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1. Introduction

The metric fixed point theory originates from Banach [1] in 1922 on the study of the
Banach contraction f : X — X on a normed vector space X. Later it was extended to a
selfmap f on a complete metric space (X, d) satisfying

d(fx, fy) < ad(x,y) with o € [0,1)

for any x, y € X. Since then there have appeared several hundreds of contractive type
conditions and almost one thousand spaces extending or modifying complete metric spaces.

One of such extended contractive type conditions was due to Rus [25] in 1973 and Hicks-
Rhoades [9] in 1979 as follows:

d(fx, f2x) < ad(x, fx) for every x € X,

where @ € [0,1). Such f is called a weak contraction or a Rus-Hicks-Rhoades map or an
RHR map, and it has a large number of closely related mapping classes. An RHR map was
also called a graphic contraction, iterative contraction, weakly contraction, Banach mapping,
...; see Berinde-Petrusel-Rus [2].

Recently, we noticed in [21, 18, 22, 20] that the RHR map has an interesting long history.
It extends the Banach contraction [1] in 1922, but we found that it is also close to its multi-
valued versions due to Nadler [14] in 1969 and Covitz-Nadler [6] in 1970. The aim of our
[20] was to trace such history of the Rus-Hicks-Rhoades theorem, and to show its grown-up
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versions or equivalents or closely related theorems. Such theorems are too many and could
be called its relatives.

In our previous article [19], we showed that the so-called Suzuki type maps in 2008 are
RHR maps and the proofs of results of Suzuki and his colleagues can be simplified within a
few lines based on our recent works on quasi-metric spaces. Moreover, in [22], we trace the
history of a large number of RHR maps in ordered fixed point theory, and new proofs are also
given for known theorems.

In the present article, our aim is to introduce the RHR contraction principle (Theorem
P) which is a proper extension of the traditional Banach contraction principle. Moreover, we
improve several known theorems closely related to Theorem P.

This article is organized as follows: Section 2 is for preliminaries on quasi-metric spaces
and a basic fixed point theorem. In Section 3, we reprove our basic RHR contraction principle
(Theorem P). From its proof, we add a particular form of the Caristi type fixed point theorem.
Section 4 deals with an extended form of the Banach contraction principle. Consequently the
usual Banach principle holds for orbitally complete quasi-metric spaces. In Sections 5 to 11,
we are concerned with the works of Banach [1], Park and Rhoades [23], Park [16], Suzuki [26]
and related works, Mifiana and Valero [13], Park [18], Fierro and Pizzaro [7], respectively.
In each section, we introduce the main results of each paper and discuss the possibility to
improve them based on our Theorem P. Finally, Section 12 devotes to Epilogue.

2. Preliminaries on Quasi-metric Spaces

We recall the following:

Definition 2.1. A quasi-metric on a nonempty set X is a function g : X x X — [0, 00)
satisfying the following conditions for all x,y,z € X:

(a) (self-distance) g(x,y) =q(y.x) =0 <= x=y;
(b) (triangle inequality) q(x,z) < q(x,y) + q(y, 2).

A metric on a set X is a quasi-metric satisfying

(c) (symmetry) g(x,y) = q(y,x) for all x,y € X.

For quasi-metric spaces, the convergence of a sequence, (right) Cauchy sequences, com-
pleteness, orbits, and orbital continuity are routinely defined as follows; see Jleli-Samet [10].

Definition 2.2. [10]
(1) A sequence (x,) in X converges to x € X if

lim q(x,, x) m q(x, x,) = 0.

=i
n—oo n—o0
(2) A sequence (x,) is left-Cauchy if for every £ > 0, there is a positive integer N = N(g)

such that g(xp, xm) < e forall n > m > N.

(3) A sequence (x,) is right-Cauchy if for every ¢ > 0, there is a positive integer N = N(¢)
such that g(xp, xm) < e forall m>n> N.
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(4) A sequence (x,) is Cauchy if for every € > 0 there is positive integer N = N(g) such
that g(xp, xm) < € for all m, n > N; that is (x,) is a Cauchy sequence if it is left and
right Cauchy.

Definition 2.3. [10]

(1) (X, q) is left-complete if every left-Cauchy sequence in X is convergent;
(2) (X, q) is right-complete if every right-Cauchy sequence in X is convergent;
(3) (X, q) is complete if every Cauchy sequence in X is convergent.

