

Zero Point Approximation Schemes for Monotone Vector Fields on Complete Geodesic Spaces

Shuta Sudo

Department of Information Science, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan. 7523001s@st.toho-u.ac.jp

ABSTRACT

In this paper, we obtain two convergence theorems to approximate zero points of a monotone vector field defined on a complete geodesic space with curvature bounded above.

Article History

Received 7 Sep 2025 Revised 7 Oct 2025 Accepted 18 Oct 2025

Keywords:

Geodesic space; Monotone vector field; Zero point approximation; Mann type iteration; Halpern type iteration MSC 47H10, 58C30

1. Introduction

In fixed point approximation theory, we have the following two iterative schemes: For a given mapping T, points y_1 , z_1 , u, and a sequence $\{a_n\}$, we generate sequences $\{y_n\}$ and $\{z_n\}$ by

$$y_{n+1} = a_n y_n + (1 - a_n) T y_n;$$

 $z_{n+1} = a_n u + (1 - a_n) T z_n$

for $n \in \mathbb{N}$. We call a method such as $\{y_n\}$ the Mann type iteration [22], and a method such as $\{z_n\}$ the Halpern type iteration [5, 30]. In appropriate settings, such a sequence $\{y_n\}$ converges weakly to a fixed point of T, and such a sequence $\{z_n\}$ converges strongly to the closest fixed point to u. These iterations are studied in the setting of Hilbert spaces, and after that, they are generalised to geodesic spaces; see [6, 25] for instance.

On the other hand, such iterations are applied to find a zero point of a maximally monotone operator on Hilbert spaces. The proximal point algorithm is a zero point approximation scheme proved by Rockafellar [24] in 1976. Later, Kamimura and Takahashi [11] proposed two modified proximal point algorithms related to Mann's and Halpern's iterations. Even after that, these schemes are generalised to Banach spaces, and many researchers introduced several other iterative methods; see [10, 12, 27] for instance.

This is an open access article under the Diamond Open Access

Please cite this article as: S. Sudo, Zero Point Approximation Schemes for Monotone Vector Fields on Complete Geodesic Spaces, Nonlinear Convex Anal. & Optim., Vol. 4, No. 2, 2025, 97–117. https://doi.org/10.58715/ncao. 2025.4.7

As a typical application of zero point approximations, there are convex minimisation problems. That is, for a given convex function f on a set S having some convexity structure, we consider a problem to find a point $x \in S$ such that

$$f(x) = \inf f(S)$$
.

Recently, such a problem has been discussed in the setting of geodesic spaces. Particularly, $CAT(\kappa)$ spaces are reasonable geodesic spaces, and they have effective properties to investigate convex minimisation problems. In the 1990s, Jost [7] and Mayer [23] introduced resolvent operators for convex functions in complete CAT(0) spaces. Using this resolvent, Bačák [1], Kimura and Kohsaka [15] proved approximation theorems with the canonical and two modified proximal point algorithms. Later, Kimura and Kohsaka [16, 17] investigated convex minimisation problems on CAT(1) spaces, and proved approximation theorems using resolvents dedicated to the setting of spherical surfaces. For recent related results, see [9, 13] for instance.

The notion of monotone operators has been generalised to the framework of geodesic spaces. For instance, Chaipunya, Kohsaka and Kumam [3] dealt with monotone vector fields on a CAT(0) space using tangent spaces, and the author proposed a class of monotone vector fields on a CAT(κ) space; see [28]. Furthermore, we obtained the following result:

Theorem 1.1 (Sudo [29]). Let M be an admissible complete $CAT(\kappa)$ space and A a resolvably monotone vector field on M. Let $\{r_n\}$ be a sequence of positive real numbers whose sum is divergent to ∞ . For a given initial point $x_1 \in M$, generate a sequence $\{x_n\}$ of M by

$$x_{n+1} = J_{r_n A} x_n$$

for $n \in \mathbb{N}$, where J_{r_nA} is the resolvent operator of r_nA . Then, the following hold:

- (i) The resolvably monotone vector field A has a zero point if and only if the generated sequence $\{x_n\}$ is κ -bounded;
- (ii) if A has a zero point and $\inf_{k \in \mathbb{N}} r_k > 0$, then the generated sequence $\{x_n\}$ Δ -converges to a zero point of A, which equals to

$$\lim_{n\to\infty} P_{\mathsf{Zero}\,A} x_n.$$

Motivated by these results, in this paper, we consider the following: Let M be an admissible complete CAT (κ) space and A a resolvably monotone vector field on M. For points $y_1, z_1, u \in M$, a sequence $\{a_n\}$ of [0,1] and a positive sequence $\{r_n\}$, generate sequences $\{y_n\}$ and $\{z_n\}$ by

$$y_{n+1} = a_n y_n \oplus (1 - a_n) J_{r_n A} y_n;$$

 $z_{n+1} = a_n u \oplus (1 - a_n) J_{r_n A} z_n$

for $n \in \mathbb{N}$, where J_{r_nA} is the resolvent operator of r_nA . The main results of this work are about the convergence to zero points of these sequences.

2. Preliminaries

For a metric space (M, d) and $x, y \in M$, we call a mapping γ_{xy} from [0, d(x, y)] to M a geodesic from x to y if $\gamma_{xy}(0) = x$, $\gamma_{xy}(d(x, y)) = y$ and

$$d(\gamma_{xy}(s), \gamma_{xy}(s')) = |s - s'|$$

for $s, s' \in [0, d(x, y)]$. Further, for $r \in]0, \infty]$, we call M a uniquely r-geodesic space if for any points $x, y \in M$ with d(x, y) < r, there exists a unique geodesic γ_{xy} from x to y. In this case, for $t \in [0, 1]$, we can define convex combination of x and y with a ratio t by

$$tx \oplus (1-t)y = \gamma_{xy}((1-t)d(x,y)).$$

We next define a function c_{κ} introduced by Kajimura and Kimura [8]. We define a real-valued function c_{κ} on $\mathbb R$ by

$$c_{\kappa}(a) = \frac{1}{2}a^{2} + \sum_{n=2}^{\infty} \frac{(-\kappa)^{n-1}a^{2n}}{(2n)!} = \begin{cases} \frac{1-\cos(\sqrt{\kappa}a)}{\kappa} & (\kappa > 0); \\ \frac{1}{2}a^{2} & (\kappa = 0); \\ \frac{\cosh(\sqrt{-\kappa}a) - 1}{-\kappa} & (\kappa < 0) \end{cases}$$

for $a \in \mathbb{R}$. From the definition, for $a \in \mathbb{R}$, we have

$$c_{\kappa}'(a) = a + \sum_{n=2}^{\infty} \frac{(-\kappa)^{n-1} a^{2n-1}}{(2n-1)!} = \begin{cases} \frac{\sin(\sqrt{\kappa}a)}{\sqrt{\kappa}} & (\kappa > 0); \\ a & (\kappa = 0); \\ \frac{\sinh(\sqrt{-\kappa}a)}{\sqrt{-\kappa}} & (\kappa < 0) \end{cases}$$

and

$$c_{\kappa}''(a) = 1 + \sum_{n=2}^{\infty} \frac{(-\kappa)^{n-1} a^{2n-2}}{(2n-2)!} = \begin{cases} \cos(\sqrt{\kappa}a) & (\kappa > 0); \\ 1 & (\kappa = 0); \\ \cosh(\sqrt{-\kappa}a) & (\kappa < 0). \end{cases}$$

Fix $a, b \in \mathbb{R}$ arbitrarily. Then, we know the following formulae:

$$c_{\kappa}''(a) + \kappa c_{\kappa}(a) = 1;$$

 $c_{\kappa}''(a)^2 + \kappa c_{\kappa}'(a)^2 = 1.$

Additionally,

$$c'_{\kappa}(a+b) = c'_{\kappa}(a)c''_{\kappa}(b) + c'_{\kappa}(b)c''_{\kappa}(a);$$

$$c'_{\kappa}(a-b) = c'_{\kappa}(a)c''_{\kappa}(b) - c'_{\kappa}(b)c''_{\kappa}(a);$$

$$c''_{\kappa}(a+b) = c''_{\kappa}(a)c''_{\kappa}(b) - \kappa c'_{\kappa}(a)c'_{\kappa}(b);$$

$$c''_{\kappa}(a-b) = c''_{\kappa}(a)c''_{\kappa}(b) + \kappa c'_{\kappa}(a)c'_{\kappa}(b);$$

and therefore

$$c'_{\kappa}(2a) = 2c'_{\kappa}(a)c''_{\kappa}(a);$$

 $c''_{\kappa}(2a) = c''_{\kappa}(a)^{2} - \kappa c'_{\kappa}(a)^{2} = 2c''_{\kappa}(a)^{2} - 1 = 1 - 2\kappa c'_{\kappa}(a)^{2}.$

