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ABSTRACT
In this article, we establish two theorems that generalize the fractional
Hardy integral inequality by incorporating several intermediate func-
tions and parameters. The assumptions made are tractable. Some
of them can be related to the notions of sub-additivity and sub-
multiplicativity. The proofs are self-contained, without intermediate
results, and all details are given. We thus extend the applicability of
a classical integral inequality and offer new potential applications in
mathematical analysis.
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1. Introduction
Integral inequalities are one of the most useful tools in mathematics. They include fun-

damental results, such as the Cauchy-Schwarz integral inequality, the Grönwall integral in-
equality, the Hardy integral inequality, the Hilbert integral inequality, the Hölder integral
inequality, the Jensen integral inequality, the Minkowski integral inequality, the Steffensen
integral inequality and the Young integral inequality. They are designed to give tractable
bounds on integrals that cannot be determined in a standard way, with the aim of simplify-
ing and solving challenging mathematical problems. Integral inequalities also help to analyze
relationships between functions, which are particularly important in real analysis, functional
analysis including operator theory, optimization theory and probability theory. Their applica-
tions extend to the study of differential equations and variational problems. A comprehensive
treatment of classical integral inequalities, along with their theory and applications, can be
found in [17, 4, 32, 3, 34].

Integral inequalities of the Hardy type are diverse in form and scope. An overview of the
subject can be found in [18, 25, 16, 17]. In this article, we emphasize a special Hardy integral
inequality called the fractional Hardy integral inequality. A formal statement is given below.
Let p ∈ [1, +∞), λ ∈ (0, +∞)\{1}, i.e., (0, +∞) excluding the point 1, and f : (0, +∞) 7→ R
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(be a function) such that ∫ +∞

0

|f (x)|p
xλ

dx < +∞.

Then there exists a constant A ∈ (0, +∞) satisfying∫ +∞

0

|f (x)|p
xλ

dx ≤ A
∫ +∞

0

∫ +∞

0

|f (x) − f (y)|p
|x − y |1+λ

dxdy .

For the technical details, including discussions of the expression of A, see [18]. Over the
years, many improvements, extensions and refinements have been made to this inequality.
Notable developments can be found over several decades, including [7, 31] from 1990 to 2000,
[12, 14, 2, 13] from 2001 to 2010, [29, 20, 28, 11, 33, 23, 9, 24, 5, 35] from 2011 to 2020, and
[30, 26, 1, 27, 8] from 2021 to 2025. In particular, [8] revisits the methodology introduced
in [24], with special emphasis on [24, Lemma 2], leading to several significant contributions.
Among them is a detailed investigation of the fractional Hardy integral inequality for the full
range p ∈ (0, +∞), including the challenging case p ∈ (0, 1), as shown in [8, Proposition
2.1]. Furthermore, [8] provides an exact upper bound for a fractional-type integral, expressed
as follows: ∫ +∞

0

|f (x)|p
x dx .

This corresponds to the left-hand side of the fractional Hardy integral inequality evaluated at
λ = 1, a case that is excluded from the original formulation. For details, see [8, Proposition
3.1]. More precisely, let p ∈ (0, +∞) and f : (0, +∞) 7→ R such that∫ +∞

0

|f (x)|p
x dx < +∞.

Then the following holds:∫ +∞

0

|f (x)|p
x dx ≤ Bp,σ,α

∫ +∞

0

∫ +∞

0

|f (x) − f (y)|p

|xσ − y |1+1/σ dydx ,

where

Bp,σ,α = max(2p−1, 1)
[
σ − max(2p−1, 1)

]−1
α−1σ {max [|1 − α|, |1 − 2α|]}1+1/σ ,

σ > max(2p−1, 1) and α ∈ (0, +∞). As this case remains relatively underexplored, the result
gives new ideas for applications in mathematical analysis. Moreover, the issue of restricting
the domain of integration to a finite interval is addressed in [8, Proposition 4.1].