Definition 2.4. Let (X, g) be a quasi-metric space and f : X — X a selfmap. The orbit of
f at x € X is the set
Or(x) ={x,fx,--- , f"x,--- }h.

The space (X, q) is said to be f-orbitally complete if every right-Cauchy sequence in O¢(x) is
convergent in X. A selfmap f of X is said to be orbitally continuous at xg € X if

fn+1

lim f"x=xg = |im x = fxg

n—oo n—o0

for any x € X.

Note that every complete metric space is f-orbitally complete for all maps f : X — X.
There exists a f-orbitally complete metric space but it is not complete. Moreover, there exists
an orbitally continuous map but it is not continuous.

Every quasi-metric induces a metric, that is, if (X, q) is a quasi-metric space, then the
function d : X x X — [0, o0) defined by

d(x,y) = max{q(x,y). q(y, x)}

is a metric on X; see Jleli-Samet [10].

The following was given in [17, 18, 19]:

Theorem 2.5. A selfmap f : X — X of a quasi-metric space (X, q) has a fixed point z € X
if and only if z is a fixed point of the selfmap f of the induced metric space (X, d).

Proof. If z=fz in (X, q), then
d(z, fz) = max{q(z, fz), q(fz, z)} = 0,

and hence d(z, fz) = 0. The converse is true for d = g. |

3. The Rus-Hicks-Rhoades Contraction Principle

In this section, we re-examine the proofs of the Banach contraction principle or the Rus-
Hicks-Rhoades contraction principle for a quasi-metric space (X, g) with aselfmap T : X — X
such that X is T-orbitally complete.
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Lemma 3.1. Let (X, q) be a quasi-metric space, T : X — X a selfmap, and ¢ : X — [0, 00)
any function such that

g(x, T(x)) < o(x) — (T(x)) for some x € M.
Then {T"(x)} is a right-Cauchy sequence.

Proof. If we fix x € X and take m > n € N, we obtain
q(T"(x), T (x)) < Z '(x), THH(x)) < o(T"(x)) — (T ().

(Notice that the last inequality comes from cancelation in the telescoping sum.) In particular
by taking n =1 and letting m — oo we conclude that

Z q(T'(x), T (x)) < ¢(T(x)) < 0.

This implies that {T"(x)} is a right-Cauchy sequence. ]

The following in Park [17] will be called the weak contraction principle or the Rus-Hicks-
Rhoades (RHR) contraction principle:

Theorem P. Let (X, q) be a quasi-metric space and let T : X — X be an RHR map; that
is,

q(T(x), T*(x)) < aq(x, T(x)) for every x € X,
where 0 < o < 1 and X is T-orbitally complete. Then

(i) for each x € X, there exists a point xo € X such that

lim T"(x) = xo,

n—oo

n

a(T"(x). %0) < 1=

T =1,2,-
—q(x, T(x), =12+,

a(T"().%0) < To—a(T"7(x), T"(x), n=1.2,--,
and

(i) xo is a fixed point of T if and only if T is orbitally continuous at xg.

This was proved in [17] by analyzing a typical proof of the Banach contraction principle
given by Art Kirk ([11, Theorem 2.2]). We reprove this for the completeness:

Proof. Step 1. For each x € X, {T"(x)} is right Cauchy. Adding g(x, T(x)) to both sides
of the inequality q(T(x), T?(x)) < aq(x, T(x)) yields

q(x, T(x)) + a(T(x), T*(x)) < q(x, T(x)) + e q(x, T(x))
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which can be rewritten

q(x, T(x)) — aq(x, T(x)) < a(x, T(x)) = q(T(x), T*(x)).

This in turn is equivalent to

q(x, T(x)) < (1 = &) alx, T(x)) = q(T(x), T*(x))]-

Now define the function ¢ : X — [0, o) by setting ¢(x) = (1 — a)1q(x, T(x)), for x € X.
This gives us the basic inequality

a(x, T(x)) < ¢(x) = ¢(T(x)), xeX.

Therefore { T"(x)} is a right-Cauchy sequence by Lemma 3.1.

Step 2. T-orbital completeness: Since X is T-orbitally complete, for any x € X there
exists xp € X such that

nI|_>moo T"(x) = xo.

Step 3. Orbital continuity at xp: If T is orbitally continuous at xg, then

xo = lim T"(x) = lim T""(x) = T(x).

n—oo n— oo

Thus xg is a fixed point of T. Conversely, if xg is fixed, then clearly T is orbitally continuous
at xp.