Moreover.

$$\kappa c_{\kappa}' \left(\frac{a}{2}\right)^2 = \frac{1 - c_{\kappa}''(a)}{2};$$

$$c_{\kappa}'' \left(\frac{a}{2}\right)^2 = \frac{c_{\kappa}''(a) + 1}{2}.$$

Further, we obtain the following formulae:

$$c'_{\kappa}(a) + c'_{\kappa}(b) = 2c'_{\kappa}\left(\frac{a+b}{2}\right)c''_{\kappa}\left(\frac{a-b}{2}\right);$$

$$c'_{\kappa}(a) - c'_{\kappa}(b) = 2c''_{\kappa}\left(\frac{a+b}{2}\right)c'_{\kappa}\left(\frac{a-b}{2}\right);$$

$$c''_{\kappa}(a) + c''_{\kappa}(b) = 2c''_{\kappa}\left(\frac{a+b}{2}\right)c''_{\kappa}\left(\frac{a-b}{2}\right);$$

$$c''_{\kappa}(a) - c''_{\kappa}(b) = -2\kappa c'_{\kappa}\left(\frac{a+b}{2}\right)c'_{\kappa}\left(\frac{a-b}{2}\right)$$

and

$$c'_{\kappa}(a)c''_{\kappa}(b) = \frac{1}{2} (c'_{\kappa}(a+b) + c'_{\kappa}(a-b));$$

$$c''_{\kappa}(a)c'_{\kappa}(b) = \frac{1}{2} (c'_{\kappa}(a+b) - c'_{\kappa}(a-b));$$

$$-\kappa c'_{\kappa}(a)c'_{\kappa}(b) = \frac{1}{2} (c''_{\kappa}(a+b) - c''_{\kappa}(a-b));$$

$$c''_{\kappa}(a)c''_{\kappa}(b) = \frac{1}{2} (c''_{\kappa}(a+b) + c''_{\kappa}(a-b)).$$

We next define CAT(κ) spaces. Let M be a metric space. For $\kappa \in \mathbb{R}$, we define a real-valued function ϕ_{κ} on M^2 by

$$\phi_{\kappa}(x,y) = c_{\kappa}(d(x,y)) = \begin{cases} \frac{1 - \cos(\sqrt{\kappa}d(x,y))}{\sqrt{\kappa}} & (\kappa > 0); \\ \frac{1}{2}d(x,y)^{2} & (\kappa = 0); \\ \frac{\cosh(\sqrt{-\kappa}d(x,y)) - 1}{\sqrt{-\kappa}} & (\kappa < 0) \end{cases}$$

for $x, y \in M$. Letting

$$D_{\kappa} = \begin{cases} \dfrac{\pi}{\sqrt{\kappa}} & (\kappa > 0); \\ \infty & (\kappa \leq 0), \end{cases}$$

we obtain the following:

- For $x, y \in M$, $\phi(x, y) \ge 0$;
- for $x \in M$, $\phi_{\kappa}(x, x) = 0$;
- if $\phi_{\kappa}(x,y) = 0$ for $x,y \in M$ with $d(x,y) < 2D_{\kappa}$, then x = y;
- for $x, y \in M$, $\phi_{\kappa}(x, y) = \phi_{\kappa}(y, x)$.

Further, for $t \in [0, 1]$ and $l \in [0, D_{\kappa}[$, let

$$(t)_I^{\kappa} = egin{cases} \frac{c_{\kappa}'(tI)}{c_{\kappa}'(I)} & (I
eq 0); \\ t & (I = 0). \end{cases}$$

Now, we define $CAT(\kappa)$ spaces. In the canonical definition, we employ geodesic triangles and their comparison triangles on the model spaces. Actually, D_{κ} is the space diameter of the standard model spaces. In this paper, we adopt an equivalent condition to the familiar definition of $CAT(\kappa)$ spaces as follows. For a uniquely D_{κ} -geodesic space M, we call it a $CAT(\kappa)$ space if

$$\phi_{\kappa}(tx \oplus (1-t)y, z)
\leq (t)_{I}^{\kappa}\phi_{\kappa}(x, z) + (1-t)_{I}^{\kappa}\phi_{\kappa}(y, z)
- (t)_{I}^{\kappa}\phi_{\kappa}(x, tx \oplus (1-t)y) - (1-t)_{I}^{\kappa}\phi_{\kappa}(y, tx \oplus (1-t)y)$$
(2.1)

for $x, y, z \in M$ with $d(y, z) + d(z, x) + l < 2D_{\kappa}$ and $t \in [0, 1]$, where l = d(x, y). We call the inequality (2.1) Stewart's inequality on a CAT(κ) space M.

Theorem 2.1 (Kimura–Kohsaka [14]). In a CAT(κ) space M,

$$\phi_{\kappa}(tx \oplus (1-t)y, z) \leq t\phi_{\kappa}(x, z) + (1-t)\phi_{\kappa}(y, z)$$

for $x, y, z \in M$ with $d(x, z) < D_{\kappa}/2$ and $d(y, z) < D_{\kappa}/2$, and for $t \in [0, 1]$.

For more details about this definition of $CAT(\kappa)$ spaces and Stewart's inequality, see [19]. From Stewart's inequality, we obtain the following other types of inequalities.

Theorem 2.2. Let M be a CAT(κ) space. Then,

$$\phi_{\kappa}(tx \oplus (1-t)y,z) \leq (t)_{l}^{\kappa}\phi_{\kappa}(x,z) + (1-t)_{l}^{\kappa}\phi_{\kappa}(y,z) - \frac{(t)_{l/2}^{\kappa}(1-t)_{l/2}^{\kappa}\phi_{\kappa}(x,y)}{c_{\kappa}''(l/2)}$$

for $x, y, z \in M$ with $d(y, z) + d(z, x) + l < 2D_{\kappa}$ and $t \in [0, 1]$, where l = d(x, y).

Proof. Let $l \in [0, D_{\kappa}[$ and $t \in [0, 1]$. It is sufficient to show that

$$(t)_{l}^{\kappa}c_{\kappa}((1-t)l)+(1-t)_{l}^{\kappa}c_{\kappa}(tl)=rac{(t)_{l/2}^{\kappa}(1-t)_{l/2}^{\kappa}c_{\kappa}(l)}{c_{\kappa}''(l/2)}.$$

If l=0 or $\kappa=0$, then it is obvious. We might suppose that $l\neq 0$ and $\kappa\neq 0$. Then,

$$(t)_{l}^{\kappa}c_{\kappa}((1-t)l) + (1-t)_{l}^{\kappa}c_{\kappa}(tl)$$

$$= \frac{c_{\kappa}'(tl)c_{\kappa}((1-t)l) + c_{\kappa}'((1-t)l)c_{\kappa}(tl)}{c_{\kappa}'(l)}$$

$$=\frac{c_{\kappa}'(tl)c + c_{\kappa}'((1-t)l) - (c_{\kappa}'(tl)c_{\kappa}''((1-t)l) + c_{\kappa}'((1-t)l)c_{\kappa}''(tl))}{\kappa c_{\kappa}'(l)}$$

$$=\frac{c_{\kappa}'(tl)c + c_{\kappa}'((1-t)l) - c_{\kappa}'(l)}{\kappa c_{\kappa}'(l)}.$$

By the way,

$$\begin{aligned} c_{\kappa}'(tl)c + c_{\kappa}'((1-t)l) - c_{\kappa}'(l) &= 2c_{\kappa}'\left(\frac{l}{2}\right)c_{\kappa}''\left(\frac{(2t-1)l}{2}\right) - 2c_{\kappa}'\left(\frac{l}{2}\right)c_{\kappa}''\left(\frac{l}{2}\right) \\ &= 2c_{\kappa}'\left(\frac{l}{2}\right)\left(c_{\kappa}''\left(\frac{(2t-1)l}{2}\right) - c_{\kappa}''\left(\frac{l}{2}\right)\right) \\ &= -4\kappa c_{\kappa}'\left(\frac{l}{2}\right)c_{\kappa}'\left(\frac{tl}{2}\right)c_{\kappa}'\left(\frac{(t-1)l}{2}\right) \\ &= 4\kappa c_{\kappa}'\left(\frac{l}{2}\right)c_{\kappa}'\left(\frac{tl}{2}\right)c_{\kappa}'\left(\frac{(1-t)l}{2}\right). \end{aligned}$$