In this article, we generalize the framework of [8] by establishing two theorems. These
theorems extend the scope of the fractional Hardy integral inequality in important ways.
Specifically, the first theorem generalizes [8, Propositions 2.1 and 3.1] by incorporating multiple
functions and additional parameters. Formally, it states that

"
∫ +∞

0
|f (x)|pg(x)h(x)dx ≤ C

∫ +∞

0

∫ +∞

0

|f (x) − f (y)|p
|h(x) − y |γ dxdy , "
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where g and h are intermediate functions with complementary roles and C is a constant. They
are subject to manageable assumptions involving monotonicity and inequality constraints,
governed by several adjustable parameters. Notably, the special case g(x)h(x) = 1/xλ with
λ ∈ (0, +∞)\{1} recovers the classical fractional Hardy integral inequality, as well as [8,
Proposition 2.1], while the case g(x)h(x) = 1/x corresponds to [8, Propositions 3.1]. The
second theorem introduces an even greater degree of generality by relaxing the dependence on
p, and going beyond the traditional weighted Lp norm. Under similar tractable assumptions,
it states that

"
∫ +∞

0
φ [f (x)] g(x)h(x)dx ≤ D

∫ +∞

0

∫ +∞

0

φ[f (x) − f (y)]
ψ[h(x) − y ] dydx , "

where φ and ψ are specific functions and D is a constant. Some of the assumptions made on
these functions are related to classical properties such as sub-additivity and sub-multiplicativity.
Note that the choice of φ(x) = xp and ψ(x) = xγ reduces the second theorem to the newly
established first. The proofs are presented in a completely self-contained manner, with all
details given and no reliance on auxiliary lemmas. Through these new contributions, combined
with an original methodological approach, we significantly extend the theoretical framework
and potential applications of fractional Hardy-type integral inequalities.

The remainder of the article is structured as follows: Section 2 presents the statements
of the two main theorems. Section 3 is devoted to their proofs. Finally, Section 4 offers
concluding remarks and potential directions for future research.

2. Two Theorems
The first generalized fractional Hardy integral inequality is presented in the theorem below.

We emphasize the assumptions made on the new intermediate functions, g and h.

Theorem 2.1. Let p ∈ (0, +∞), f : (0, +∞) 7→ R and g , h : (0, +∞) 7→ (0, +∞). We
assume that

• h is increasing with limx→0 h(x) = 0 and limx→+∞ h(x) = +∞,

• we have ∫ +∞

0
|f (x)|pg(x)h(x)dx < +∞,

• there exist two constants, θ ∈ (0, +∞) and κ ∈ (0, [max(2p−1, 1)]−1), such that

sup
y∈(0,+∞)

[
1

g(y)h(y)

∫ h−1(y/θ)

h−1[y/(2θ)]
g(x)dx

]
≤ θκ, (2.1)

• there exist two constants, γ ∈ (0, +∞) and ζ ∈ (0, +∞), such that

sup
x∈(0,+∞)

[h(x)γg(x)] ≤ ζ. (2.2)
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Then the following holds:∫ +∞

0
|f (x)|pg(x)h(x)dx ≤ Cp,θ,κ,γ,ζ

∫ +∞

0

∫ +∞

0

|f (x) − f (y)|p
|h(x) − y |γ dxdy ,

where

Cp,θ,κ,γ,ζ =
[
1 − κmax(2p−1, 1)

]−1
θ−1 max(2p−1, 1) {max [|1 − θ|, |1 − 2θ|]}γ ζ. (2.3)

The proof is based on a thorough extension of that of [8, Propositions 2.1 and 3.1]. The
details are given in Section 3.

In this theorem, choosing g(x) = 1/x1+λ with λ ∈ (0, +∞)\{1} and h(x) = x , we find
that κ = (2λ − 1)θλ−1/λ, γ = 1 + λ and ζ = 1, and the main result reduces to∫ +∞

0

|f (x)|p
xλ

dx ≤ Cp,θ,κ,γ,ζ

∫ +∞

0

∫ +∞

0

|f (x) − f (y)|p
|x − y |1+λ

dxdy ,

with the corresponding edited expression of Cp,θ,κ,γ,ζ , as given in Equation (2.3). We thus
obtain the standard fractional Hardy integral inequality extended to the case p ∈ (0, +∞), as
shown in [8, Proposition 2.1].

