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ABSTRACT

Vector optimization problems (VOPs) are crucial research areas with
widespread applications. The scalarization approach is commonly used
to solve VOPs by transforming vector-valued functions into single-
objective optimization. Despite its elegance, this method has the draw-
back of subjective weight selections. Alternatively, we propose five
conjugate gradient (CG) methods designed for VOPs, where the set
of Pareto-optimal points are obtained without weight selections, the
methods are Wei-Yao-Liu (WYL) and four of its variants. Three of
these methods lack sufficient descent conditions (SDC) in this context.
However, we establish their global convergence using Wolfe line search.
The remaining two methods fulfill SDC with the Wolfe line search,
and their global convergence is further verified using the Wolfe line
search. Importantly, our approach does not rely on regular restart or
convexity assumptions associated with objective functions. We conduct
numerical experiments to showcase the effectiveness of our methods,
comparing them with the nonnegative PRP method. Through these
experiments, we demonstrate the practical implementations of our pro-
posed techniques.

Article History
Received 27 February, 2024
Revised 29 April, 2024
Accepted 30 April, 2024

Keywords:

Conjugate gradient method;

Pareto-optimality; Sufficient

descent condition; Vector

optimization;

MSC

90C29; 90C52; 90C30;

90C26; 49M37

This is an open access article under the Diamond Open Access.

Please cite this article as: Yahaya et al., On the Class of Wei–Yao–Liu Conjugate Gradient Methods for Vector
Optimization, Nonlinear Convex Anal. & Optim., Vol. 3 No. 1, 1–23. https://doi.org/10.58715/ncao.2024.3.1

https://ncao.design.blog
https://en.wikipedia.org/wiki/Diamond_open_access
https://doi.org/10.58715/ncao.2024.3.1


2 J. Yahaya et al.

1. Introduction

Lately, there has been significant interest in the effective use of CG methods to solve vector
optimization problems (VOPs), as outlined in [40]. These methods have garnered attention
for their simplicity and minimal memory requirements, demonstrating notable effectiveness,
[22, 21, 25, 54, 53, 55].

Before exploring VOPs, let us consider some well-known CG parameters related to the
natural unconstrained optimization problem, which focuses on minimizing f̄ : Rn −→ R. The
parameters include the βk of Polak-Ribiére–Polyak (PRP) [42], Hestenes-Stiefel (HS) [26] and
Liu-Storey (LS) [35]. Other well-known CG methods can be found in [2, 13, 12, 7, 24]. In
most cases, the convergence of the CG method based on these parameters is achieved only if
the search direction attains a decent property or sufficient descent condition.

Another important method which is a modification of PRP method is the Wei-Yao-Liu
(WYL) CG method [52], several other methods were developed due to the introduction of
WYL CG method [56, 51, 29, 47].

In the following, we consider an unconstrained vector optimization problem of the form

MinimizeQ F (z), (1.1)

where F : Rn −→ Rm is in C 1 (continuously differentiable function), z ∈ Rn, and Q ⊂ Rm

is closed, convex and pointed cone with nonempty interior. The partial order defined in
Rm, ≼Q , generated by Q is a ≼Q b ⇐⇒ b − a ∈ Q, and ≺Q , generated by int(Q) is
a ≺Q b ⇐⇒ b−a ∈ int(Q). If Q = Rm

+, then problem (1.1) is considered to be multiobjective
optimization problem, and if Q = R+ then it reduces to single-objective optimization.

Several applications in industry and finance are considered instances of VOP, where mul-
tiple objective functions are optimized concurrently. Consequently, it becomes imperative
to determine a set of optimal points for VOP [9, 17, 16, 23, 27, 31, 34, 48]. Due to the
absence of a total order in Rm, where m ≥ 2, the solution of VOP entails a collection of
non-dominated points, commonly known as Pareto optimal or efficient points. The difficulty
lies in pinpointing the solutions that achieve the most favorable balance.

One approach to addressing VOPs involves scalarization techniques, which transform
single-objective optimization problems into parameterized forms to generate Pareto-optimal
points. The selection of these parameters is done by a decision-maker as they are not pre-
defined. However, this decision-making process can present significant challenges or even be
infeasible for certain problems [37, 33]. Consequently, to mitigate these limitations, some
descent-based algorithms have been proposed as alternative solution methods for VOPs, as
highlighted in the works of [11, 4]. Subsequently, numerous other studies have pursued similar
avenues, exploring comparable approaches. For further details, refer to the survey on descent
methods in multi-objective optimization (MOO) presented in [18], along with the references
[1, 3, 14, 44].

In [40], conjugate parameters from [13, 42, 26, 6, 7] are explored for VOPs, with numerical
implementations and analysis conducted. Notably, among these methods, the nonnegative
PRP and HS demonstrated superior performance across various test problems even though
they could not achieve SDC. Conversely, CD and DY methods exhibited greater efficiency
than FR.

Goncalves and Prudente [22] later extended the Hager-Zhang (HZ) CG method for VOPs,
although without guaranteeing descent conditions in the search direction, even with an exact
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line search. To tackle this, they proposed a self-adjusting HZ method utilizing a sufficiently
accurate Wolfe line search, ensuring the descent property. Further research in this realm
includes the LS CG method and its variants [21], the first hybrid CG methods for VOPs [54],
modified CG methods [53, 55], the extension of spectral CG method [25] and alternative
extension of the HZ CG method [28]. Other CG methods studied for MOO can found in [5].

To study the possible extension of the WYL CG method to vector setting, we propose
five CG methods designed for solving VOPs. The first three methods are the nonnegative
Wei-Yao-Liu (WYL) and its HS and LS types. Although these three methods lose their
descent property in the vector setting, we establish their global convergence by employing a
sufficiently accurate Wolfe line search. On the other hand, we modified the WYL of the HS
and LS types and established two new methods that achieve SDC with Wolfe line search; global
convergence is also established using Wolfe line search. We provide numerical implementations
to demonstrate the efficiency and robustness of the proposed methods by comparing them
with the nonnegative PRP method.

The paper is structured as follows: Section 2 introduces fundamental concepts and prelim-
inary results related to VOPs. Section 3 examines the convergence properties of the proposed
methods. Section 4 presents and discusses the numerical results. Finally, in Section 5, we
have the concluding remarks.

2. Preliminaries

In this section, we present some basic notions and results of VOP used in this paper. For
some notable preliminaries, see the references [11, 38, 40].

The aim in vector optimization is to minimize a finite set of objective functions simulta-
neously. Rarely does a single point minimize all objective functions at once. In this setting,
an alternative notion of optimality is needed. The concept of Pareto-optimality and weak
Pareto-optimality are utilized instead.