Thus,

$$\begin{split} (t)_{l}^{\kappa}c_{\kappa}((1-t)l) + (1-t)_{l}^{\kappa}c_{\kappa}(tl) &= \frac{c_{\kappa}'(tl)c + c_{\kappa}'((1-t)l) - c_{\kappa}'(l)}{\kappa c_{\kappa}'(l)} \\ &= \frac{4c_{\kappa}'(l/2)c_{\kappa}'(tl/2)c_{\kappa}'((1-t)l/2)}{c_{\kappa}'(l)} \\ &= \frac{2c_{\kappa}'(tl/2)c_{\kappa}'((1-t)l/2)}{c_{\kappa}'(l/2)} \\ &= \frac{c_{\kappa}'(tl/2)}{c_{\kappa}'(l/2)} \cdot \frac{c_{\kappa}'((1-t)l/2)}{c_{\kappa}'(l/2)} \cdot \frac{2c_{\kappa}'(l/2)^{2}}{c_{\kappa}'(l/2)} \\ &= \frac{(t)_{l/2}^{\kappa}(1-t)_{l/2}^{\kappa}c_{\kappa}(l)}{c_{\kappa}''(l/2)}. \end{split}$$

Consequently, from Stewart's inequality of M, we have

$$\phi_{\kappa}(tx \oplus (1-t)y,z) \leq (t)_{l}^{\kappa}\phi_{\kappa}(x,z) + (1-t)_{l}^{\kappa}\phi_{\kappa}(y,z) - \frac{(t)_{l/2}^{\kappa}(1-t)_{l/2}^{\kappa}\phi_{\kappa}(x,y)}{c_{\kappa}''(l/2)}$$

for $x, y, z \in M$ with $d(y, z) + d(z, x) + l < 2D_{\kappa}$ and $t \in [0, 1]$, where l = d(x, y).

Lemma 2.3. Let M be a CAT (κ) space. For $x, y, z \in M$ with

$$d(y,z)+d(z,x)+d(x,y)<2D_{\kappa}$$

and $t \in]0, 1[$, let l = d(x, y) and $b = 1 - (1 - t)^{\kappa}_{l}$. Then,

$$\phi_{\kappa}(tx\oplus (1-t)y,z)\leq (1-b)\phi_{\kappa}(y,z)+b\cdot \frac{c_{\kappa}''(tl/2)\phi_{\kappa}(x,z)-(1-t)_{l/2}^{\kappa}\phi_{\kappa}(x,y)}{c_{\kappa}''(l-tl/2)}.$$

Proof. From Theorem 2.2, we have

$$\begin{split} \phi_{\kappa}(tx \oplus (1-t)y,z) &\leq (t)_{l}^{\kappa}\phi_{\kappa}(x,z) + (1-t)_{l}^{\kappa}\phi_{\kappa}(y,z) - \frac{(t)_{l/2}^{\kappa}(1-t)_{l/2}^{\kappa}\phi_{\kappa}(x,y)}{c_{\kappa}^{\prime\prime}(l/2)} \\ &= (1-b)\phi_{\kappa}(y,z) + (t)_{l}^{\kappa}\phi_{\kappa}(x,z) - \frac{(t)_{l/2}^{\kappa}(1-t)_{l/2}^{\kappa}\phi_{\kappa}(x,y)}{c_{\kappa}^{\prime\prime}(l/2)}. \end{split}$$

Let

$$A = \frac{(t)_{l}^{\kappa} \phi_{\kappa}(x, z)}{b} - \frac{(t)_{l/2}^{\kappa} (1 - t)_{l/2}^{\kappa} \phi_{\kappa}(x, y)}{b c_{\kappa}^{\prime \prime} (l/2)}, \tag{2.2}$$

and then

$$\phi_{\kappa}(tx \oplus (1-t)y, z) < (1-b)\phi_{\kappa}(y, z) + bA$$

Thus, it is sufficient to show that

$$A = \frac{c_{\kappa}''(tl/2)\phi_{\kappa}(x,z) - (1-t)_{l/2}^{\kappa}\phi_{\kappa}(x,y)}{c_{\kappa}''(l-tl/2)}.$$

If l=0, then we immediately obtain this identity. We might assume that $l\neq 0$. We know from the equation (2.2) that

$$A = \frac{(t)_{l}^{\kappa} c_{\kappa}''(l/2) \phi_{\kappa}(x,z) - (t)_{l/2}^{\kappa} (1-t)_{l/2}^{\kappa} \phi_{\kappa}(x,y)}{b c_{\kappa}''(l/2)}.$$

By the way,

$$(t)_l^\kappa c_\kappa''\left(\frac{l}{2}\right) = \frac{c_\kappa'(tl)}{c_\kappa'(l)} \cdot c_\kappa''\left(\frac{l}{2}\right) = \frac{c_\kappa'(tl)}{2c_\kappa'(l/2)} = (t)_{l/2}^\kappa \cdot \frac{c_\kappa'(tl)}{2c_\kappa'(tl/2)} = (t)_{l/2}^\kappa c_\kappa''\left(\frac{tl}{2}\right).$$

Thus,

$$A = \frac{(t)_{l/2}^{\kappa}}{bc_{\kappa}^{\prime\prime}(l/2)} \left(c_{\kappa}^{\prime\prime} \left(\frac{tl}{2} \right) \phi_{\kappa}(x,z) - (1-t)_{l/2}^{\kappa} \phi_{\kappa}(x,y) \right).$$

Moreover.

$$bc_{\kappa}^{"}\left(\frac{l}{2}\right) = \frac{c_{\kappa}^{'}(l) - c_{\kappa}^{'}(l-tl)}{c_{\kappa}^{'}(l)} \cdot c_{\kappa}^{"}\left(\frac{l}{2}\right) = \frac{c_{\kappa}^{'}(l) - c_{\kappa}^{'}(l-tl)}{2c_{\kappa}^{'}(l/2)}$$
$$= \frac{1}{c_{\kappa}^{'}(l/2)} \cdot c_{\kappa}^{"}\left(l - \frac{tl}{2}\right) c_{\kappa}^{'}\left(\frac{tl}{2}\right) = (t)_{l/2}^{\kappa} c_{\kappa}^{"}\left(l - \frac{tl}{2}\right).$$

Consequently,

$$A = \frac{c_{\kappa}''(tl/2)\phi_{\kappa}(x,z) - (1-t)_{l/2}^{\kappa}\phi_{\kappa}(x,y)}{c_{\kappa}''(l-tl/2)},$$

which completes the proof.

Let M be a CAT(κ) space. We say that M is admissible [16] if

$$d(x,y)<\frac{D_{\kappa}}{2}$$

for all $x, y \in M$. If $\kappa \leq 0$, then CAT(κ) spaces are always admissible.

Suppose that M is an admissible complete $CAT(\kappa)$ space and C is a nonempty closed convex subset of M. Then, for $x \in M$, we can find a unique closest point $y_x \in C$ to x, that is,

$$d(x, y_x) = \inf_{y \in C} d(x, y);$$

see [1, 4]. We define a mapping P_C by $P_C x = y_x$ for $x \in M$, and call it the metric projection onto C. Then, we have the following result:

Theorem 2.4 (Sudo [29]). Let M be an admissible complete $CAT(\kappa)$ space and C a nonempty closed convex subset of M. Let $\{x_n\}$ be a sequence of M such that

$$d(x_{n+1}, p) \leq d(x_n, p)$$

for any $p \in C$ and $n \in \mathbb{N}$. Then, a sequence $\{P_C x_n\}$ converges to a point in C.

3. Tangent Spaces and Monotone Vector Fields

In what follows, we define tangent spaces on a CAT(κ) space. For more details, see [2, 3, 20].

Let M be an admissible CAT(κ) space. For $p, x, y \in M$, we define the Alexandrov angle A_p at p by

$$A_p(x,y) = \lim_{t \to 0+} \arccos\left(1 - rac{d(\gamma_{px}(t),\gamma_{py}(t))^2}{2t^2}
ight) \in [0,\pi]$$

if $p \neq x$ and $p \neq y$; $A_p(x, p) = A_p(p, x) = \pi/2$ if $p \neq x$; $A_p(p, p) = 0$. For more details, refer to [2, Proposition 1.14 in Chapter I.1 and Proposition 3.1 in Chapter II.3] for instance.