Step 4. Convergence for { T"(x)}: The last part of Kirk's original proof in [11] is added
for completeness. Returning to the inequality

g(T"(x), T™(x)) < o(T"(x)) — o(T"(x)),
upon letting m — oo we see that
g(T"(x),x0) < o(T"(x)) = (1 = a)'q(T"(x), T"(x)).

Since (1 — a)~1q(T"(x), T"1(x)) < 2= q(x, T(x)), we obtain

— l-«

n

a(T"(). %) < 7

—a(x, T(x)).

This provides an estimate on the rate of convergence for the sequence { T"(x)} which depends
only on g(x, T(x)). |

Remark 3.2.
(1) In a quasi-metric space, the condition (a) is consistent with
q(T(x), T*(x)) < aq(x, T(x))
when x is a fixed point of T. The triangle inequality (b) is used in Step 2.

(2) In the above lengthy proof, the symmetry (c) of a metric is not used. Moreover, it is
enough to assume the (orbital) continuity at xp only. For example, it is well-known that
the Kannan map is continuous at its fixed point only.
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(3) Hicks and Rhoades [9] in 1979 obtained Theorem P for a complete metric space with
the following conclusion instead of our (ii) in Theorem P:

(i) z is a fixed point of T if and only if G(x) := g(x, Tx) is T-orbitally lower semi-
continuous at z.

This is not claiming the existence of fixed point; see our (ii).

(4) In Step 1 of the proof of Theorem P, we obtained the basic inequality

a(x, T(x)) < p(x) = o(T(x)), x € M.

If ¢ : X — [0,00) is lower semicontinuous from above and bounded from below, by
applying the Caristi fixed point theorem [3], we can obtain fixed points. This leads to
Step 4 directly. Therefore, the orbital continuity in Theorem P(ii) holds in this case.

Example 3.3. Let X = [0, 2] C R with the usual metric g and
T(x) = 1 !fx €10,1]
x ifx€[L,2].
Then q(T(x), T?(x)) < aq(x, T(x)) for some a € [0,1). In fact,
0=¢(1,1) <agqg(x,1) for x €[0,1],

0=g(x,x) <aq(x,x) forx €[l,2].

This example has ‘many’ fixed points of T. Note that T is an RHR map and not a Banach
contraction.

From the proof of Theorem P, we have the following:
Theorem 3.4. Let (X, q) be a quasi-metric space and let T : X — X be a map satisfying
a(x, T(x)) < o(x) —¢(T(x)), x€X,
for a real-valued function ¢ : X — [0, 00) such that
o(x)=(1- a)flq(x, T(x)) with0 < a<1,
and X is T-orbitally complete. Then

(i) for each x € X, there exists a point xy € X such that
lim T"(x) = xo,
n—oo

n

a(T"(x), %) < £

T 1,2,
aq(x, (x)), n=1,2,
and

(i) T : X — X is orbitally continuous at xo € X in (i) if and only if xo is a fixed point of
T.
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This is a particular form of the Caristi type fixed point theorem.
The original Rus-Hicks-Rhoades theorem can be extended to the following consequence of
the Caristi type fixed point theorem; see [17, Theorem 6.3].

Theorem 3.5. Let T be a continuous selfmap of a complete quasi-metric space (M, q)
satisfying
q(T(x), T?(x)) < aq(x, T(x)) for every x € M,

where 0 < aw < 1. Then T has a fixed point and the statement (i) of Theorem P holds.

Proof. Completeness implies T-orbitally completeness. Then Theorem 3.5 follows from The-
orem P. [ |

4. The Extended Banach Contraction Principle

The following consequence of Theorem P in Park [17] properly extends the Banach con-
traction principle:

Theorem Q. Let (X, q) be a quasi-metric space and let T : X — X be an improved Banach
contraction, that is, for each x € X, there exists a y € X such that

q(T(x), T(y)) < aq(x,y) where 0 < a < 1. (a)
(i) If X is T-orbitally complete, then, for each x € X, there exists a point xo € X such
that
Jim 770 =
and

n

a(T"(). %) < 7

T(x)), n=1,2,---,
—q(x. (). 7
« — n
AT, %) < 7o g(T" (), T°(), n=1,2,-.
(i) xo is the unique fixed point of T if and only if T is orbitally continuous at xg.

The Banach contraction principle appeared in thousands of publications should be improved
as in Theorem Q.