Definition 2.1. [18] A point z̄ ∈ Rn is Pareto-optimal or efficient if and only if there does
not exists z ∈ Rn such that F (z) ≼Q F (z̄) and F (z) ̸= F (z̄).
A point z̄ ∈ Rn is weak Pareto-optimal or weak efficient if and only if there does not exists
z ∈ Rn such that F (z) ≺Q F (z̄).

Note that when z̄ ∈ Rn represents a Pareto-optimal point, it is also qualifies as a weak
Pareto-optimal point. However, the reverse statement is often not true, [18].

Now, let us look at some properties related to Q: the positive polar cone of Q is given as

Q∗ := {p ∈ Rm | ⟨p, z⟩ ≥ 0, ∀ z ∈ Q}.

Note that since Q is closed and convex. Then, Q = Q∗∗. If C ⊆ Q∗\{0} is compact, then
Q∗ is defined as the conic hull of a convex hull of C :

Q∗ = cone(conv(C )). (2.1)

Again,

−Q = {z ∈ Rm | ⟨z , p⟩ ≤ 0, ∀ p ∈ Q∗}, −int(Q) = {z ∈ Rm | ⟨z , p⟩ < 0, ∀ p ∈ Q∗\{0}}.
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For a given point z , the term Image(JF (z)) represents the image on Rm generated by JF (z).
A necessary requirement for Q-optimality of z̄ ∈ Rn is given as

−int(Q) ∩ Im(JF (z̄)) = ∅. (2.2)

If the condition (2.2) is satisfied, we called z̄ ∈ Rn as stationary or Q-critical point. On the
contrary, if z̄ ∈ Rn does not meet the criteria for stationary or Q-critical point, then there
exists h ∈ Rn such that JF (z̄)h ∈ −int(Q). This signifies that h is a Q-descent direction
for F at the point z̄ . In other words, we have s > 0 for which F (z̄ + r̄ h) ≺Q F (z̄), for all
0 < r̄ < s, see e.g., [38] for a full discussion on this.

Now, for a given Q (closed, convex and pointed cone with nonempty interior), the set

C = {p ∈ Q∗ | ||p|| = 1}, (2.3)

satisfies (2.1). Subsequently, we consider C to be as defined in equation (2.3).

Let us define θ : Rm → R as

θ(z) := sup{⟨z , p⟩ | p ∈ C}. (2.4)

The map θ is well-defined by the compactness of C . Again, define ϕ : Rn × Rn → R by

ϕ(z , d) := θ(JF (z)d) = sup{⟨JF (z)d , p⟩ | p ∈ C}. (2.5)

For a given point z , we represent Jacobian of F by JF (z).

Again, let us define the steepest descent direction and the optimal value: u : Rn → Rn

and v : Rn → R, respectively by

u(z) := argmin

{
ϕ(z , d) +

∥d∥2

2
| d ∈ Rn

}
(2.6)

and

v(z) := ϕ(z , u(z)) +
∥u(z)∥2

2
. (2.7)

Given that the real-valued function ϕ(z , ·) is convex and d 7→ ∥d∥2

2 is strictly convex, then u(z)
exists and is unique. The function u allows us to develop the concept of the steepest descent
direction in the vector minimization setting. It is worth noting that in scalar optimization, we

have ϕ(z , d) = ⟨∇F (z), d⟩, u(z) = −∇F (z) and v(z) = −∥∇F (z)∥2

2 .

Now, we can describe a CG method as

zk+1 = zk + αkdk , k ≥ 1, (2.8)

where αk > 0 is the step size or step length which is obtainable through a line search technique,
and dk is the search direction defined by

dk :=

{
u(zk), k = 1,

u(zk) + βkdk−1, k ≥ 2.
(2.9)

The algorithmic parameter βk comes in numerous types; below are some of the possible
options:

βFR
k :=

ϕ(zk , u(zk))

ϕ(zk−1, u(zk−1))
, βCD

k :=
ϕ(zk , u(zk))

ϕ(zk−1, dk−1)
, (2.10)
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βDY
k :=

−ϕ(zk , u(zk))

ϕ(zk , dk−1)− ϕ(zk−1, dk−1)
, βPRP

k :=
−ϕ(zk , u(zk)) + ϕ(zk−1, u(zk))

−ϕ(zk−1, u(zk−1))
, (2.11)

βHS
k :=

−ϕ(zk , u(zk)) + ϕ(zk−1, u(zk))

ϕ(zk , dk−1)− ϕ(zk−1, dk−1)
, βLS

k :=
−ϕ(zk , u(zk)) + ϕ(zk−1, u(zk))

−ϕ(zk−1, dk−1)
, (2.12)

are the Fletcher-Reeves (FR), Conjugate Descent (CD), Dai-Yuan (DY), Polak-Ribiére-Polyak
(PRP), Hestenes-Stiefel (HS), and Liu-Storey (LS), respectively.

In the convergence analysis of CG methods, it is required that the search direction d to
be Q-descent direction for F at z , that is

ϕ(z , d) < 0. (2.13)

A point z is Q-critical point for F if

ϕ(z , d) ≥ 0, (2.14)

for all d ∈ Rn. A direction d is said to satisfies sufficient descent condition (SDC) at z if

ϕ(z , d) ≤ cϕ(z , u(z)), (2.15)

for some c > 0.

Lemma 2.2. [11]. Suppose F : Rn → Rm is in C 1. Then, the statements below hold:

(a) ϕ(z , z
′
+ αd) ≤ ϕ(z , z

′
) + αϕ(z , d), for z , z

′
, d ∈ Rn and α ≥ 0;

(b) The mapping (z , d) 7−→ ϕ(z , d) is continuous;

(c) |ϕ(z , d)− ϕ(z
′
, d)| ≤ ∥JF (z)− JF (z

′
)∥∥d∥, for z , z

′
, d ∈ Rn;

(d) Let ∥JF (z)− JF (z
′
)∥ ≤ L∥z − z

′∥, then |ϕ(z , d)− ϕ(z
′
, d)| ≤ L∥d∥∥z − z

′∥.

Consider the following convex quadratic problem

Minimize α+
1

2
∥u∥2,

subject to [JF (z)u]i ≤ α, i = 1, 2, · · · ,m,
(2.16)

with linear inequality constraints, see for instance, [15]. We say that the step size, α > 0 can
be obtained through an exact line search at a point x along the direction d if

ϕ(z + αd , d) = 0. (2.17)

We now give the vector Wolfe conditions that was introduced by Lucambio Pérez and
Prudente [39].