Let M be an admissible CAT (κ) space, and let $p \in M$. We define an equivalence relation \sim_p on M by $x \sim_p y$ if

$$A_p(x,y)=0.$$

For $x \in M$, we denote the direction from p to x by

$$[x]_p = \{z \in M \mid x \sim_p z\} = \{z \in M \mid A_p(x, z) = 0\}.$$

Notice that $[p]_p$ consists of exactly one point p. Further, we define the direction space D_pM from p by

$$D_p M = M/\sim_p = \{[x]_p \mid x \in M\}.$$

Then, (D_pM, A_p) is a metric space, where the distance A_p is well defined by

$$A_{\rho}([x]_{\rho},[y]_{\rho})=A_{\rho}(x,y)$$

for $[x]_p, [y]_p \in D_pM$. Additionally, we define an indicator function i_p from D_pM into $\{0,1\}$ by

$$i_p([x]_p) = \begin{cases} 0 & ([x]_p = [p]_p); \\ 1 & ([x]_p \neq [p]_p) \end{cases}$$

for $[x]_p \in D_pM$. We define an equivalence relation \simeq_p on a Cartesian product

$$[0,\infty[\times D_pM$$

by $(r_1, [x]_p) \simeq_p (r_2, [y]_p)$ if one of the following conditions is satisfied:

- $r_1 i_p([x]_p) = r_2 i_p([y]_p) = 0;$
- $r_1 i_p([x]_p) = r_2 i_p([y]_p) > 0$ and $[x]_p = [y]_p$.

Put

$$T_p M = ([0, \infty[\times D_p M)/\simeq_p .$$

We use a notation $r[x]_p$ as $[(r, [x]_p)]_{\simeq_p} \in T_pM$, where $[(r, [x]_p)]_{\simeq_p}$ is an equivalence class of $(r, [x]_p)$ by \simeq_p . In particular, we denote $0[p]_p$ by 0_p . Define a bifunction d_p on T_pM by

$$d_p(r[x]_p, s[y]_p) = \sqrt{r^2 i_p([x]_p) + s^2 i_p([y]_p) - 2rsi_p([x]_p)i_p([y]_p)\cos A_p(x, y)}$$

for $r[x]_p$, $s[y]_p \in T_pM$, and then (T_pM, d_p) is a metric space, that is, d_p is a distance of T_pM . We call this metric space the tangent space on M at p. Let

$$TM = \bigsqcup_{p \in M} T_p M = \bigcup_{p \in M} \{(v_p, p) \mid v_p \in T_p M\},$$

and call it the tangent bundle of M. For more details about tangent spaces on geodesic spaces, see [2, 3, 20].

Let M be an admissible $CAT(\kappa)$ space, and let $p \in M$. For $v_p = r[v]_p \in T_pM$ and $t \in [0, \infty[$, we denote a point $(tr)[v]_p$ of T_pM by tv_p . In particular, for t > 0, we denote a point $(r/t)[v]_p$ of T_pM by v_p/t . We define a canonical logarithmic mapping \log_p from M to T_pM by

$$\log_p x = d(p, x)[x]_p \in T_p M$$

for $x \in M$. Similarly, we define another logarithmic mapping $\log_{\kappa,p}$ by

$$\log_{\kappa,p} x = c'_{\kappa}(d(p,x))[x]_p \in T_p M$$

for $x \in M$. Note that

$$\frac{d(p,x)}{c_{\kappa}'(d(p,x))}\log_{\kappa,p}x = \log_p x$$

for $x \in M$ with $p \neq x$. We further define a function g_p by

$$g_p(u_p, v_p) = \frac{d_p(u_p, 0_p)^2 + d_p(v_p, 0_p)^2 - d_p(u_p, v_p)^2}{2}$$

for u_p , $v_p \in T_pM$. Note that the following hold:

- $g_p(v_p, v_p) \ge 0$ for $p \in M$ and $v_p \in T_pM$;
- $g_p(u_p, v_p) = g_p(v_p, u_p)$ for $p \in M$ and $u_p, v_p \in T_pM$;
- $tg_p(u_p, v_p) = g_p(u_p, tv_p)$ for $p \in M$, $u_p, v_p \in T_pM$ and $t \ge 0$;
- $g_p(v_p, 0_p) = 0$ for $p \in M$ and $v_p \in T_pM$;
- $c'_{\kappa}(d(x,y))^2 = g_{\kappa}(\log_{\kappa,x} y, \log_{\kappa,x} y) = g_{\gamma}(\log_{\kappa,y} x, \log_{\kappa,y} x)$ for $x, y \in M$;
- $d(x, y)^2 = g_x(\log_x y, \log_x y) = g_y(\log_y x, \log_y x)$ for $x, y \in M$.

We further know the following proposition:

Theorem 3.1 (Kimura–Sudo [20]). Let M be an admissible CAT(κ) space. Then,

$$g_p(\log_{\kappa,p} x, \log_{\kappa,p} y) \ge \phi_{\kappa}(p, x) + c_{\kappa}''(d(p, x))\phi_{\kappa}(p, y) - \phi_{\kappa}(x, y)$$

for $p, x, y \in M$.

In what follows, we introduce monotone vector fields on a CAT(κ) space and their resolvent operators. For more details, refer to [28].

Let M be an admissible $CAT(\kappa)$ space and A a set-valued mapping from M to a subset of the tangent bundle TM. We call A a set-valued vector field if

$$Ax \subset T_xM$$

for $x \in M$. For a set-valued vector field A on M, we denote the domain and the graph of A by

Dom
$$A = \{x \in M \mid Ax \neq \emptyset\};$$

Gph $A = \{(x, v_x) \in M \times TM \mid v_x \in Ax\},$

respectively. We call a point $x \in M$ a zero point of A if

$$0_x \in Ax$$
.

We denote the set of all zero points of A by

$$\mathsf{Zero}\,A = \{x \in M \mid 0_x \in Ax\}\,.$$

Let A be a set-valued vector field on an admissible CAT(κ) space M. For r > 0, we define a set-valued vector field rA on M by

$$rAx = \{rv_x \in T_xM \mid v_x \in Ax\}$$

for $x \in M$. Note that for r > 0, we have

$$Dom(rA) = Dom A$$
:

$$Zero(rA) = Zero A.$$

We say that A is monotone if

$$g_x(\log_x y, u_x) + g_y(\log_y x, v_y) \le 0$$

for $(x, u_x), (y, v_y) \in Gph A$. We immediately obtain that A is monotone if and only if

$$g_x(\log_{\kappa,x} y, u_x) + g_y(\log_{\kappa,y} x, v_y) \le 0$$

for (x, u_x) , $(y, v_y) \in Gph A$. Furthermore, if A is monotone, then so is rA for r > 0.

Let M be an admissible $CAT(\kappa)$ space and A a set-valued vector field on M. We say that A is resolvably monotone if it is monotone, and

$$\left\{z \in M \mid \frac{\log_{\kappa,z} x}{r} \in Az\right\} \neq \emptyset$$

for any r > 0 and any $x \in M$. Suppose that A is resolvably monotone. Then, for $x \in M$ and r > 0, from the monotonicity of rA, a set

$$\{z \in M \mid \log_{\kappa,z} x \in rAz\}$$

consists of exactly one point. We denote such a unique point by $J_{rA}x$, namely,

$$\{J_{rA}x\} = \left\{z \in M \mid \log_{\kappa, z} x \in rAz\right\} = \left\{z \in M \mid \frac{\log_{\kappa, z} x}{r} \in Az\right\}$$

for $x \in M$. We call the mapping J_{rA} from M to Dom A the resolvent operator of rA. Note that if A is resolvably monotone, then

Zero
$$A = Fix J_{rA}$$

for any r > 0, and it is closed and convex; see [28]. Here, Fix J_{rA} stands for the set of all fixed points of J_{rA} , that is,

$$Fix J_{rA} = \{x \in M \mid J_{rA}x = x\}.$$

Theorem 3.2 (Sudo [29]). Let A be a resolvably monotone vector field on an admissible CAT(κ) space M. Then, for fixed r > 0, the resolvent operator J_{rA} is geodesically nonspreading, that is,

$$\phi_{\kappa}(J_{rA}x, J_{rA}y) + \phi_{\kappa}(J_{rA}y, J_{rA}x) \le \phi_{\kappa}(J_{rA}x, y) + \phi_{\kappa}(J_{rA}y, x)$$

for $x, y \in M$. Furthermore, if A has a zero point, then J_{rA} is quasinonexpansive, that is,

$$d(J_{rA}x, y) \leq d(x, y)$$

for $x \in M$ and $y \in Fix J_{rA} = Zero A$.