The following extends the standard Banach contraction principle formulated by Art Kirk
[11, Theorem 2.2]:

Theorem 4.1. Let (X, q) be a quasi-metric space and let T : X — X be a contraction, that
is,
q(T(x), T(y)) < aq(x,y) for every x,y € X,

with 0 < o < 1. If (X, q) is T-orbitally complete, then T has a unique fixed point x € X.
Moreover, for each x € X,
lim T"(x) = xo

n—o0
and, in fact, for each x € X,

n

a(T"().50) < 1

aq(x, T(x)), n=1,2,---.
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Proof. All things follow from Theorem Q except the following in the proof of Kirk ([11,
Theorem 2.2]):

Step 5. Uniqueness of fixed point: In order to see that xg is the only fixed point of T,
suppose T(y) =y. Then by what we have shown in Theorem 3.2

xo= lim T"(y)=y.
n— o0
This completes the proof. |

Moreover, under the hypothesis of Theorem 4.1, Steps 1-4 of the proof of Theorem P hold.
Therefore, Theorem P implies all conclusions of the Banach contraction principle except the
uniqueness of the fixed point.

5. Banach [1] in 1922

From now on, we try to improve some known theorems closely related to Theorem P. The
traditional Banach contraction principle is a particular form of Theorem Q when X is a metric
space and (q) holds for all x,y € X. It appears in thousands of publications and should be
corrected or replaced by Theorem Q.

The origin of the Banach contraction is the following due to Banach [1] in 1922:

Theorem 5.1 (Banach). If U(X) be a continuous operator on E, the counter-domain of U(X)
is contained in Ey. There exists a number 0 < M < 1 which implies, for every X' and X",
the inequality

IU(X") = UXT)]| < M|IXT = X7

Then there exists an element X such that X = U(X).

Here E and E; is a normed space and its complete subset, resp.

Now we have the following:
Banach's Theorem 5.1 = The usual Banach contraction principle =
Theorem 4.1 = Theorem Q = Theorem P.

6. Park and Rhoades [23] in 1980

In [23] we established several fixed point theorems involving hypotheses weak enough to
include a large number of known theorems as special cases. However, we have to correct
certain things as follows:

Let f be a selfmap of a topological space X. A function G : X — [0, c0) is said to be
f-orbitally lower semicontinuous at a point p € X if, for every xo € X, x,, — p implies
G(p) < liminfx G(xp,) where {x,, }%2; is a subsequence of {x,}>,, which is defined by
Xnt1 = F(Xn), i.e. {x2}525 = Or(x0).

A function G : X — [0, c0) is said to be f-orbitally lower semicontinuous from above at
a point p € X if, for every xp € X, x, — p implies G(p) < lim, G(x,), where {x,}2, is
defined by xp11 = fXp, ie. {x,}325 = Or(x0).

In 2001, Kirk and Saliga [12] introduced this concept and applied it to extend the Caristi
fixed point theorem.

Now we apply this concept to improve Park-Rhoades [23, Theorem 1]:
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Theorem 6.1. Let d be a nonnegative real valued function defined on X x X such that, for
any x,y € X, d(x,y) =d(y,x) =0 if and only if x = y. If there exists a point u € X such
that lim, d(f"u, f™u) = 0, and if {f"u} converges to the limit p € X, then p is a fixed
point of f if and only if G(x) = d(x, fx) is f-orbitally lower semicontinuous from above at p.

Proof. Suppose {f"u} converges to a fixed point p of X. Then 0 = G(p) < lim, G(f"u).
Conversely, if G is f-orbitally lower semicontinuous from above at p, then

0= |ilr1n d(f"u, f"u) > d(p, fp).

The following improves [23, Corollary 1]:

Corollary 6.2. Let (X, d) be a metric space, f : X — X, and ¢ : X — [0, 00) such that,
there exists a point u € X with d(x, fx) < ¢(x) — ¢(fx) for each x € Of(u), and Or(u) is
complete. Then

(i) lim, f"u = p exists, and

(ii) p is a fixed point of f if and only if G(x) = d(x, fx) is f-orbitally lower semicontinuous
from above at p.

The following improves [23, Theorem 2]:

Theorem 6.3. Let f be a selfmap of a metric space (X, d) satisfying:

(i) 6(O¢(x)) < oo for each x € X, where § denotes the diameter.

(ii) There exists a u € X such that O¢(u) has a cluster point p € X.