Definition 2.3. [40] Let d ∈ Rn be a Q-descent direction and e ∈ Q, then we have

0 < ⟨p, e⟩ ≤ 1, (2.18)

for all p ∈ C . Now, α > 0 satisfies the standard Wolfe condition (WWC) if

F (z + αd) ≼Q F (z) + ραϕ(z , d)e
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ϕ(z + αd , d) ≥ σϕ(z , d), (2.19)

where 0 < ρ < σ < 1. Furthermore, α > 0 satisfies the strong Wolfe condition (SWC) if

F (z + αd) ≼Q F (z) + ραϕ(z , d)e

|ϕ(z + αd , d)| ≤ σ|ϕ(z , d)|. (2.20)

It is interesting to know that the vector e ∈ Q given in (2.18), always exists. Specifi-
cally, for multiobjective optimization, we define e as [1, · · · , 1]T ∈ Rm, Q as Rm

+, and C as
{e1, e2, · · · , em} ⊂ Rm.

Let us now conclude this section with the following important results.

Lemma 2.4. [11]. (a) let z be a Q-critical for F , then u(z) = 0 and v(z) = 0. (b) suppose

z is not Q-critical for F , then u(z) ̸= 0, v(z) < 0, ϕ(z , u(z)) < −∥u(z)∥2

2 < 0 and u(z)
Q-descent direction for F at z. (c) The u and v are continuous maps.

3. Algorithm and Its Convergence Analysis

This section presents the methods and the general prototype of the algorithm, along with
the analysis that leads to the SDC property and the global convergence of these methods.

Assumption 3.1. Suppose that the cone Q is finitely generated and there exists an open set
∆ for which the L := {z | F (z) ≼Q F (z1)} ⊂ ∆, where z1 ∈ Rn and there exists L > 0
such that ∥JF (z)− JF (z

′
)∥ ≤ L∥z − z

′∥ for all z , z
′ ∈ ∆.

Assumption 3.2. The level set L := {z | F (z) ≼Q F (z1)} is bounded.

Note that, by Assumption 3.2 we have that for any {zk} in L, there exists M̄ > 0 s.t

∥zk∥ ≤ M̄, (3.1)

for all k . Therefore, we have from Lemma 2.2(d) that there exists γ > 0 s.t

∥JF (zk)∥ ≤ γ, (3.2)

for all k. Also, by the boundedness of {ϕ(zk , u(zk))} and Lemma 2.4(b), there exists δ > 0
s.t

∥u(zk)∥ ≤ δ, (3.3)

for all k . From (2.5), Lemma 2.4 (b), (3.2) and (3.3), we have

0 < −ϕ(zk , u(zk)) ≤ −⟨JF (zk)u(zk), q⟩ ≤ ∥JF (zk)∥∥u(zk)∥ ≤ δγ, (3.4)

with ∥q∥ = 1.

We state the general prototype of the considered CG algorithm for VOPs.
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Algorithm 1:

Step 0: Let z1 ∈ Rn be given and initialize k ←− 1.
Step 1: Compute u(zk) and v(zk) as in (2.6) and (2.7), respectively.
Step 2: Compute αk > 0 using condition (2.20).
Step 3: If v(zk) = 0, then stop. Otherwise, compute

dk = u(zk) for k = 1,

dk = u(zk) + βkdk−1 for k ≥ 2,
(3.5)

where βk is the considered conjugate parameter.
Step 4: Set zk+1 = zk + αkdk , for k ←− k + 1 and go to Step 1.

We define the Wei-Yao-Liu (WYL) βk parameter as follows:

βWYL
k :=

−ϕ(zk , u(zk)) +
∥u(zk )∥

∥u(zk−1)∥ϕ(zk−1, u(zk))

−ϕ(zk−1, u(zk−1))
. (3.6)

In light of this, we propose the following variants of the WYL and their modified versions:

βWHS
k :=

−ϕ(zk , u(zk)) +
∥u(zk )∥

∥u(zk−1)∥ϕ(zk−1, u(zk))

ϕ(zk , dk−1)− ϕ(zk−1, dk−1)
. (3.7)

βWLS
k :=

−ϕ(zk , u(zk)) +
∥u(zk )∥

∥u(zk−1)∥ϕ(zk−1, u(zk))

−ϕ(zk−1, dk−1)
. (3.8)

βWHS∗

k :=
−ϕ(zk , u(zk))− ∥u(zk )∥

∥u(zk−1)∥ϕ(zk−1, u(zk))

ϕ(zk , dk−1)− ϕ(zk−1, dk−1)
. (3.9)

βWLS∗

k :=
−ϕ(zk , u(zk))− ∥u(zk )∥

∥u(zk−1)∥ϕ(zk−1, u(zk))

−ϕ(zk−1, dk−1)
. (3.10)

Remark 3.3. It is important to note that all the CG parameters in (3.6)–(3.8) are well-defined
based on Lemma 2.4(b) and the conditions that: (i) dk is a Q-descent direction of F at zk ,
and (ii) αk satisfies condition (2.20). Moreover, in our subsequent analysis, it is important to
note that we only consider the values max {βk , 0} for each parameter in (3.6)–(3.10), provided
that ϕ(zk−1, u(zk)) > 0. If ϕ(zk−1, u(zk)) ≤ 0, we set max {βk , 0} := 0. Thus, based on the
considered formulation, the βk in (3.6)–(3.8) are nonnegative, making max {βk , 0} = βk for
all k ≥ 2.

The well-known property (∗), originally introduced by Gilbert and Nocedal [19] to analyze
the global convergence of PRP and HS in scalar, its vector extension was subsequently provided
by Lucambio Pérez and Prudente [40]. The property is stated as follows:

Property (∗) [40] Consider Algorithm 1 and suppose that

0 < δ̄ ≤ ∥u(zk)∥, (3.11)
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for all k ≥ 2. Using the assumption above, we get a property (∗) if there exist some constants
q > 1 and λ > 0 for all k :

|βk | ≤ q,

and

∥sk−1∥ ≤ λ =⇒ |βk | ≤
1

2q
,

where sk−1 = zk − zk−1.

The following lemma follows from Theorem 5.10 in [40].

Lemma 3.4. Consider Algorithm 1 and let Assumptions 3.1 and 3.2 hold, for all k, where:

(a) βk is nonnegative;
(b) dk is a Q-descent direction of F at zk ;
(c) αk satisfies condition (2.20);
(d) property (∗) holds.
Then,

lim inf
k→∞

∥u(zk)∥ = 0.