4. Mann Type Proximal Point Algorithm

In this section, we show a zero point approximation theorem with the Mann type proximal point algorithm.

Let M be a metric space and $\{x_n\}$ a sequence of M. We call a point $x \in M$ an asymptotic centre of $\{x_n\}$ if

$$\limsup_{n\to\infty} d(x_n, x) = \inf_{y\in M} \limsup_{n\to\infty} d(x_n, y).$$

We further say that $\{x_n\}$ is Δ -convergent to a Δ -limit x [21] if x is a unique asymptotic centre of any subsequence of $\{x_n\}$. Assume that M is an admissible complete CAT (κ) space. We say that a sequence $\{x_n\}$ of M is κ -bounded if

$$\inf_{y\in M}\limsup_{n\to\infty}d(x_n,y)<\frac{D_\kappa}{2}.$$

We notice that the κ -boundedness is the usual one in the sense of metric spaces if $\kappa \leq 0$. Furthermore, if $\{x_n\}$ is κ -bounded, then it has a unique asymptotic centre, and it has a Δ -convergent subsequence; see [1, 4]. Moreover, we know the following:

Theorem 4.1 (Bačák [1], Kimura–Kohsaka [14]). Let M be an admissible complete $CAT(\kappa)$ space and $y \in M$. Then,

$$d(x, y) \leq \liminf_{n \to \infty} d(x_n, y)$$

whenever a κ -bounded sequence $\{x_n\}$ of M is Δ -convergent to $x \in M$.

We next prove the following proposition:

Lemma 4.2. Let A be a resolvably monotone vector field on an admissible complete $CAT(\kappa)$ space M and let $\{r_n\}$ be a sequence of positive real numbers such that $\inf_{k\in\mathbb{N}} r_k > 0$. If a κ -bounded sequence $\{x_n\}$ of M satisfies that

$$\lim_{n\to\infty} d(J_{r_nA}x_n,x_n)=0,$$

then a unique asymptotic centre $x \in M$ of $\{x_n\}$ is a zero point of A.

Proof. Take a κ -bounded sequence $\{x_n\}$ of M and let $x \in M$ be its unique asymptotic centre. For simplicity, we denote $J_{r_nA}x_n$ by w_n for $n \in \mathbb{N}$. Then, x is a unique asymptotic centre of $\{w_n\}$. We first show this. Since

$$\inf_{y \in M} \limsup_{n \to \infty} d(w_n, y) \le \inf_{y \in M} \limsup_{n \to \infty} (d(w_n, x_n) + d(x_n, y))$$

$$= \inf_{y \in M} \limsup_{n \to \infty} d(x_n, y) < \frac{D_{\kappa}}{2},$$

the sequence $\{w_n\}$ is κ -bounded, and hence it has a unique asymptotic centre. Then, for any $w \in M$, we know that

$$\limsup_{n\to\infty} d(w_n, x) \leq \limsup_{n\to\infty} (d(w_n, x_n) + d(x_n, x))$$

$$= \limsup_{n\to\infty} d(x_n, x) \leq \limsup_{n\to\infty} d(x_n, w)$$

$$\leq \limsup_{n\to\infty} (d(w_n, x_n) + d(w_n, w))$$

$$= \limsup_{n\to\infty} d(w_n, w).$$

It means that x is an asymptotic centre of $\{w_n\}$. Fix $n \in \mathbb{N}$ arbitrarily. Since

$$(J_A x, \log_{\kappa, J_A x} x), \left(w_n, \frac{\log_{\kappa, w_n} x_n}{r_n}\right) \in \operatorname{\mathsf{Gph}} A$$

and A is monotone, we have

$$0 \geq g_{J_{AX}}(\log_{\kappa,J_{AX}} w_n, \log_{\kappa,J_{AX}} x) + \frac{g_{w_n}(\log_{\kappa,w_n} J_A x, \log_{\kappa,w_n} x_n)}{r_n}$$

$$\geq \phi_{\kappa}(J_A x, w_n) - \phi_{\kappa}(w_n, x) + \frac{\phi_{\kappa}(w_n, J_A x) - \phi_{\kappa}(J_A x, x_n)}{r_n}$$

$$\geq \phi_{\kappa}(J_A x, w_n) - \phi_{\kappa}(w_n, x) - \frac{|\phi_{\kappa}(w_n, J_A x) - \phi_{\kappa}(J_A x, x_n)|}{r_n}$$

$$\geq \phi_{\kappa}(J_A x, w_n) - \phi_{\kappa}(w_n, x) - \frac{|\phi_{\kappa}(w_n, J_A x) - \phi_{\kappa}(J_A x, x_n)|}{\inf_{k \in \mathbb{N}} r_k},$$

and therefore

$$\phi_{\kappa}(w_n, J_A x) \le \phi_{\kappa}(w_n, x) + \frac{|\phi_{\kappa}(w_n, J_A x) - \phi_{\kappa}(J_A x, x_n)|}{\inf_{k \in \mathbb{N}} r_k}.$$
(4.1)

Since c_{κ} is uniformly continuous on a compact interval and

$$|d(w_n, J_A x) - d(J_A x, x_n)| \leq d(w_n, x_n) \rightarrow 0$$

as $n \to \infty$, letting $n \to \infty$ for the inequality (4.1), we obtain

$$\limsup_{n\to\infty}\phi_{\kappa}(w_n,J_{\mathcal{A}}x)\leq \limsup_{n\to\infty}\phi_{\kappa}(w_n,x).$$

Thus, we have $J_A x = x$, which implies that $x \in \operatorname{Zero} A$.

Using this result, we finally show the following Δ -convergence theorem:

Theorem 4.3. Let A be a resolvably monotone vector field on an admissible complete $CAT(\kappa)$ space M, and suppose that it has a zero point. Let $\{r_n\}$ be a sequence of positive real numbers such that $\inf_{k\in\mathbb{N}} r_k > 0$, and let $\{a_n\}$ be a real sequence of [0,1[such that $\sup_{k\in\mathbb{N}} a_k < 1$. For a given initial point $x_1 \in M$, generate a sequence $\{x_n\}$ of M by

$$x_{n+1} = a_n x_n \oplus (1 - a_n) J_{r_n A} x_n$$

for $n \in \mathbb{N}$. Then, the generated sequence $\{x_n\}$ Δ -converges to a zero point, which equals to

$$\lim_{n\to\infty} P_{\mathrm{Zero}\,A} x_n.$$

Proof. For $p \in \text{Zero } A$ and $n \in \mathbb{N}$, since $J_{r_n A}$ is quasinonexpansive,

$$\phi_{\kappa}(x_{n+1}, p) = \phi_{\kappa}(a_n x_n \oplus (1 - a_n) J_{r_n A} x_n, p)$$

$$\leq a_n \phi_{\kappa}(x_n, p) + (1 - a_n) \phi_{\kappa}(J_{r_n A} x_n, p)$$

$$\leq \phi_{\kappa}(x_n, p),$$

and hence

$$d(x_{n+1},p) \le d(x_n,p). \tag{4.2}$$

From Theorem 2.4, a sequence $\{P_{\text{Zero }A}x_n\}$ converges to a zero point $x \in M$. Then, from the equation (4.2), we have

$$d(x_{n+1},x) \leq d(x_n,x)$$

for $n \in \mathbb{N}$, and therefore a real sequence $\{\phi_{\kappa}(x_n, x)\}$ is convergent and the generated sequence $\{x_n\}$ is κ -bounded. Furthermore, since

$$d(J_{r_nA}x_n,x)\leq d(x_n,x)$$

for $n \in \mathbb{N}$, we have

$$c=\inf_{k\in\mathbb{N}}c_{\kappa}''(d(J_{r_kA}x_k,x))>0.$$

Fix $n \in \mathbb{N}$ arbitrarily. For simplicity, we denote $J_{r_n A} x_n$ by w_n . Since

$$(x, 0_x), (w_n, \log_{\kappa, w_n} x_n) \in \mathsf{Gph}(r_n A)$$

and $r_n A$ is monotone,

$$0 \geq g_{x}(\log_{\kappa,x} w_{n}, 0_{x}) + g_{w_{n}}(\log_{\kappa,w_{n}} x, \log_{\kappa,w_{n}} x_{n})$$

$$= g_{w_{n}}(\log_{\kappa,w_{n}} x, \log_{\kappa,w_{n}} x_{n})$$

$$\geq \phi_{\kappa}(w_{n}, x) + c_{\kappa}''(d(w_{n}, x))\phi_{\kappa}(w_{n}, x_{n}) - \phi_{\kappa}(x, x_{n})$$

$$\geq \phi_{\kappa}(w_{n}, x) + c \cdot \phi_{\kappa}(w_{n}, x_{n}) - \phi_{\kappa}(x, x_{n}).$$