(i) There exists a function ¢ : [0,00) — [0, 00) which is nondecreasing, continuous from
the right and satisfies ¢(t) < t for each t > 0 and the inequality

d(fx, F2x) < (8(Of(x)) for each x € X.
Then p is the unique fixed point of f and lim, f"u = p.

Proof. Define p, = §(O(f"u)). From (i), py is finite for each n. Since pp11 < p, for each n,
{pn} converges to some p > 0.

For each j > i > n+1, from (iii),
d(f'u, Fu) < o(6(Or(Fu) U Or(F2u))) < (3(0¢(F"u)) = @(pn),

so that pny1 < ¢(pn) for each n. Since ¢ is continuous from the right, we have p < ¢(p),
which implies p = 0. Therefore {f"u} is Cauchy, and f"u — p by (ii).

For each € > 0 there exists an integer N such that n > N implies d(f"u, p) < e.

For any integers m > 0 and n. > N, from (iii) it follows

d(p. F"p) < d(p, ") + d(F(F"1p), £2(F"u)
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< d(p, FLu+ p(6(0(F™2p) U O(F"1u)))
< e+ p(max{2e, §(Or(p)) + €}).

From the Lemma of Hegediis [8], 6(Of(p)) = sup,, d(p, f™p), so that we have
3(0r(p)) < €+ p(max{2e,6(0r(p)) + €})-

Since ¢ is arbitrary, §(Or(p)) < @(6(Or(p)), so that O¢(p) = 0, which implies §(Or(p)) = 0.
Therefore p = fp.

Uniqueness follows from (jii). |

In [23], this is extended to 2-metric spaces.

7. Park [16] in 1980

The following improved version of [16, Theorem 2] is an extension of the Banach contrac-
tion principle:

Theorem 7.1. Let f be a selfmap of a metric space (X, d). If there exists a point u € X and
a X €[0,1) such that O¢(u) is complete and

d(fx, f2x) < Md(x, x) (*)

holds for any x € O¢(u), then {f'u} converges to some & € X, and

i

d(flu,€) < IA /\d(u, fu) for i > 1.

Further, if f is orbitally continuous at £ or if (x) holds for any x € O(u), then £ is fixed under
f.

Proof. Since d(f'u, f*1u) < A\ (f'~tu, f'u), we have
d(flu, fu) < Nd(u, fu) for i > 1.
For any /,j > 1, we have
d(flu, FHu) < d(flu, FHu)+ -+ d(FV o, )
<d(flu, fHu) (L A4+ N7
1N i
= 1_)\d(f"u,f u)
1 S
< i i+1
< 71_/\d(f u, f'" u)
/\i
<
—1-2A

d(u, fu).

This shows that, {f'u} is Cauchy and converges to some ¢ € X. By letting j — 0o in the
above inequality, we have

d(flu,€) <

/\i
> 1.
17)\d(u, fu) for i >1
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Suppose f is orbitally continuous at . Then fiu — & implies f 1y — f€. This shows that
& = €. Suppose (*) holds for any x € O(u). Then

d(f™u, f&) < Xd(f'u,€)
for any . This implies £ = f&. |

In [16], we showed that many works of Pal-Maiti, Rhoades, Wong, Ciri¢, Fisher, Jaggi, and
Taskovitz are consequences of Theorem 7.1.

8. Suzuki [26] in 2008 and Related Works

From Theorem P, we have the following simplified form:

Theorem 8.1. Let (X, q) be a quasi-metric space and T : X — X be a continuous RHR
map, that is,
q(Tx, T?x) < a q(x, Tx) for every x € X,

for 0 < o < 1. If X is T-orbitally complete, then
(i) for each x € X, there exists xo € X satisfying lim,_,o T"(x) = xo, and
(ii) xo is a fixed point of T.
The following consequence of Theorem 8.1 generalizes the Banach contraction principle
as shown by Suzuki [26, Theorem] in 2008:

Theorem 8.2 (Suzuki). Let (X, d) be a complete metric space and T be a mapping on X.
Define a nonincreasing function 6 from [0, 1) onto (1/2,1] by

1 ifo<r<(v5-1)/2,
0(ry=< (1 —r)r2 if(vVb-1)/2<r<272
1+t if272<r<1.
Assume there exists r € [0,1) such that
0(r)d(x, Tx) < d(x,y) implies d(Tx, Ty) < rd(x,y)

for all x,y € X. Then there exists a unique fixed point z of T. Moreover lim, T"x = z for all
x € X.