As another example related to the literature, choosing g(x) = 1/x1+σ with σ > max(2p−1, 1)
and h(x) = xσ, we find that κ = 1/σ, γ = 1 + 1/σ and ζ = 1, and the main result reduces
to ∫ +∞

0

|f (x)|p
x dx ≤ Cp,θ,κ,γ,ζ

∫ +∞

0

∫ +∞

0

|f (x) − f (y)|p

|xσ − y |1+1/σ dydx ,

with the corresponding edited expression of Cp,θ,κ,γ,ζ . We thus obtain the special fractional
Hardy integral inequality as presented in [8, Proposition 3.1].

Continuing in the spirit of generalization, the theorem below can be viewed as an extended
version of Theorem 2.1, incorporating additional intermediate functions and parameters. Par-
ticular attention is given to the assumptions made on the new functions g , h, ψ and φ, some
of which will be examined in more detail after the statement of the theorem.
Theorem 2.2. Let f : (0, +∞) 7→ R, g , h,ψ : (0, +∞) 7→ (0, +∞) and φ : R 7→ (0, +∞).
We assume that

• h is increasing with limx→0 h(x) = 0 and limx→+∞ h(x) = +∞,

• for any (x , y) ∈ R2, there exists a constant α > 0 such that

φ(x + y) ≤ α[φ(x) + φ(y)], (2.4)

• ψ is continuous, monotonic and, for any (x , y) ∈ (0, +∞)2, there exists a constant
β > 0 such that

ψ(xy) ≤ βψ(x)ψ(y), (2.5)

• we have ∫ +∞

0
φ [f (x)] g(x)h(x)dx < +∞,
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• there exist two constants, θ ∈ (0, +∞) and κ ∈ (0,α−1), such that

sup
y∈(0,+∞)

[
1

g(y)h(y)

∫ h−1(y/θ)

h−1[y/(2θ)]
g(x)dx

]
≤ θκ, (2.6)

• there exists a constant ζ ∈ (0, +∞) such that

sup
x∈(0,+∞)

{ψ [h(x)] g(x)} ≤ ζ. (2.7)

Then the following holds:∫ +∞

0
φ [f (x)] g(x)h(x)dx ≤ Dα,β,θ,κ,ζ

∫ +∞

0

∫ +∞

0

φ[f (x) − f (y)]
ψ[h(x) − y ] dydx ,

where

Dα,β,θ,κ,ζ = (1 − κα)−1 αθ−1βmax [ψ(1 − θ),ψ(1 − 2θ)] ζ. (2.8)

The proof builds upon and extends the arguments used in Theorem 2.1, with full details
provided in Section 3. Notably, choosing φ(x) = xp and ψ(x) = xγ , the theorem reduces to
Theorem 2.1 as a special case.

Note that the classes of functions characterized by the assumptions in Equations (2.4)
and (2.5) are very large, beyond the classical power function.

In particular, the class of functions defined in Equation (2.4) with α = 1 is that of
the sub-additive functions. Examples of such functions include φ(x) = xτ with τ ∈ [0, 1],
φ(x) = arctan(x), φ(x) = log(1 + x) and φ(x) = x/(ω + x) with ω > 0. Further details on
this class can be found in [6, 10].

The class of functions defined in Equation (2.5) with β = 1 is the well-known class
of sub-multiplicative functions. Representative examples include ψ(x) = x ι with ι ∈ R,
ψ(x) = log(δ + x) with δ ≥ e and ψ(x) = 1/ tanh(ηx) with η > 0. Additional information
on this class can be found in [21, 15, 22].

The diversity of these classes of functions highlights the flexibility and generality of Theo-
rem 2.2, and thus extends the range of potential applications of fractional Hardy-type integral
inequalities.

3. Proofs
This section contains the detailed proofs of Theorems 2.1 and 2.2, one after another.

3.1. Proof of Theorem 2.1

Proof. A classic power-convexity inequality gives

|f (x)|p = |f (y) + [f (x) − f (y)]|p ≤ max(2p−1, 1)|f (y)|p + max(2p−1, 1)|f (x) − f (y)|p.

