
x5 11 32 0.1033 8.86E-06 25 74 0.1119 5.83E-06 20 59 0.0682 9.82E-06
x6 10 30 0.0278 7.03E-06 21 62 0.0946 7.52E-06 19 56 0.5985 6.90E-06
x7 11 32 0.1430 8.86E-06 25 74 0.1078 5.83E-06 20 59 0.0861 9.82E-06
x8 11 32 0.0289 8.86E-06 25 74 0.0929 5.84E-06 20 59 0.0803 9.83E-06

10000

x1 11 32 0.0476 6.89E-06 6 17 0.0389 2.13E-06 7 20 0.1593 6.27E-07
x2 10 30 0.0469 9.46E-06 7 20 0.0532 6.62E-07 7 20 0.4635 1.18E-06
x3 10 30 0.1110 9.91E-06 16 47 0.1259 2.57E-06 17 50 0.0965 4.92E-06
x4 11 33 0.0534 8.20E-06 25 74 0.4258 8.25E-06 21 62 0.1299 6.03E-06
x5 11 33 0.1411 8.20E-06 25 74 0.9868 8.25E-06 21 62 1.1701 6.03E-06
x6 10 30 0.0433 9.92E-06 25 74 0.2755 7.73E-06 21 62 0.1347 7.80E-06
x7 11 33 0.1191 8.20E-06 25 74 0.3708 8.25E-06 21 62 0.3222 6.03E-06
x8 11 33 0.0481 8.20E-06 25 74 0.1590 8.25E-06 21 62 0.6405 6.03E-06

50000

x1 12 35 0.4852 3.28E-06 27 80 0.4618 7.69E-06 7 20 0.2612 1.40E-06
x2 11 32 0.7793 6.89E-06 7 20 0.5416 1.48E-06 7 20 0.2092 2.64E-06
x3 11 32 0.2076 7.22E-06 21 62 0.4876 6.85E-06 17 50 0.7491 6.82E-06
x4 12 35 0.1999 5.97E-06 26 77 0.5229 9.81E-06 22 65 0.6362 5.85E-06
x5 12 35 0.3531 5.97E-06 26 77 0.6792 9.81E-06 22 65 2.1945 5.85E-06
x6 11 32 0.1696 7.22E-06 20 59 1.3486 8.01E-06 18 53 1.5017 7.51E-06
x7 12 35 0.5930 5.97E-06 26 77 1.2159 9.81E-06 22 65 1.0642 5.85E-06
x8 12 35 0.4212 5.97E-06 26 77 0.4800 9.81E-06 22 65 0.4915 5.85E-06

100000

x1 12 35 0.3894 4.64E-06 28 83 0.9476 5.79E-06 7 20 1.4489 1.98E-06
x2 11 32 1.1153 9.75E-06 28 83 1.5076 5.43E-06 7 20 0.4727 3.73E-06
x3 11 33 0.3290 6.68E-06 28 83 1.0226 7.06E-06 17 50 1.2814 8.73E-06
x4 12 35 0.9861 8.45E-06 27 80 1.0002 6.81E-06 22 65 1.2254 8.27E-06
x5 12 35 0.2797 8.45E-06 27 80 0.7974 6.81E-06 22 65 1.2500 8.27E-06
x6 11 33 1.0946 6.68E-06 28 83 1.8733 7.06E-06 18 53 0.8855 7.57E-06
x7 12 35 0.4250 8.45E-06 27 80 0.9973 6.81E-06 22 65 1.3610 8.27E-06
x8 12 35 0.6744 8.45E-06 27 80 1.0637 6.81E-06 22 65 1.3076 8.27E-06
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Table 7. Numerical Results of the SCD, PDY and LLY Algorithms on Problem 7 with given
initial points and dimensions

SCD PDY LLY
DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 7 21 0.0285 5.66E-06 13 38 0.0125 6.75E-06 9 26 0.0098 4.32E-06
x2 7 20 0.0051 8.66E-06 12 35 0.0072 9.04E-06 9 26 0.0093 1.69E-06
x3 7 21 0.0139 3.09E-06 13 38 0.0152 3.69E-06 9 26 0.0185 2.36E-06
x4 7 21 0.0073 2.83E-06 13 38 0.0096 3.38E-06 9 26 0.0088 2.16E-06
x5 7 21 0.0075 2.83E-06 13 38 0.0119 3.38E-06 9 26 0.0103 2.16E-06
x6 7 21 0.0056 3.05E-06 13 38 0.0113 3.64E-06 9 26 0.0090 2.33E-06
x7 7 21 0.0053 2.83E-06 13 38 0.0128 3.38E-06 9 26 0.0062 2.16E-06
x8 7 21 0.0075 2.84E-06 13 38 0.0106 3.38E-06 9 26 0.0070 2.16E-06