This means T is an RHR map and a Picard operator, hence Theorem 8.2 for quasi-metric
spaces follows from Theorem 8.1. Note that uniqueness is clear. From now on, T is called
the Suzuki type as its many followers used it.

The following consequence of Theorem 8.1 is motivated by Suzuki [25, Corollary 1]:
Corollary 8.3. Let T be a selfmap of a complete quasi-metric space (M, q).
(1) For any function 6 from [0, 1) onto [0, 1], there exists r € [0, 1) such that
0(r)a(x, Tx) < q(x,y) implies q(Tx, Ty) < rq(x,y)

for all x,y € M. Then there exists a unique fixed point z of T. Moreover lim, T"x = z
for all x € M.
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(2) There exists r € (0,1) such that every selfmap T on M satisfying the following has a
fixed point:
1
10,000

(x, Tx) < q(x,y) implies q(Tx, Ty) < rq(x,y)
for all x,y € M.

Proof. For y = Tx, we have §(Tx, T?x) < rd(x, Tx) for all x € M. Then we can apply
Theorem 6.1 For the uniqueness, if we have two different fixed points x, y, then we have the

contradiction:
d(x,y)=46(Tx, Ty) < ré(x,y).

Example 8.4. Pant et al. [15, Theorem 2.1] in 2021 considered the map f : X — X satisfying

d(fx, fy) < [p(x) — o(E)] + [e(y) — w(fy)]

for all x,y € X, where (X, d) is a complete metric space.
For y = fx, their condition reduces to

o(x, f2x) < p(x) — (i), xe€X.
Hence our argument in Remark 3.2 (3) works for f.

Example 8.5. There have appeared too many variants of the Suzuki type maps. We state
only one of them motivated from Chandra-Joshi-Joshi [4] in 2022.

Let (M, ) be a quasi-metric space, and T : M — M. Then for all x,y € X, we denote
m(Tx, Ty) = ad(x,y) + bmax{d(x, Tx),d(y, Ty)} + c[d(x, Ty) + o(y, Tx)],

where a, b and ¢ are non-negative reals such that a+ b+ 2c = r with r € [0,1). Now, we
consider the following generalized contractive condition

0(r) min{qg(x, Tx), g(x, Ty)} < q(x, y) implies q(Tx, Ty) < m(Tx, Ty),

where 0 : [0,1) — (1/2, 1] is as defined in Theorem 8.2. It is remarkable that this condition is a
generalization of the condition (22) and several other conditions mentioned in the Transaction
Paper of Billy E. Rhoades [24].

The following improves Chandra-Joshi-Joshi [4, Theorem 4]:

Corollary 8.6. Let (M, q) be a complete quasi-metric space, and T : M — M. Assume
that there exists r € [0, 1) such that the requirement (1) of Corollary 8.3 is satisfied for each
x,y € M. Then T has a unique fixed point z € M. Moreover, lim, o, T"x = z for all
x e M.

As in the original proof in [4], we have
q(Tx, T?x) < rq(x, Tx), Vxe& M.

Therefore the conclusion follows from Theorem 8.1.
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Remark 8.7. Our Corollary 8.6 and Chandra-Joshi-Joshi [4, Theorem 4] follow from Theorem
8.1 In fact, the beginning few lines of its proof in [4] shows

d(Tx, T?x) < rd(x, Tx) V x € X.

Therefore Theorem 8.1 works.

9. Minana and Valero [13] in 2019

Mifiana and Valero [13] stated: We show that the existence of fixed points for the most
part in the aforesaid G-metric fixed point results is guaranteed by a very general celebrated
result by Park, even when the G-contractive condition is reduced to a quasi-metric one which
is not considered as a contractive condition in any celebrated fixed point result.

Taking into account the exposed facts about G-metric spaces and quasi-metric spaces, we
are able to show that most fixed point results obtained in G-metric spaces can be deduced
from a fixed point result stated in quasi-metric spaces obtained by Park in [16]. To this end,
let us recall such a result.

Theorem 9.1. Let (X, T) be a topological space, let d : X x X — [0, 00[ be a continuous
mapping, such that d(x,y) =0<= x =1y, and let f : X — X be a mapping. Suppose that
there exist x, xo € X, such that the following conditions hold:

1. lim, oo d(F"(x0), F™1(x0)) = O;
2. (f"(x0))nen converges to x with respect to T;

3. f is orbitally continuous at x with respect to T.
Then x € Fix(f)={y € X: f(y) =y}

It must be stressed that Park'’s original version of the preceding result was stated for lower
semicontinuous mappings d. However, we have focused our attention on continuous ones,
because it is enough for our announced purpose.