Thus,

$$\phi_{\kappa}(w_n, x) \leq \phi_{\kappa}(x_n, x) - c \cdot \phi_{\kappa}(w_n, x_n).$$

Therefore,

$$\begin{split} \phi_{\kappa}(x_{n+1},x) &= \phi_{\kappa}(a_n x_n \oplus (1-a_n)w_n,x) \\ &\leq a_n \phi_{\kappa}(x_n,x) + (1-a_n)\phi_{\kappa}(w_n,x) \\ &\leq a_n \phi_{\kappa}(x_n,x) + (1-a_n)\left(\phi_{\kappa}(x_n,x) - c \cdot \phi_{\kappa}(w_n,x_n)\right) \\ &\leq \phi_{\kappa}(x_n,x) - c(1-a_n)\phi_{\kappa}(w_n,x_n), \end{split}$$

and hence

$$c(1-a_n)\phi_{\kappa}(w_n,x_n) \leq \phi_{\kappa}(x_n,x) - \phi_{\kappa}(x_{n+1},x).$$

Since $\sup_{k\in\mathbb{N}} a_k < 1$ and c > 0, letting $n \to \infty$, we have

$$\lim_{n\to\infty} d(J_{r_nA}x_n,x_n) = \lim_{n\to\infty} d(w_n,x_n) = 0.$$

Take a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ arbitrarily. Then, $\inf_{i\in\mathbb{N}} r_{n_i} > 0$ and

$$\lim_{i\to\infty}d(J_{r_{n_i}A}x_{n_i},x_{n_i})=0.$$

Thus, from Lemma 4.2, a unique asymptotic centre $w \in M$ of $\{x_{n_i}\}$ is a zero point of A. Then,

$$\begin{split} \limsup_{i \to \infty} d(x_{n_i}, x) &\leq \limsup_{i \to \infty} \left(d(x_{n_i}, P_{\mathsf{Zero}\,A} x_{n_i}) + d(P_{\mathsf{Zero}\,A} x_{n_i}, x) \right) \\ &= \limsup_{i \to \infty} d(x_{n_i}, P_{\mathsf{Zero}\,A} x_{n_i}) \\ &\leq \limsup_{i \to \infty} d(x_{n_i}, w). \end{split}$$

It implies that x = w, and hence x is a unique asymptotic centre of $\{x_{n_i}\}$. Consequently, the generated sequence $\{x_n\}$ Δ -converges to x.

5. Halpern Type Proximal Point Algorithm

In this section, we show a zero point approximation theorem with the Halpern type proximal point algorithm. We first show the following lemma:

Lemma 5.1. Let $\{a_n\}$ be a sequence of]0,1[such that $\lim_{n\to\infty}a_n=0$ and that $\sum_{k=1}^{\infty}a_k^2=\infty$, and $\{I_n\}$ a bounded sequence of $[0,D_{\kappa}/2[$ for $\kappa\in\mathbb{R}$. Define a sequence $\{b_n\}$ of]0,1[by

$$b_n = 1 - (1 - a_n)_{l_n}^{\kappa}$$

for $n \in \mathbb{N}$. Then, $\{b_n\}$ converges to 0, and $\sum_{k=1}^{\infty} b_k = \infty$.

Proof. We first show that $\sum_{k=1}^{\infty} b_k = \infty$. Fix $n \in \mathbb{N}$. If $I_n = 0$, then

$$b_n = 1 - (1 - a_n)_{l_n}^{\kappa} = a_n \ge a_n^2$$
.

We might assume that $I_n \neq 0$. If $\kappa = 0$, then

$$b_n=a_n\geq a_n^2$$

and hence we obtain the desired result. Similarly, if $\kappa < 0$, then

$$b_n = 1 - \frac{\sinh((1-a_n)\sqrt{-\kappa}I_n)}{\sinh(\sqrt{-\kappa}I_n)} \ge 1 - \frac{(1-a_n)\sinh(\sqrt{-\kappa}I_n)}{\sinh(\sqrt{-\kappa}I_n)} = a_n \ge a_n^2,$$

and thus we have $b_n \geq a_n^2$ for all $n \in \mathbb{N}$, when $\kappa \leq 0$. Assume that $\kappa > 0$. Although the following discussion is essentially the same as one by Kimura and Kohsaka [17, Theorem 5.1], we give a proof. Since

$$\frac{\sin((1-a_n)\sqrt{\kappa}I_n)}{\sin(\sqrt{\kappa}I_n)} \le \sin\frac{\pi(1-a_n)}{2},$$

we obtain

$$b_n = 1 - (1 - a_n)_{l_n}^{\kappa} = 1 - \frac{\sin((1 - a_n)\sqrt{\kappa}l_n)}{\sin(\sqrt{\kappa}l_n)}$$

$$\geq 1 - \sin\frac{\pi(1 - a_n)}{2} = 1 - \sin\left(\frac{\pi}{2} - \frac{\pi a_n}{2}\right)$$

$$= 1 - \cos\frac{\pi a_n}{2} \geq \frac{\pi^2}{16}a_n^2.$$

Consequently, for $\kappa > 0$ and $n \in \mathbb{N}$, we obtain

$$b_n \geq \frac{\pi^2}{16}a_n^2.$$

Therefore, in any cases, $\sum_{k=1}^{\infty} b_k = \infty$.

We next show that

$$\lim_{n\to\infty}b_n=0.$$

We immediately obtain $b_n=a_n$ for all $n\in\mathbb{N}$ if $\kappa=0$. Suppose that $\kappa=0$. If $I_n=0$, then $b_n=a_n$. We might assume that $I_n\neq 0$. Moreover, if $\kappa>0$, then

$$b_n = 1 - \frac{\sin((1-a_n)\sqrt{\kappa}I_n)}{\sin(\sqrt{\kappa}I_n)} \le 1 - \frac{(1-a_n)\sin(\sqrt{\kappa}I_n)}{\sin(\sqrt{\kappa}I_n)} = a_n.$$

Therefore, if $\kappa \geq 0$, then $\{b_n\}$ converges to 0. We next consider the case where $\kappa < 0$. Then,

$$\begin{split} b_n &= 1 - \frac{\sinh((1-a_n)\sqrt{-\kappa}I_n)}{\sinh(\sqrt{-\kappa}I_n)} \\ &= 1 - \frac{\sinh(\sqrt{-\kappa}I_n)\cosh(a_n\sqrt{-\kappa}I_n) - \sinh(a_n\sqrt{-\kappa}I_n)\cosh(\sqrt{-\kappa}I_n)}{\sinh(\sqrt{-\kappa}I_n)} \\ &= 1 - \cosh(a_n\sqrt{-\kappa}I_n) + \frac{\sinh(a_n\sqrt{-\kappa}I_n)\cosh(\sqrt{-\kappa}I_n)}{\sinh(\sqrt{-\kappa}I_n)} \end{split}$$

$$\leq \frac{\sinh(a_n\sqrt{-\kappa}I_n)\cosh(\sqrt{-\kappa}I_n)}{\sinh(\sqrt{-\kappa}I_n)}$$

$$\leq \frac{a_n\sinh(\sqrt{-\kappa}I_n)\cosh(\sqrt{-\kappa}I_n)}{\sinh(\sqrt{-\kappa}I_n)} = a_n\cosh(\sqrt{-\kappa}I_n).$$

Consequently, for $\kappa < 0$ and for all $n \in \mathbb{N}$, we obtain

$$0 \le b_n \le a_n \cosh(\sqrt{-\kappa}I_n)$$
.

Since $\{I_n\}$ is bounded, $\{b_n\}$ converges to 0.