5000

x1 8 23 0.2014 4.92E-06 14 41 0.0237 4.42E-06 9 26 0.0186 9.66E-06
x2 7 21 0.0851 4.96E-06 13 38 0.1749 5.92E-06 9 26 0.0445 3.79E-06
x3 7 21 0.0335 6.92E-06 13 38 0.0585 8.25E-06 9 26 0.0193 5.28E-06
x4 7 21 0.0290 6.34E-06 13 38 0.0320 7.56E-06 9 26 0.0971 4.84E-06
x5 7 21 0.0105 6.34E-06 13 38 0.0343 7.56E-06 9 26 0.0494 4.84E-06
x6 7 21 0.0918 6.89E-06 13 38 0.0269 8.22E-06 9 26 0.4760 5.26E-06
x7 7 21 0.0347 6.34E-06 13 38 0.1156 7.56E-06 9 26 0.0774 4.84E-06
x8 7 21 0.0706 6.34E-06 13 38 0.0825 7.56E-06 9 26 0.0292 4.84E-06

10000

x1 8 23 0.0256 6.96E-06 14 41 0.3006 6.25E-06 10 29 0.0773 1.98E-06
x2 7 21 0.0321 7.02E-06 13 38 0.0394 8.37E-06 9 26 0.0928 5.36E-06
x3 7 21 0.0219 9.79E-06 14 41 0.0437 3.42E-06 9 26 0.6629 7.47E-06
x4 7 21 0.2105 8.96E-06 14 41 0.0442 3.13E-06 9 26 0.1134 6.84E-06
x5 7 21 0.0215 8.96E-06 14 41 0.1545 3.13E-06 9 26 0.0547 6.84E-06
x6 7 21 0.0213 9.77E-06 14 41 0.0483 3.41E-06 9 26 0.2624 7.46E-06
x7 7 21 0.0936 8.96E-06 14 41 0.0731 3.13E-06 9 26 0.9003 6.84E-06
x8 7 21 0.2350 8.96E-06 14 41 0.1291 3.13E-06 9 26 0.3378 6.84E-06

50000

x1 8 24 0.1129 3.99E-06 41 122 1.0051 6.97E-06 10 29 0.5945 4.42E-06
x2 8 23 0.3362 6.11E-06 14 41 0.1410 5.48E-06 10 29 0.2369 1.73E-06
x3 8 23 0.0782 8.51E-06 14 41 0.1532 7.65E-06 10 29 1.5064 2.42E-06
x4 8 23 0.0707 7.80E-06 14 41 0.3986 7.00E-06 10 29 0.2640 2.21E-06
x5 8 23 0.0840 7.80E-06 14 41 0.5471 7.00E-06 10 29 0.4523 2.21E-06
x6 8 23 0.2947 8.51E-06 14 41 0.2980 7.64E-06 10 29 1.2022 2.42E-06
x7 8 23 0.0799 7.80E-06 14 41 0.5583 7.00E-06 10 29 0.2554 2.21E-06
x8 8 23 0.3384 7.80E-06 14 41 0.2536 7.00E-06 10 29 0.3382 2.21E-06

100000

x1 8 24 0.2210 5.64E-06 41 122 1.3457 9.86E-06 10 29 0.2277 6.25E-06
x2 8 23 0.3563 8.64E-06 14 41 0.2428 7.75E-06 10 29 0.4301 2.45E-06
x3 8 24 0.1647 3.09E-06 15 44 0.9632 3.17E-06 10 29 0.9843 3.42E-06
x4 8 24 0.2206 2.82E-06 14 41 0.3214 9.90E-06 10 29 0.6343 3.13E-06
x5 8 24 0.1516 2.82E-06 14 41 0.5326 9.90E-06 10 29 0.4172 3.13E-06
x6 8 24 0.1568 3.08E-06 15 44 0.3448 3.17E-06 10 29 0.3376 3.42E-06
x7 8 24 0.4245 2.82E-06 14 41 0.3345 9.90E-06 10 29 1.2244 3.13E-06
x8 8 24 0.1547 2.82E-06 14 41 0.2437 9.90E-06 10 29 0.3299 3.13E-06

Moreover, using the Dolan and Morè performance profile [12], we plot the graphs of the
three algorithms in order to visualize their performance. The performance is shown in Figures
1, 2 and 3.

It can be observed from Figure 1 and 2 that the SCD algorithm outperformed the PDY
and LLY algorithms by solving around 90% of the problems with less number of iterations
and function evaluations. Furthermore, with regards to time, Figure 3 shows that the SCD
algorithm solved around 70% of the problems with less time. Therefore, we can conclude
that the proposed algorithm is more efficient than the PDY and LLY algorithms in terms of
number of iterations, function evaluations as well as CPU time.
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Fig. 1. Performance profile on number of iterations
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Fig. 2. Performance profile on function evaluations
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Fig. 3. Performance profile on CPU time

4. Application in Compressive Sensing
The problem of sparse signal reconstruction involves solving minimization of an objective

function:
min

x

1
2∥Mx − y∥2

2 + ρ∥x∥1, (4.1)

where x ∈ Rn, q ∈ Rm, M ∈ Rm×n (m << n) is a linear operator, ρ ≥ 0, ∥x∥2 is the
Euclidean norm of x and ∥x∥1 =

∑n
i=1 |xi | is the ℓ1−norm of x .