10. Park [18] in 2023

Here we add new information related to the above theorems: Kirk-Saliga [12] in 2001 and
Chen-Cho-Yang [5] in 2002 introduced the following concept: We say that ¢ : M — R for
a metric space M is lower semicontinuous from above if given any sequence {x,} in M, the
conditions lim, x, = x and {¢(xp)} L r=p(x) < r.

This concept can be applied to improve many facts, for example, Theorems 7.1 and 8.1
in the present paper.

11. Fierro and Pizzaro [7] in 2023

In this note, Fierro and Pizzaro [7] prove a fixed point existence theorem for set-valued
functions by extending the usual Banach orbital condition concept for single valued mappings.
As they show, this result applies to various types of set-valued contractions existing in the
literature.
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Let (X, d) be a complete metric space. We denote by B(X) the family of all bounded
sets of X and by C(X) the family of all nonempty and closed subsets of X. In what follows,
CB(X) = C(X)NB(X) and B(A, r) = U,ca B(a, r), for each A€ B(X) and r > 0.

Let T : X — CB(X) be a multimap, x € X and B be a subset of X. We denote
T(B) = U,cp Ty and for each n € N, T"x = T(T"x), with T°x = {x}. The orbit of x
under T is defined as

O(x, T) = D T"x.
n=0

Let xo € X. A function G : X — R is said to be (xq, T)-orbitally lower semicontinuous at x* €
X, if for any sequence {x,}nen in O7(x0) converging to x*, we have G(x*) < liminf G(x,).
In the sequel, GT : X — R stands for the function defined as G'(x) = d(x, Tx) and for
£: X — X, we denote G¢ = G{¢},

Given a multimap T : X — CB(X), xo € X, and k € [0,1), we say T satisfies the multi-
valued Banach orbital (MBO) condition at xo with constant k, whenever for all x € O7(xo),
infyer d(y, Ty) < kd(x, Tx), and that, T satisfies the strong multivalued Banach orbital
(SMBO) condition at xp with constant k, whenever for all x € O7(x0), sup,cr, d(y, Ty) <
kd(x, Tx).

Note that MBO conditions are more closer to the RHR maps than the Banach contractions.

The following improves the main result of Fierro-Pizzaro [7, Theorem 3.1]:

Theorem 11.1. Let (X, d) be a quasi-metric space and T : X — CB(X) be a multimap
satisfying the MBO condition at xg € X with constant k. Then, there exist x* € X and a
sequence {x,}nen converging to x* such that, for all n € N, x,11 € Tx,, and the following
two conditions hold:

n

(i) d(xn, Txp) < d(Xn, Xnt1) < k"d(x0, Txo) and
(i) d(x*, Txp) < 57 d(x0, Txo), for all n € N.

Moreover, the following conditions are equivalent:
(i) x* € Tx*,
(iv) Gt is (xo, T)-orbitally lower semicontinuous [from above] at x*, and

(v) the function h : X — R, defined by h(x) = d(x, Tx), is lower semicontinuous [from
above] at x*.

Remark 11.2.

1) the origin of this theorem is Park-Rhoades [23] and others;
2) this holds for quasi-metric spaces; and

(1)
(2)
(3) the lower semicontinuity can be extended to the one from right.
(4)

4) The CB(X) can be extended to C(X) as in Covitz-Nadler [6].
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12. Epilogue

From 2022, we have applied our 2023 Metatheorem and its old versions to nearly one
hundred theorems and obtained almost one thousand new theorems for the mathematical
community. While we were seeking on applications of Metatheorem, we found that the
Metatheorem can be very useful to the fixed point theory.

In metric fixed point theory, there have been appeared hundreds of contractive type condi-
tions and almost one thousand artificial metric type spaces. Recently, the present author found
that many contractive type conditions are the weak contractions or the Rus-Hicks-Rhoades
type maps. Moreover, even the very popular Banach contraction principle is inadequately
stated. Further, we found many incorrect statements and unnecessarily lengthy proofs of
them for artificial metric type spaces.

However, we are not going to make any new contractive conditions or any new artificial
spaces. Our main aim to study in metric fixed point theory is to improve known facts and to
correct inadequate statements.

Competing Interests

The author declares that there are no competing interests.