Furthermore, we have the following result, which is effective for the Halpern type iteration:

Theorem 5.2 (Kimura–Saejung [18], Saejung–Yotkaew [26]). Let $\{s_n\}$ be a nonnegative real sequence and $\{t_n\}$ a real sequence. Let $\{b_n\}$ be a real sequence of [0,1] such that $\sum_{k=1}^{\infty} b_k = \infty$. Suppose that

$$s_{n+1} \leq (1-b_n)s_n + b_nt_n$$

for $n \in \mathbb{N}$ and that

$$\limsup_{i\to\infty}t_{n_i}\leq 0$$

for every subsequence $\{s_{n_i}\}$ of $\{s_n\}$ satisfying that

$$\liminf_{i\to\infty} (s_{n_i+1}-s_{n_i})\geq 0.$$

Then, the sequence $\{s_n\}$ converges to 0.

Using these results, we finally show the following convergence theorem:

Theorem 5.3. Let A be a resolvably monotone vector field on an admissible complete $CAT(\kappa)$ space M, and suppose that it has a zero point. Let $\{r_n\}$ be a sequence of positive real numbers such that $\inf_{k\in\mathbb{N}} r_k > 0$, and let $\{a_n\}$ be a real sequence of]0,1[such that $\lim_{n\to\infty} a_n = 0$ and that $\sum_{k=1}^{\infty} a_k^2 = \infty$. For a given anchor point and a given initial point $u, x_1 \in M$, generate a sequence $\{x_n\}$ of M by

$$x_{n+1} = a_n u \oplus (1 - a_n) J_{r_n} A x_n$$

for $n \in \mathbb{N}$. Then, the generated sequence $\{x_n\}$ converges to $P_{\mathsf{Zero}\,A}u$.

Proof. Let $p = P_{\mathsf{Zero}\,A}u$. For $n \in \mathbb{N}$, since J_{r_0A} is quasinonexpansive,

$$\phi_{\kappa}(x_{n+1}, p) = \phi_{\kappa}(a_{n}u \oplus (1 - a_{n})J_{r_{n}A}x_{n}, p)
\leq a_{n}\phi_{\kappa}(u, p) + (1 - a_{n})\phi_{\kappa}(J_{r_{n}A}x_{n}, p)
\leq a_{n}\phi_{\kappa}(u, p) + (1 - a_{n})\phi_{\kappa}(x_{n}, p),$$

and hence

$$d(J_{r_n,A}x_n, p) \le d(x_n, p) \le \max\{d(u, p), d(x_1, p)\} < \frac{D_{\kappa}}{2}.$$
 (5.1)

Thus, $\{x_n\}$ is κ -bounded. Fix $n \in \mathbb{N}$ arbitrarily. For simplicity, we denote $J_{r_nA}x_n$ by w_n , and $d(u, w_n)$ by I_n . Notice that

$$c = \inf_{k \in \mathbb{N}} c_{\kappa}^{\prime\prime}(d(w_n, p)) > 0$$

from the inequality (5.1). Let

$$b_n = 1 - (1 - a_n)_{l_n}^{\kappa} \in]0, 1[$$
.

We know that $\sum_{k=1}^\infty b_k = \infty$ and that

$$\lim_{n\to\infty} (1-a_n)_{l_n}^{\kappa} = 1$$

from Lemma 5.1. Furthermore, from Lemma 2.3, we have

$$\begin{split} &\phi_{\kappa}(x_{n+1},p) \\ &= \phi_{\kappa}(a_{n}u \oplus (1-a_{n})w_{n},p) \\ &\leq (1-b_{n})\phi_{\kappa}(w_{n},p) + b_{n} \cdot \frac{c_{\kappa}''(a_{n}l_{n}/2)\phi_{\kappa}(u,p) - (1-a_{n})_{l_{n}/2}^{\kappa}\phi_{\kappa}(u,w_{n})}{c_{\kappa}''(l_{n}-a_{n}l_{n}/2)} \\ &\leq (1-b_{n})\phi_{\kappa}(x_{n},p) + b_{n} \cdot \frac{c_{\kappa}''(a_{n}l_{n}/2)\phi_{\kappa}(u,p) - (1-a_{n})_{l_{n}/2}^{\kappa}\phi_{\kappa}(u,w_{n})}{c_{\kappa}''(l_{n}-a_{n}l_{n}/2)}. \end{split}$$

Let

$$s_n = \phi_{\kappa}(x_n, p).$$

Then, $\{s_n\}$ is a nonnegative real sequence. Further, let

$$t_n = \frac{c_{\kappa}''(a_n l_n/2)\phi_{\kappa}(u, p) - (1 - a_n)_{l_n/2}^{\kappa}\phi_{\kappa}(u, w_n)}{c_{\kappa}''(l_n - a_n l_n/2)}.$$
 (5.2)

Then, we have

$$s_{n+1} \leq (1-b_n)s_n + b_n t_n.$$

Finally, we show that $\{s_n\}$ converges to 0 using Theorem 5.2. Take a subsequence $\{s_{n_i}\}$ of $\{s_n\}$ such that

$$\liminf_{i\to\infty} (s_{n_i+1}-s_{n_i})\geq 0,$$

and show that

$$\limsup_{i\to\infty}t_{n_i}\leq 0.$$

Then, since $\{a_n\}$ converges to 0, we have

$$0 \leq \liminf_{i \to \infty} (s_{n_i+1} - s_{n_i}) = \liminf_{i \to \infty} (\phi_{\kappa}(x_{n_i+1}, p) - \phi_{\kappa}(x_{n_i}, p))$$

$$= \liminf_{i \to \infty} (\phi_{\kappa}(a_{n_i}u \oplus (1 - a_{n_i})w_{n_i}, p) - \phi_{\kappa}(x_{n_i}, p))$$

$$\leq \liminf_{i \to \infty} (a_{n_i}\phi_{\kappa}(u, p) + (1 - a_{n_i})\phi_{\kappa}(w_{n_i}, p) - \phi_{\kappa}(x_{n_i}, p))$$

$$= \liminf_{i \to \infty} (\phi_{\kappa}(w_{n_i}, p) - \phi_{\kappa}(x_{n_i}, p))$$

$$\leq \lim_{i \to \infty} \sup (\phi_{\kappa}(w_{n_i}, p) - \phi_{\kappa}(x_{n_i}, p)) \leq 0.$$

Thus,

$$\lim_{i\to\infty} |\phi_{\kappa}(w_{n_i},p) - \phi_{\kappa}(x_{n_i},p)| = 0.$$

Fix $i \in \mathbb{N}$ arbitrarily. Since

$$(p, 0_p), (w_{n_i}, \log_{\kappa, w_{n_i}} x_{n_i}) \in \mathsf{Gph}(r_{n_i} A)$$

and A is monotone,

$$\begin{split} 0 &\geq g_{p}(\log_{\kappa,p} w_{n_{i}}, 0_{p}) + g_{w_{n_{i}}}(\log_{\kappa,w_{n_{i}}} p, \log_{\kappa,w_{n_{i}}} x_{n_{i}}) \\ &= g_{w_{n_{i}}}(\log_{\kappa,w_{n_{i}}} p, \log_{\kappa,w_{n_{i}}} x_{n_{i}}) \\ &\geq \phi_{\kappa}(w_{n_{i}}, p) + c_{\kappa}''(d(w_{n_{i}}, p))\phi_{\kappa}(w_{n_{i}}, x_{n_{i}}) - \phi_{\kappa}(p, x_{n_{i}}) \\ &\geq \phi_{\kappa}(w_{n_{i}}, p) + c \cdot \phi_{\kappa}(w_{n_{i}}, x_{n_{i}}) - \phi_{\kappa}(p, x_{n_{i}}). \end{split}$$