Theorem 3.5. Consider Algorithm 1 such that the sequence {zk} is generated with βk =
βWYL
k if ϕ(zk−1, u(zk)) > 0 or βk = 0 otherwise. Suppose Assumptions 3.1 and 3.2 hold. If

dk is Q-descent direction of F at zk and αk satisfies condition (2.20). Then,

lim inf
k→∞

∥u(zk)∥ = 0. (3.12)

Proof. It is observed from Lemma 3.4 that it is enough to show that WYL satisfies property
(∗). To demonstrate this, we follow the approach outlined in [21], wherein we establish the
existence of a nonnegative constant ϵ such that

|βk | ≤ ϵ∥sk−1∥, ∀ k ≥ 2. (3.13)

Now, assume that (3.11) holds. Then, by (3.3) and (3.11), we have

0 < δ̄ ≤ ∥u(zk)∥ ≤ δ, ∀ k ≥ 2. (3.14)

Additionally, by (3.2) and Lemma 2.4 (b), we have

δ̄2

2
≤ −ϕ(zk , u(zk)) ≤ δγ. (3.15)

We also see from (3.2) and (2.5) that there exists p̄ ∈ C such that

|ϕ(zk−1, u(zk))| = |⟨JF (zk−1)u(zk), p̄⟩| ≤ ||JF (zk−1)||||u(zk)|| ≤ δγ, (3.16)

then by Assumption 3.1, Lemma 2.2(d), and (3.14), for all k ≥ 2, we get∣∣∣∣∣−ϕ(zk , u(zk)) + ϕ(zk−1, u(zk))

∣∣∣∣≤ L∥zk − zk−1∥∥u(zk)∥ ≤ Lδ∥sk−1∥, (3.17)

where ∥sk−1∥ = ∥zk − zk−1∥.



On the Class of Wei–Yao–Liu Conjugate Gradient Methods for Vector Optimization 9

Now, consider ϕ(zk−1, u(zk)) > 0, then by Lemma 2.4 (b), we have

| βk |= βWYL
k =

−ϕ(zk , u(zk)) +
∥u(zk )∥

∥u(zk−1)∥ϕ(zk−1, u(zk))

−ϕ(zk−1, u(zk−1))

=
−∥u(zk−1)∥ϕ(zk , u(zk)) + ∥u(zk)∥ϕ(zk−1, u(zk))

−∥u(zk−1)∥ϕ(zk−1, u(zk−1))

≤ δ

δ̄

(
−ϕ(zk , u(zk)) + ϕ(zk−1, u(zk))

−ϕ(zk−1, u(zk−1))

)

≤ δ

δ̄

∣∣∣∣−ϕ(zk , u(zk)) + ϕ(zk−1, u(zk))

∣∣∣∣
−ϕ(zk−1, u(zk−1))

.

This, combined with (3.15) and (3.17), imply that

|βk | ≤
2Lδ2∥sk−1∥

δ̄3
,

where ϵ = 2Lδ2

δ̄3
. Since βk = 0 for the case when ϕ(zk−1, u(zk)) ≤ 0. This implies that

|βk | ≤
2Lδ2∥sk−1∥

δ̄3
, ∀k ≥ 2,

which completes the proof.

Theorem 3.6. Let Assumptions 3.1 and 3.2 hold. Consider Algorithm 1 such that the
sequence {zk} is generated with βk = βWHS

k if ϕ(zk−1, u(zk)) > 0 or βk = 0 otherwise. If dk
satisfies the SDC and αk satisfies condition (2.20). Then,

lim inf
k→∞

∥u(zk)∥ = 0. (3.18)

Proof. The proof follows the same pattern as that of Theorem 3.5. Firstly, we observe that
by (2.19) and (2.15), we have

ϕ(zk , dk−1)− ϕ(zk−1, dk−1) ≥ −(1− σ)ϕ(zk−1, dk−1)

≥ −c(1− σ)ϕ(zk−1, u(zk−1)) > 0. (3.19)

Now, consider ϕ(zk−1, u(zk)) > 0, then we have

| βk |= βWHS
k =

−ϕ(zk , u(zk)) +
∥u(zk )∥

∥u(zk−1)∥ϕ(zk−1, u(zk))

ϕ(zk , dk−1)− ϕ(zk−1, dk−1)

=
1

∥u(zk−1)∥

(
−∥u(zk−1)∥ϕ(zk , u(zk)) + ∥u(zk)∥ϕ(zk−1, u(zk))

ϕ(zk , dk−1)− ϕ(zk−1, dk−1)

)
≤ δ

δ̄

(
−ϕ(zk , u(zk)) + ϕ(zk−1, u(zk))

ϕ(zk , dk−1)− ϕ(zk−1, dk−1)

)
≤ δ

δ̄

∣∣∣∣∣−ϕ(zk , u(zk)) + ϕ(zk−1, u(zk))

ϕ(zk , dk−1)− ϕ(zk−1, dk−1)

∣∣∣∣∣.
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Now Using (3.19), we get

|βk | ≤
δ

δ̄

∣∣∣∣−ϕ(zk , u(zk)) + ϕ(zk−1, u(zk))

∣∣∣∣
−c(1− σ)ϕ(zk−1, u(zk−1))

.

By (3.15) and (3.17), we have

|βk | ≤
δ

δ̄

∣∣∣∣−ϕ(zk , u(zk)) + ϕ(zk−1, u(zk))

∣∣∣∣
−c(1− σ)ϕ(zk−1, u(zk−1))

≤ 2Lδ2∥sk−1∥
c(1− σ)δ̄3

.

Thus,

|βk | ≤
2Lδ2∥sk−1∥
c(1− σ)δ̄3

, (3.20)

where ϵ = 2Lδ2

c(1−σ)δ̄3
. Observe that, since βk = 0 if ϕ(zk−1, u(zk)) ≤ 0, which guarantees that

(3.20) holds for all k ≥ 2.

Theorem 3.7. Let Assumptions 3.1 and 3.2 hold. Consider Algorithm 1 such that the
sequence {zk} is generated with βk = βWLS

k if ϕ(zk−1, u(zk)) > 0 or βk = 0 otherwise. If dk
satisfies the SDC and αk satisfies condition (2.20). Then,

lim inf
k→∞

∥u(zk)∥ = 0. (3.21)

Proof. The proof follows the same pattern as that of Theorem 3.5. Firstly, by (2.15) and
Lemma 2.4 (b), we have

−ϕ(zk−1, dk−1) ≥ −cϕ(zk−1, u(zk−1)) > 0. (3.22)

Now, consider ϕ(zk−1, u(zk)) > 0, then we have

| βk |= βWLS
k =

−ϕ(zk , u(zk)) +
∥u(zk )∥

∥u(zk−1)∥ϕ(zk−1, u(zk))

−ϕ(zk−1, dk−1)

≤ δ

δ̄

(
−ϕ(zk , u(zk)) + ϕ(zk−1, u(zk))

−ϕ(zk−1, dk−1)

)

≤ δ

δ̄

∣∣∣∣−ϕ(zk , u(zk)) + ϕ(zk−1, u(zk))

∣∣∣∣
−cϕ(zk−1, u(zk−1))

.