References

[1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equa-
tions integrales. Fund. Math., 3 (1922), 133-181.

[2] V. Berinde, A. Petrusel and J.A. Rus, Remarks on the terminology of the mappings
in fixed point iterative methods in metric spaces, Fixed Point Theory, 24(2) (2023),
525-540.

[3] J. Caristi, Fixed point theorems for mappings satisfiying inwardness conditions, Trans.
Amer. Math. Soc., 215 (1976), 241-251.

[4] N. Chandra, B. Joshi and M.C. Joshi, Generalized fixed point theorems on metric spaces,
Mathematica Moravica, 26 (2022), 85-101.

[5] Y. Chen, Y.J. Cho and L. Yang, Note on the results with lower semicontinuity. Bull.
Korean Math. Soc., 39 (2002), 535-541.

[6] H. Covitz, Jr. S.B. Nadler, Multi-valued contraction mappings in generalized metric
spaces, Israel J. Math., 8 (1970), 5-11.

[7] R. Fierro and S. Pizzaro, Fixed points of set-valued orbital condition, Cubo, A Math.
Jour., 25 (2023), 151-159.

[8] M. Hegediis, New generalizations of Banach's contraction principle, Acta Sci. Math., 42
(1980), 87-89.

[9] T.L. Hicks and B.E. Rhoades, A Banach type fixed point theorem, Math. Japon., 24
(1979), 327-330.



134 S. Park

[10] M. Jleli and B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed
Point Theory Appl., 2012 (2012), Article No: 210, 1-7.

[11] W.A. Kirk, Contraction mappings and extensions, In Handbook of Metric Fixed Point
Theory, pages 1-34, Kluwer Academic Publ., 2001.

[12] W.A. Kirk and L.M. Saliga, The Brézis-Browder order principle and extensions of Caristi’s
theorem, Nonlinear Anal., 47 (2001), 2765-2778.

[13] J.-J. Mifana and O. Valero, Are fixed point theorems in G-metric spaces an authentic
generalization of their classical counterparts?, J. Fixed Point Theory Appl., 21 (2019),
Paper No. 70, 1-14.

[14] S.B. Nadler, Jr. Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-
488.

[15] R.P. Pant, V. Rakotevi¢, D. Gopal, A. Pant and M. Ram, A general fixed point theorem,
Filomat, 35 (2021), 4061-4072.

[16] S. Park, A unified approach to fixed points of contractive maps, J. Korean Math. Soc.,
16 (1980), 95-105.

[17] S. Park, All metric fixed point theorems hold for quasi-metric spaces, Results in Nonlinear
Anal., 6 (2023), 116-127.

[18] S. Park, Almost all about Rus-Hicks-Rhoades maps in quasi-metric spaces, Adv. Th.
Nonlinear Anal. Appl., 7 (2023), 455-471.

[19] S. Park, Comments on the Suzuki type fixed point theorems, Adv. Theory Nonlinear
Anal. Appl., 7 (2023), 67-78.

[20] S. Park, From Banach to Rus-Hicks-Rhoades: a history of contraction mappings, In
Advances in Real and Functional Analysis, CRC Press, to appear.

[21] S. Park, Relatives of a theorem of Rus-Hicks-Rhoades, Lett. Nonlinear Anal. Appl., 1
(2023), 57-63.

[22] S. Park, The realm of the Rus-Hicks-Rhoades maps in the metric fixed point theory, J.
Nat. Acad. Sci., ROK, Nat. Sci. Ser., 63 (2024), 1-45.

[23] S. Park and B.E. Rhoades, Some general fixed point theorems, Acta Sci. Math., 42
(1980), 299-304.

[24] B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer.
Math. Soc., 226 (1977), 257-290.

[25] I.A. Rus, Teoria Punctului Fix, I, Univ. Babes-Bolyai, Cluj, 1973.

[26] T. Suzuki, A generalized Banach contraction principle that generalizes metric complete-
ness, Proc. Amer. Math. Soc., 136 (2008), 1861-1869.



	Introduction
	Preliminaries on Quasi-metric Spaces
	The Rus-Hicks-Rhoades Contraction Principle
	The Extended Banach Contraction Principle
	Banach 1 in 1922
	Park and Rhoades 21 in 1980
	Park 14 in 1980
	Suzuki 23 in 2008 and Related Works
	Miñana and Valero 12 in 2019
	Park 17 in 2023
	Fierro and Pizzaro 6 in 2023
	Epilogue