It implies that

$$\phi_{\kappa}(w_{n_i}, x_{n_i}) \leq \frac{\phi_{\kappa}(x_{n_i}, p) - \phi_{\kappa}(w_{n_i}, p)}{c} \rightarrow 0$$

as $i \to \infty$. Therefore,

$$\lim_{i\to\infty}d(J_{r_{n_i}A}x_{n_i},x_{n_i})=\lim_{i\to\infty}d(w_{n_i},x_{n_i})=0,$$

and then

$$\liminf_{i\to\infty} d(u,w_{n_i}) = \liminf_{i\to\infty} d(u,x_{n_i})$$

Take a subsequence $\{y_i\}$ of $\{x_{n_i}\}$ such that

$$\lim_{i\to\infty} d(u,y_j) = \liminf_{i\to\infty} d(u,x_{n_i})$$

and that $\{y_j\}$ Δ -converges to $y \in M$. From Lemma 4.2, we have $y \in \operatorname{Zero} A$. Thus, Theorem 4.1 yields that

$$\liminf_{i\to\infty} d(u, w_{n_i}) = \liminf_{i\to\infty} d(u, x_{n_i}) = \lim_{i\to\infty} d(u, y_i) \ge d(u, y) \ge d(u, p)$$
 (5.3)

since $\{y_j\}$ Δ -converges to y and $p = P_{\mathsf{Zero}\,A}u$. Therefore, since

$$\lim_{i\to 0} a_{n_i} = 0,$$

from the equation (5.2),

$$\begin{split} \limsup_{i \to \infty} t_{n_i} &= \limsup_{i \to \infty} \frac{c_\kappa''(a_{n_i} I_{n_i}/2) \phi_\kappa(u, p) - (1 - a_{n_i})_{I_{n_i}/2}^\kappa \phi_\kappa(u, w_{n_i})}{c_\kappa''(I_{n_i} - a_{n_i} I_{n_i}/2)} \\ &= \limsup_{i \to \infty} \frac{\phi_\kappa(u, p) - \phi_\kappa(u, w_{n_i})}{c_\kappa''(I_{n_i})} \\ &= \frac{1}{\lim\inf_{i \to \infty} c_\kappa''(I_{n_i})} \left(c_\kappa(d(u, p)) - c_\kappa \left(\liminf_{i \to \infty} d(u, w_{n_i}) \right) \right). \end{split}$$

We know that

$$\frac{1}{\liminf_{i\to\infty}c''_{\nu_i}(I_{n_i})}\in[0,\infty]$$

for any $\kappa \in \mathbb{R}$. Thus, from the inequality (5.3), we obtain

$$\limsup_{i\to\infty} t_{n_i} = \frac{1}{\liminf_{i\to\infty} c_\kappa''(I_{n_i})} \left(c_\kappa(d(u,p)) - c_\kappa \left(\liminf_{i\to\infty} d(u,w_{n_i}) \right) \right) \le 0.$$

Consequently, from Theorem 5.2, we have

$$\lim_{n\to\infty}\phi_{\kappa}(x_n,p)=\lim_{n\to\infty}s_n=0,$$

which means that the generated sequence $\{x_n\}$ converges to $P_{\mathsf{Zero}\,A}u$.

6. Conclusion

In this work, we obtained approximation theorems with two modified proximal point algorithms. Particularly, Theorem 6.1 is a strong convergence theorem, unlike Theorem 1.1 and 4.3. However, the assumption of a coficient sequence $\{a_n\}$ is

- (a) $\lim_{n\to\infty} a_n = 0$;
- (b) $\sum_{k=1}^{\infty} a_k^2 = \infty$.

In a related result by Kimura and Kohsaka [15], it is enough to assume that (a) and

(c)
$$\sum_{k=1}^{\infty} a_k = \infty$$
.

We know that if a sequence $\{a_n\}$ of]0,1[satisfies the condition (b), then it satisfies the condition (c). In fact, we obtain divergence of the sum of $\{b_n\}$ in Lemma 5.1 even if we only suppose the condition (c) in the case where $\kappa \leq 0$. Thus, in the same way as Theorem 6.1, we obtain the following result:

Proposition 6.1. Let M be a complete $CAT(\kappa)$ space for $\kappa \leq 0$, and suppose that A and $\{r_n\}$ are the same as Theorem 6.1. Let $\{a_n\}$ be a real sequence of]0,1[such that $\lim_{n\to\infty}a_n=0$ and that $\sum_{k=1}^{\infty}a_k=\infty$. Define a sequence $\{x_n\}$ in the same way as Theorem 6.1. Then, the generated sequence $\{x_n\}$ converges to $P_{\mathsf{Zero}\,A}u$.

However, we cannot obtain a result such as the above proposition in the case where $\kappa>0$ so far.

Competing Interests

The author declares that there are no competing interests.

References

- [1] M. Bačák, Convex Analysis and Optimization in Hadamard spaces, De Gruyter, Berlin, 2014.
- [2] M.R. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Springer-Verlag, Berlin, 1999.

[3] P. Chaipunya, F. Kohsaka and P. Kumam, Monotone vector fields and generation of nonexpansive semigroups in complete CAT(0) spaces, Numer. Funct. Anal. Optim., 42 (2021), 989–1018.

- [4] R. Espínola and A. Fernández-León, CAT(k)-spaces, weak convergence and fixed points, J. Math. Anal. Appl., 353 (2009), 410–427.
- [5] B. Halpern, Fixed points of nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 957–961.
- [6] J.S. He, D.H. Fang, G. López and C. Li, Mann's algorithm for nonexpansive mappings in CAT(κ) spaces, Nonlinear Anal., 75 (2012), 445–452.
- [7] J. Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helv., 70 (1995), 659–673.
- [8] T. Kajimura and Y. Kimura, A vicinal mapping on geodesic spaces, In Proceedings of International Conference on Nonlinear Analysis and Convex Analysis & International Conference on Optimization: Techniques and Applications –I– (Hakodate, Japan, 2019) (Y. Kimura, M. Muramatsu, W. Takahashi, and A. Yoshise, eds.), pages 183–195, 2021.
- [9] T. Kajimura and Y. Kimura, The proximal point algorithm with a general perturbation on geodesic spaces, Results Appl. Math., 27 (2025), Paper No. 100618, 1–9.
- [10] S. Kamimura, F. Kohsaka and W. Takahashi, Weak and strong convergence theorems for maximal monotone operators in a Banach space, Set-Valued Anal., 12 (2004), 417–429.
- [11] S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory Appl., 106 (2000), 226–240.
- [12] S. Kamimura and W. Takahashi, Weak and strong convergence of solutions to accretive operator inclusions and applications, Set-Valued Anal., 8 (2000), 361–374.
- [13] C. Khaofong, P. Saipara, S. Srathonglang and A. Padcharoen, New modified proximal point algorithm for solving minimization and common fixed point problem over $CAT(\kappa)$ spaces, WSEAS Transactions on Mathematics, 23 (2024), 87–97.
- [14] Y. Kimura and F. Kohsaka, Spherical nonspreadingness of resolvents of convex functions in geodesic spaces, J. Fixed Point Theory Appl., 18 (2016), 93–115.
- [15] Y. Kimura and F. Kohsaka, Two modified proximal point algorithm for convex functions in Hadamard spaces, Linear Nonlinear Anal., 2 (2016), 69–86.
- [16] Y. Kimura and F. Kohsaka, The proximal point algorithm in geodesic spaces with curvature bounded above, Linear Nonlinear Anal., 3 (2017), 133–148.
- [17] Y. Kimura and F. Kohsaka, Two modified proximal point algorithms in geodesic spaces with curvature bounded above, Rend. Circ. Mat. Palermo, II, 68 (2019), 83–104.
- [18] Y. Kimura and S. Saejung, Strong convergence for a common fixed point of two different generalizations of cutter operators, Linear Nonlinear Anal., 1 (2015), 53–65.

- [19] Y. Kimura and S. Sudo, New type parallelogram laws in Banach spaces and geodesic spaces with curvature bounded above, Arab. J. Math., 12 (2023), 389–412.
- [20] Y. Kimura and S. Sudo, Tangent spaces and a metric on geodesic spaces, RIMS Kôkyûroku, 2240 (2023), 7–19.
- [21] T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc., 60 (1976), 179–182.
- [22] W.R. Mann, Mean value method in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510.
- [23] U.F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom., 6 (1998), 199–253.
- [24] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, 14 (1976), 877–898.
- [25] S. Saejung, Halpern's iteration in CAT(0) spaces, Fixed Point Theory Appl., 2010 (2010), Article number: 471781, 1–13.
- [26] S. Saejung and P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal., 75 (2012), 742–750.
- [27] M.V. Solodov and B.F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Program., 87 (2000), 189–202.
- [28] S. Sudo, Monotone vector fields on a geodesic space with curvature bounded above by a general real number, Lett. Nonlinear Anal. Appl., 3 (2025), 5–27.
- [29] S. Sudo, The proximal point algorithm for monotone vector fields on complete geodesic spaces, Nonlinear Convex Anal. & Optim., 4 (2025), 1–15.
- [30] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math., 58 (1992), 486–491.