By (3.15) and (3.17), we have

|βk | ≤
δ

δ̄

∣∣∣∣−ϕ(zk , u(zk)) + ϕ(zk−1, u(zk))

∣∣∣∣
−cϕ(zk−1, u(zk−1))

≤ 2Lδ2∥sk−1∥
c δ̄3

,

which implies that

|βk | ≤
2Lδ2∥sk−1∥

c δ̄3
, (3.23)

where ϵ = 2Lδ2

c δ̄3
. Observe that, since βk = 0 if ϕ(zk−1, u(zk)) ≤ 0, which guarantees that

(3.23) holds for all k ≥ 2.
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Next, we consider a modified version of WHS given as (3.9) and investigate its descent as
well as convergence properties.

Lemma 3.8. Consider Algorithm 1 such that the sequence {zk} is generated with βk =
max

{
βWHS∗

k , 0
}
if ϕ(zk−1, u(zk)) > 0 or βk = 0 otherwise. Suppose αk satisfy (2.20). Then

dk defined by (3.5) satisfies the SDC with c = 1
1+σ .

Proof. Since βk ≥ 0, it follows from Lemma 2.2(a) and (3.5) that

ϕ(zk , dk) ≤ ϕ(zk , u(zk)) + βkϕ(zk , dk−1).

For the case when βk = 0 or ϕ(zk , dk−1) ≤ 0, we get

ϕ(zk , dk) ≤ ϕ(zk , u(zk)) ≤
1

1 + σ
ϕ(zk , u(zk)). (3.24)

When βk = βWHS∗

k and ϕ(zk , dk−1) > 0, then ϕ(zk−1, u(zk)) > 0 and consequently, we get

ϕ(zk , dk) ≤ ϕ(zk , u(zk)) +

(
−ϕ(zk , u(zk))− ∥u(zk )∥

∥u(zk−1)∥ϕ(zk−1, u(zk))

ϕ(zk , dk−1)− ϕ(zk−1, dk−1)

)
ϕ(zk , dk−1)

≤ ϕ(zk , u(zk)) +
−ϕ(zk , u(zk))ϕ(zk , dk−1)

ϕ(zk , dk−1)− ϕ(zk−1, dk−1)

≤
(
1− ϕ(zk , dk−1)

ϕ(zk , dk−1)− ϕ(zk−1, dk−1)

)
ϕ(zk , u(zk))

≤
(

ϕ(zk−1, dk−1)

ϕ(zk−1, dk−1)− ϕ(zk , dk−1)

)
ϕ(zk , u(zk))

≤
( 1

1− qk

)
ϕ(zk , u(zk)),

where qk = ϕ(zk ,dk−1)
ϕ(zk−1,dk−1)

. Observe that by (2.20) we have qk ∈ [−σ,σ]. Again, by Lemma

2.4(b) we have ϕ(zk , u(zk)) < 0 for all k , then

ϕ(zk , dk) ≤
( 1

1− qk

)
ϕ(zk , u(zk)) ≤

( 1

1 + σ

)
ϕ(zk , u(zk)). (3.25)

This completes the proof.

Theorem 3.9. Let Assumptions 3.1 and 3.2 hold. Consider Algorithm 1 such that the
sequence {zk} is generated with βk = max

{
βWHS∗

k , 0
}

if ϕ(zk−1, u(zk)) > 0 or βk = 0
otherwise. If αk satisfies condition (2.20). Then,

lim inf
k→∞

∥u(zk)∥ = 0. (3.26)

Proof. Just like in the case of Theorem 3.5 and considering the result of Lemma 3.8, we only
need to establish a constant ϵ such that

|βk | ≤ ϵ∥sk−1∥, ∀ k ≥ 2. (3.27)
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For the case when βk = 0, the desired inequality (3.27) is satisfied for any ϵ. So, we only need
to consider the case when βk = βWHS∗

k > 0. In this case, ϕ(zk−1, u(zk)) > 0 and following
(3.19), we have

| βk |= βWHS∗

k =
−ϕ(zk , u(zk))− ∥u(zk )∥

∥u(zk−1)∥ϕ(zk−1, u(zk))

ϕ(zk , dk−1)− ϕ(zk−1, dk−1)

≤
−ϕ(zk , u(zk)) +

∥u(zk )∥
∥u(zk−1)∥ϕ(zk−1, u(zk))

ϕ(zk , dk−1)− ϕ(zk−1, dk−1)

≤ 2Lδ2∥sk−1∥
c(1− σ)δ̄3

,

In a similar way to the proof of Theorem 3.6, we conclude that

| βk |= βWHS∗

k ≤ 2Lδ2∥sk−1∥
c(1− σ)δ̄3

,

where ϵ = 2Lδ2

c(1−σ)δ̄3
.

Next, we consider the modified version of WLS given as (3.10) and investigate its descent
property.

Lemma 3.10. Consider Algorithm 1 such that the sequence {zk} is generated with βk =
max

{
βWHS∗

k , 0
}
if ϕ(zk−1, u(zk)) > 0 or βk = 0 otherwise. Suppose that αk satisfies (2.20).

Then dk defined by (3.5) satisfies the SDC with c = 1− σ.

Proof. Following Lemma 2.2 (a), (3.5) and the fact that βWLS∗

k ≥ 0, we have

ϕ(zk , dk) ≤ ϕ(zk , u(zk)) + βWLS∗

k ϕ(zk , dk−1). (3.28)

If βk = 0 or ϕ(zk , dk−1) ≤ 0, we get

ϕ(zk , dk) ≤ ϕ(zk , u(zk)) ≤ (1− σ)ϕ(zk , u(zk)).

When βk = βWHS∗

k and ϕ(zk , dk−1) > 0, then ϕ(zk−1, u(zk)) > 0 and consequently, we get

ϕ(zk , dk) ≤ ϕ(zk , u(zk)) +

(
−ϕ(zk , u(zk))− ∥u(zk )∥

∥u(zk−1)∥ϕ(zk−1, u(zk))

−ϕ(zk−1, dk−1)

)
ϕ(zk , dk−1)

≤ ϕ(zk , u(zk)) +
ϕ(zk , u(zk))ϕ(zk , dk−1)

ϕ(zk−1, dk−1)
.

Applying (2.20), we have
ϕ(zk , dk) ≤ (1− σ)ϕ(zk , u(zk)).

This complete the proof.