This problem is of interest to many researchers in signal processing. Some of the popular
methods for solving (4.1) can be found in [13, 16, 5, 14, 27]. First, a reformulation of problem
(4.1) into a quadratic problem was given by Figueiredo et al. [14]. They expressed x ∈ Rn in
two parts

x = b − y , b ≥ 0, y ≥ 0,

where bi = (xi)+, yi = (−xi)+ for all i = 1, 2, ..., n, and (.)+ = max{0, .}. Also, we have
∥x∥1 = eT

n b + eT
n y , where en = (1, 1, ..., 1)T ∈ Rn. From this reformulation, equation (4.1)

can be written as

min
b,y

1
2∥q − M(b − y)∥2

2 + ρeT
n b + ρeT

n y , b ≥ 0, y ≥ 0, (4.2)

from [14], equation (4.2) can be written as

min
z

1
2zT Ez + cT z , such that z ≥ 0, (4.3)

where z =
(

b
y

)
, c = ωe2n +

(
−a
a

)
, a = MT q, E =

(
MT M −MT M
−MT M MT M

)
.

It can be observed that E is a positive semi-definite showing that Problem (4.3) is quadratic
programming problem.
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Moreover, a translation of (4.3) into a linear variable problem, equivalently, a linear com-
plementary problem was given by Xiao et al [30], and the variable z solves the linear comple-
mentary problem provided that it solves the nonlinear equation:

M(z) = min{z , Ez + c} = 0, (4.4)

where M is a vector-valued function. The mapping M(z) is continuous and monotone as
shown in [29, 23]. This implies problem (4.1) is equivalent to problem (1.1). Hence, the
proposed SCD algorithm for solving (1.1) can be applicable to solve (4.1).

In this section, our proposed SCD algorithm is applied to restore a signal of length n
from k observations. The performance of the SCD is compared with two existing methods,
specifically, the CGD and PCG algorithms proposed in [21] and [30] respectively. We choose
the parameters in the SCD algorithm as follows: β = 10−5, α = 0.03, σ = 0.1, κ = 1 and
c = 1. However, in the CGD and PCG algorithms, the parameters are maintained as reported
in the respective papers [21] and [30]. We run each of the three algorithms with same initial
point and continuation technique on parameter µ. The convergence behviour of the algorithms
is observed to obtain a solution with similar accuracy. For initialization, we used x0 = MT y
and the iterations were stopped when the inequality∣∣∣∣ f (xk) − f (xk−1)

f (xk−1)

∣∣∣∣ < 10−5.

is satisfied. To understand the quality of the restoration, mean squared error (MSE) is used
as a metric. The MSE is given as:

MSE = 1
n∥x̂ −—x∥2,

In the experiment, M is a Gaussian matrix with n = 212, k = 210, the original signal contains
27 nonzero elements. We recover the original signal x̂ from y by y = 210 observations, and
set f (x) = 1

2∥Mx − y∥2
2 +ρ∥x∥1. Where y = Mx̂ +ω, and ω is the Gaussian noise distributed

as N(0, 10−4).
Figures 4 and 5 depicts the perfomance of all the three methods. All the three successfully

restored the signal. However, it can be observed that our SCD method has some advantages
over the CGD and PCG methods. These advantages include lesser MSE, number of iterations
and CPU time. In addition, four graphs are plotted to demonstrate the convergence behaviour
of the algorithms. In this case also, our proposed SCD method is reported to have faster
convergence rate in comparison with the other two. Thus, our proposed SCD method can
efficiently restore a sparse signal with less error, in fewer iterations as well as CPU time.
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Fig. 4. From top to bottom: the original signal, the measurement, and the recovery signals
by CGD, PCG and SCD methods.
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Fig. 5. Comparison of CGD, PCG and SCD methods based on MSE, number of iterations,
objective function and CPU time.

5. Conclusion
In this paper, a derivative-free algorithm for solving systems of nonlinear monotone equa-

tions is proposed. The algorithm combined the well-known conjugate gradient method with
a projection method. The global convergence of the method is established by assuming that
the operator under study is Lipschitz continuous and monotone. Numerical experiments are
performed to show the efficiency of the algorithm in comparison with some existing works,
specifically, the algorithms proposed in [20] and [33]. The numerical results reported in this
work have proved that the proposed algorithm is more efficient than the ones proposed in
[20] and [33]. Furthermore, the proposed algorithm is applied in signal recovery problems,
and the recovery result is compared with the PCG and CGD methods proposed in [21] and
[30] respectively. The proposed algorithm is shown to recover the distorted signal with less
MSE, number of iterations as well as CPU time, proving its effectiveness over the compared
algorithms.
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