Theorem 3.11. Let Assumptions 3.1 and 3.2 hold. Consider Algorithm 1 such that the
sequence {zk} is generated with βk = max

{
βWLS∗

k , 0
}

if ϕ(zk−1, u(zk)) > 0 or βk = 0
otherwise. If αk satisfies condition (2.20). Then,

lim inf
k→∞

∥u(zk)∥ = 0. (3.29)
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Proof. Just like in the case of Theorem 3.5 and considering the result of Lemma 3.10, we
only need to establish a constant ϵ such that

|βk | ≤ ϵ∥sk−1∥, ∀ k ≥ 2. (3.30)

For the case when βk = 0, the desired inequality (3.30) is satisfied for any ϵ. So, we only need
to consider the case when βk = βWLS∗

k > 0. In this case, ϕ(zk−1, u(zk)) > 0 and following
(3.19), we have ...further justified by Lemma 2.4 (b), thus, we have

| βk |= βWLS∗

k =
−ϕ(zk , u(zk))− ∥u(zk )∥

∥u(zk−1)∥ |ϕ(zk−1, u(zk))|
−ϕ(zk−1, dk−1)

≤
−ϕ(zk , u(zk)) +

∥u(zk )∥
∥u(zk−1)∥ϕ(zk−1, u(zk))

−ϕ(zk−1, dk−1)

≤ 2Lδ2∥sk−1∥
c δ̄3

,

In a similar way to the proof of Theorem 3.7, we conclude that

| βk | ≤ 2Lδ2∥sk−1∥
c δ̄3

,

where ϵ = 2Lδ2

c δ̄3
. This completes the proof.

4. Numerical Experiments

In this section, we evaluate the performance of the proposed methods by examining them.
We aim to measure their efficiency and robustness in addressing benchmark test problems
involving some convex and nonconvex multi-objective optimization (MOO) sourced from var-
ious multiobjective optimization research articles in the literature. The algorithms were coded
in MATLAB R2023b using a PC with the following specifications: Intel Core i5-1135G7 CPU
running at 2.4GHz, and 16 GB of RAM. Subsequently, in the context of multiobjective opti-
mization, we define e = [1, · · · , 1]T ∈ Rm, Q = Rm

+, and C = {e1, e2, · · · , em} ⊂ Rm.

Below, we present a summary of the methods under consideration. This encompasses both
our proposed methods and those employed for comparison purposes:

• WYL: is the parameter βWYL
k ;

• WHS: is the parameter βWHS
k ;

• WLS: is the parameter βWLS
k ;

• WHS∗: is the parameter max{βWHS∗

k , 0};

• WLS∗: is the parameter max{βWLS∗

k , 0};

• PRP: a nonnegative PRP CG method with βk := max{βPRP
k , 0} in [40].

See Remark 3.3 for details on these parameters. Usually, a nonnegative CG parameter is
denoted with a plus sign at the end, for instance, PRP+. However, throughout this section,
we refer to a nonnegative PRP simply as PRP, likewise for the rest of the methods.
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An essential part of these methods is the computation of the steepest descent direction
and the optimal value, denoted as u(z) and v(z) defined in (2.6) and (2.7) respectively. To
achieve this, we made use of the built-in function in MATLAB called quadprog to solve problem
(2.16). In addition, the selection of the step size was performed using a line strategy that
satisfies (2.20). Below are the initial parameters utilized in the implementation of our proposed
methods for these line searches: ρ = 10−4, c = 2

5 , σ = 10−1, µ1 = 10−1, µ2 =
1
2 .

Furthermore, Lemma 2.4 establishes that z ∈ Rn represents a Q-critical point of F only
if v(z) = 0. Based on these findings, the experimentation process involved executing all the

implemented methods until the point of convergence, defined as v(z) ≥ −5 × eps
1
2 . Here,

eps corresponds to the machine precision which is approximately 2.22× 10−16. Alternatively,
the process terminates if the maximum number of iterations, max .It = 5000, is exceeded.

For computational purposes, we use a scaled processing technique for VOP with Q = Rm
+ :

min
z∈Rn

(λ1F1(z), · · · ,λmFm(z)), (4.1)

where λi =
1

max(1,∥∇Fi (z1)∥∞) , i = 1, 2, 3, · · · ,m, and z1 ∈ Rn. This idea was derived from

[20, 21]. It is observed that VOP with Q = Rm
+ is always equivalent to (4.1), this is because

they have the same Q-Pareto optimality.

Let us now discuss on the provided tables. Table 1 presents essential information regarding
the selected test problems. In the first column, we have the names of the problems, such
as “Lov5” aligning to the fifth problem introduced by A. Lovison in [36], and “SLCDT2”
corresponding to the second problem given by Schütze, Lara, Coello, Dellnitz, and Talbi
in [45]. The second column denotes the sources of the problems and the third and fourth
columns labeled as “n” and “m” respectively, indicate the variables under consideration and
the objective functions of the problems. To generate the starting points, a box constraint was
utilized, defined as {z ∈ Rn | l̄ ≤ z ≤ ū}, with the lower and upper bounds denoted in the
fifth and sixth columns, respectively.

Tables 2 and 3 present the results of the proposed methods in comparison with the PRP
CG method and are organized as follows: ’It’, ’Fe’, ’Ge’, and ’time’. In this case, ’It’, ’Fe’,
’Ge’, and ’time’ denote the median numbers of iterations, function evaluations, gradient
evaluations, and CPU time, respectively.

We focus on approximating the Pareto frontiers of the provided problems. To achieve this,
we employed a methodology in which each implemented method was executed 100 times for
each problem. All methods successfully solved the problems 100%, except for AP3 which 97%
of it was solved by WHS while WYL, WLS, PRP, WHS∗ and WLS∗ solved it up to 96%. All
were solved using starting points within a box constraint as described in the last two columns
of Table 1.
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Table 1. List of Test Problems

Problem Refs n m l̄T ūT

MOP1 [30] 1 2 −100000 100000
MOP2 [30] 2 2 (−4,−4) (4, 4)
MOP3 [30] 2 2 (−π,−π) (π,π)
DD1 [8] 5 2 (-20, -20, -20, -20, -20) (20, 20, 20, 20, 20)
Toi4 [50] 4 2 (−2,−2,−2,−2) (5,5,5,5)
PNR [43] 2 2 (−2,−2) (2, 2)
MMR1 [41] 2 2 (0, 0) (1, 1)
AP3 [1] 2 2 (-100, -100) (100, 100)
Lov5 [36] 3 2 (−2,−2,−2) (2, 2, 2)
IKK1 [30] 2 3 (−50,−50) (50, 50)
TE8-1 [49] 15 3 (0, · · · , 0) (10, · · · , 10)
TE8-2 [49] 30 3 (0, · · · , 0) (1, · · · , 1)
TE8-3 [49] 50 3 (0, · · · , 0) (1, · · · , 1)
MOP5 [30] 2 3 (−30,−30) (30, 30)
MOP7 [30] 2 3 (−400,−400) (400, 400)
FDS-1 [14] 10 3 (−2, · · · ,−2) (2, · · · , 2)
FDS-2 [14] 100 3 (−2, · · · ,−2) (2, · · · , 2)
FDS-3 [14] 200 3 (−2, · · · ,−2) (2, · · · , 2)
SLCDT2 [46] 10 3 (−100, · · · ,−100) (100, · · · , 100)
Toi8 [1] 3 3 (-100, -100) (100, 100)
AP1 [1] 2 3 (-10, -10) (10, 10)
BK1 [30] 2 2 (−5,−5) (10, 10)
DGO1 [30] 1 2 −10 13
DGO2 [30] 1 2 −10 13
FF1 [30] 2 2 (-1, -1) (1, 1)
JOS1-1 [32] 10 2 (0, · · · , 0) (1, · · · , 1)
JOS1-2 [32] 100 2 (0, · · · , 0) (1, · · · , 1)
JOS1-3 [32] 1000 2 (0, · · · , 0) (1, · · · , 1)
MLF1 [30] 1 2 −10 13
MLF2 [30] 2 2 (−100,−100) (100, 100)
TE1 [49] 2 2 (−1,−1) (1, 1)
TE2 [49] 2 2 (−2,−2) (2, 2)
TE4 [49] 10 2 (−10, · · · ,−10) (10, · · · , 10)
TE6 [49] 2 2 (0, 0) (100, 100)
TE7 [49] 3 3 (0, 0, 0) (30,30,30)
SP1 [30] 2 2 (−100,−100) (100, 100)
SSFYY2 [30] 1 2 −100 (100, 100)
SK1 [30] 1 2 -100 100
SK2 [30] 4 2 (−10,−10,−10,−10) (10, 10, 10, 10)
VU1 [30] 2 2 (−3,−3) (3, 3)
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Table 2. Performance of the proposed methods in comparison with PRP

WYL WHS WLS

Problem It Fe Ge time It Fe Ge time It Fe Ge time

MOP1 4 1828 75 0.0117 4 1828 75 0.0175 4 1828 75 0.0161
MOP2 1 3 3 0.0047 1 3 3 0.0066 1 3 3 0.0063
MOP3 8 298 129 0.0258 8 291 132 0.0343 8 285 136 0.0365
DD1 11 579 143 0.0338 11 579 141 0.0483 11 579 143 0.0492
Toi4 4 297 84 0.015 4 303 88 0.021 4 297 84 0.0209
PNR 7 106 93 0.0159 7 106 93 0.0233 7 106 93 0.0222

MMR1 10 173 127 0.0283 10 173 127 0.0435 10 173 127 0.0419
AP3 3 330 37 0.0124 3 330 37 0.0196 3 330 37 0.0238
Lov5 2 50 21 0.0086 2 50 21 0.0124 2 50 21 0.0346
IKK1 3 234 51 0.0087 3 235 50 0.01 3 234 51 0.0093
TE8-1 7 681 165 0.0466 7 681 165 0.0479 7 681 165 0.0486
TE8-2 16 1014 268 0.0904 16 1014 268 0.0879 16 1014 268 0.0892
TE8-3 16 1148 287 0.0987 16 1148 287 0.0962 16 1148 287 0.1012
MOP5 1 4 4 0.0061 1 4 4 0.0062 1 4 4 0.0065
MOP7 6 464 93 0.0312 7 527 111 0.0332 8 615 132 0.0391
FDS-1 24 1098 301 0.1264 24 1098 301 0.1265 24 1098 301 0.1274
FDS-2 70 966 804 0.7215 70 966 804 0.7139 70 966 804 0.7255
FDS-3 55 1071 643 0.4158 55 1071 643 0.4144 55 1071 643 0.4102

SLCDT2 3 794 54 0.0215 3 822 54 0.0217 3 794 54 0.0209
Toi8 3 137 52 0.0174 4 144 54 0.019 3 137 52 0.02
AP1 2 183 21 0.0106 2 183 21 0.0121 2 183 21 0.0125
BK1 5 428 95 0.018 5 428 95 0.0198 5 428 95 0.0168
DGO1 2 74 27 0.0069 2 74 27 0.0123 2 74 27 0.0097
DGO2 3 264 59 0.0109 3 264 60 0.0144 3 264 59 0.0137
FF1 14 231 145 0.0376 14 231 145 0.109 14 231 145 0.052

JOS1-1 4 2211 81 0.0216 4 2211 81 0.0287 4 2211 81 0.0278
JOS1-2 4 2211 81 0.0279 4 2211 81 0.0331 4 2211 81 0.0339
JOS1-3 5 2947 107 0.4269 5 2947 107 0.5314 5 2947 107 0.5306
MLF1 1 3 3 0.0057 1 3 3 0.0079 1 3 3 0.0075
MLF2 5 280 77 0.0163 5 283 77 0.0239 5 280 78 0.0226
TE1 4 383 59 0.0123 4 383 59 0.0182 4 383 59 0.0191
TE2 4 147 65 0.0139 4 147 65 0.0209 4 147 65 0.0208
TE4 8 494 120 0.0261 8 499 117 0.037 8 496 120 0.0359
TE6 4 1406 77 0.0165 4 1406 77 0.0253 4 1406 77 0.025
TE7 4 297 45 0.0159 4 298 45 0.0211 4 297 45 0.0217
SP1 6 329 86 0.02 7 329 84 0.0296 6 347 86 0.0289

SSFYY2 3 196 41 0.0089 3 196 41 0.0126 3 196 41 0.0118
SK1 3 203 33 0.0077 3 203 33 0.0125 3 203 33 0.0125
SK2 8 488 128 0.0237 8 489 129 0.0364 8 488 128 0.0353
VU1 98 748 798 0.2659 98 748 798 0.357 98 748 798 0.3605

To ensure a fair and comprehensive algorithmic comparison, we utilized the well-known
Dolan and Moré performance profile [10]. The performance profile assesses the statistical
performance of methods (s ∈ S) in solving individual problems (p ∈ P). The performance
ratio φp,s is defined as:

φp,s =
cp,s

min cp,s : s ∈ S
. (4.2)

All methods share the same stopping criteria: v(z) ≥ −5 × eps
1
2 or reaching the maximum

number of iterations limit. The overall performance of a method s within a factor τ is
quantified by the cumulative distribution function ρs : [0,∞) → [0, 1] which is given as

ρs(τ) =
1

| P |
| {p ∈ P : φp,s ≤ τ} | . (4.3)
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Table 3. Continuation of Table 2

WHS* WLS* PRP

Problem It Fe Ge time It Fe Ge time It Fe Ge time

MOP1 4 1830 75 0.0174 4 1830 75 0.0169 4 1953 78 0.0557
MOP2 1 3 3 0.0067 1 3 3 0.0062 1 3 3 0.0173
MOP3 8 282 135 0.0378 8 292 132 0.0364 7 371 144 0.1004
DD1 11 547 132 0.0485 11 547 136 0.0481 13 512 149 0.1506
Toi4 4 301 87 0.0217 4 301 87 0.0208 5 413 108 0.07
PNR 7 106 93 0.0242 7 106 93 0.0233 7 113 96 0.0907

MMR1 10 173 127 0.0433 10 173 127 0.0418 10 177 127 0.1155
AP3 3 330 37 0.0489 3 330 37 0.0206 4 844.5 50 0.0164
Lov5 2 50 21 0.0322 2 50 21 0.0126 2 50 21 0.0067
IKK1 3 238 52 0.0085 3 238 52 0.0087 3 261 53 0.0083
TE8-1 7 681 161 0.0463 7 681 161 0.0472 7 905 195 0.0926
TE8-2 16 1014 268 0.0911 16 1014 268 0.0924 16 1062 268 0.2451
TE8-3 16 1148 287 0.1031 16 1148 287 0.1059 16 1177 287 0.2734
MOP5 1 4 4 0.0064 1 4 4 0.0062 1 4 4 0.016
MOP7 8 673 133 0.0365 9 808 156 0.0462 6 564 103 0.0793
FDS-1 24 1098 301 0.129 24 1098 301 0.1271 24 1098 301 0.3404
FDS-2 70 966 804 0.7353 70 966 804 0.7339 70 967 802 0.5787
FDS-3 55 1071 643 0.421 55 1071 643 0.414 55 1071 645 0.3489

SLCDT2 3 817 54 0.0219 3 817 54 0.0222 4 869 57 0.017
Toi8 3 140 52 0.0185 3 139 52 0.0187 4 450 75 0.0152
AP1 2 183 21 0.0099 2 183 21 0.0124 2 183 21 0.0044
BK1 5 428 95 0.0174 5 428 95 0.0162 5 510 110 0.0197
DGO1 2 74 27 0.0091 2 74 27 0.0089 2 74 27 0.012
DGO2 3 266 63 0.0141 3 266 63 0.0134 4 570 72 0.0181
FF1 14 231 145 0.0616 14 231 145 0.056 14 194 141 0.1578

JOS1-1 4 2211 81 0.0284 4 2211 81 0.0274 4 2211 81 0.077
JOS1-2 4 2211 81 0.0342 4 2211 81 0.0338 4 2211 81 0.0903
JOS1-3 5 2947 107 0.5339 5 2947 107 0.5332 5 2947 107 1.4922
MLF1 1 3 3 0.008 1 3 3 0.0075 1 3 3 0.0195
MLF2 5 273 74 0.0227 5 273 75 0.0217 5 365 97 0.0701
TE1 4 383 59 0.0194 4 383 59 0.0187 4 413 66 0.0568
TE2 4 147 64 0.0218 4 147 64 0.0208 4 160 72 0.0616
TE4 11 583 154 0.0519 10 567 148 0.0454 8 531 122 0.1001
TE6 4 1415 79 0.0262 4 1415 79 0.0235 5 2101 128 0.0781
TE7 4 292 44 0.0219 4 292 44 0.0212 4 308 49 0.0626
SP1 7 334 90 0.0343 7 335 90 0.0308 7 468 90 0.0836

SSFYY2 3 197 41 0.013 3 197 41 0.0124 3 205 43 0.0375
SK1 3 203 33 0.0132 3 203 33 0.0126 3 203 36 0.0366
SK2 8 469 127 0.0354 8 465 127 0.0353 8 509 135 0.1045
VU1 98 748 798 0.3829 98 748 798 0.3881 101 831 821 0.5794

Figures 1-3 display ρs(τ) on the y-axis against a logarithmic scale (base 2) of τ on the
x-axis, we use τ for simplicity. For instance, ρs(0) indicates the percentage of problems where
a solver s ∈ S outperforms others. A solver with the top-right curve is the most robust. This
makes the performance profile a measure of method efficiency and robustness.

Based on the presented data in Figures 1-3, it is evident that Figure 1, which represents
the median number of iterations (It), shows that WYL, WLS, WHS, WHS∗, and WLS∗

have fewer iterations than the PRP method, making them more efficient and robust than
PRP. Similarly, in Figure 2, which displays the median number of function evaluations (Fe),
the methods WYL, WHS, WLS, WHS∗, and WLS∗ evaluated fewer functions than the PRP
method. Additionally, Figure 3, representing the median number of gradient evaluations (Ge),
indicates that the methods WYL, WLS, WHS∗, WHS, and WLS∗ evaluated fewer gradients
than the PRP method. Finally, Figure 4, which shows the median time taken for computing
iterations, function, and gradient evaluations reveals that WYL requires less time than all the
other methods to achieve a stationary or Q-critical point, followed by WLS, WHS, WHS∗,
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and WLS∗. It is evident that PRP takes more time than all other methods. These results
demonstrate the competitiveness and significance of the proposed CG methods within this
setting.
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To assess the effectiveness of Algorithm 1 with the WYL parameter in accurately gener-
ating Pareto frontiers, we examine four distinct problem instances: JOS1, SP1, LOV5, and
MOP7. For each problem instance, we employ 300 randomly generated starting points within
their respective search domains. Figure 5 illustrates the shapes of the approximate Pareto
frontiers generated by Algorithm 1 with the WYL parameter. Within Figure 5, each blue
point represents the final iteration, while the starting points are indicated by the beginning of
the straight line. The outcomes depicted in Figure 5 demonstrate that Algorithm 1 with the
WYL parameter effectively estimates the Pareto fronts for the considered problems, utilizing
an appropriate number of starting points.
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Fig. 5. Pareto frontiers of some selected problems JOS1, SP1, LOV5 and MOP7 are generated
by Algorithm 1 with WYL parameter to show its ability in generating the Pareto fronts

5. Conclusion

We proposed five CG methods designed for solving VOPs. The first three methods are
the WYL and its HS and LS types. Although these three methods lost their descent property
in the vector setting, we established their global convergence by employing the Wolfe line
search strategy. To capture the spirit of the sufficient descent condition, we modified the
HS and LS types of the WYL and introduced two new methods that achieved this property
with Wolfe line search; global convergence was also established using Wolfe line search. Some
numerical experiments are presented by considering a considerable number of convex and non-
convex multiobjective optimization test problems, demonstrating that our proposed methods
are promising.
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