Multiplying both sides by θ−1g(x) ≥ 0, we obtain

θ−1|f (x)|pg(x) ≤ max(2p−1, 1)θ−1|f (y)|pg(x) + max(2p−1, 1)θ−1|f (x) − f (y)|pg(x).
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Integrating both sides with respect to the variable y ∈ (θh(x), 2θh(x)), we get

θ−1
∫ 2θh(x)

θh(x)
|f (x)|pg(x)dy ≤ max(2p−1, 1)θ−1

∫ 2θh(x)

θh(x)
|f (y)|pg(x)dy

+ max(2p−1, 1)θ−1
∫ 2θh(x)

θh(x)
|f (x) − f (y)|pg(x)dy .

For the left-hand side term, we have

θ−1
∫ 2θh(x)

θh(x)
|f (x)|pg(x)dy = θ−1|f (x)|pg(x)

∫ 2θh(x)

θh(x)
dy = |f (x)|pg(x)h(x).

Using this and integrating both sides with respect to the variable x ∈ (0, +∞), we find that∫ +∞

0
|f (x)|pg(x)h(x)dx ≤ max(2p−1, 1)Φ + max(2p−1, 1)Ψ, (3.1)

where
Φ = θ−1

∫ +∞

0

∫ 2θh(x)

θh(x)
|f (y)|pg(x)dydx

and
Ψ = θ−1

∫ +∞

0

∫ 2θh(x)

θh(x)
|f (x) − f (y)|pg(x)dydx .

We now want to majorize Φ and Ψ appropriately.
For Φ, using the Fubini-Tonelli integral theorem, justified by the non-negativity of the

integrand, which ensures the validity of interchanging the order of integration, and the fact
that h is increasing with limx→0 h(x) = 0 and limx→+∞ h(x) = +∞, we obtain

Φ = θ−1
∫ +∞

0

∫ h−1(y/θ)

h−1[y/(2θ)]
|f (y)|pg(x)dxdy = θ−1

∫ +∞

0
|f (y)|p

[∫ h−1(y/θ)

h−1[y/(2θ)]
g(x)dx

]
dy .

The assumption in Equation (2.1) says that there exist θ ∈ (0, +∞) and κ ∈ (0, [max(2p−1, 1)]−1)
such that, for any y ∈ (0, +∞),∫ h−1(y/θ)

h−1[y/(2θ)]
g(x)dx ≤ θκg(y)h(y).

This implies that

Φ ≤ κ

∫ +∞

0
|f (y)|pg(y)h(y)dy . (3.2)

For Ψ, considering the constant γ in Equation (2.2) and applying a fractional-type decompo-
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sition of the integrand, we have

Ψ = θ−1
∫ +∞

0

∫ 2θh(x)

θh(x)
|h(x) − y |γg(x) × |f (x) − f (y)|p

|h(x) − y |γ dydx

≤ θ−1

{
sup

x∈(0,+∞)
sup

y∈(θh(x),2θh(x))
[|h(x) − y |γg(x)]

}∫ +∞

0

∫ 2θh(x)

θh(x)

|f (x) − f (y)|p
|h(x) − y |γ dydx

≤ θ−1

{
sup

x∈(0,+∞)
sup

y∈(θh(x),2θh(x))
[|h(x) − y |γg(x)]

}∫ +∞

0

∫ +∞

0

|f (x) − f (y)|p
|h(x) − y |γ dydx .

By Equation (2.2), we have supx∈(0,+∞) [h(x)γg(x)] ≤ ζ. Using this, we get

sup
x∈(0,+∞)

sup
y∈(θh(x),2θh(x))

[|h(x) − y |γg(x)]

= sup
x∈(0,+∞)

max [|h(x) − θh(x)|γg(x), |h(x) − 2θh(x)|γg(x)]

= {max [|1 − θ|, |1 − 2θ|]}γ
{

sup
x∈(0,+∞)

[h(x)γg(x)]
}

≤ {max [|1 − θ|, |1 − 2θ|]}γ ζ.

We therefore obtain

Ψ ≤ θ−1 {max [|1 − θ|, |1 − 2θ|]}γ ζ
∫ +∞

0

∫ +∞

0

|f (x) − f (y)|p
|h(x) − y |γ dydx . (3.3)

Combining Equations (3.1), (3.2) and (3.3), we find that∫ +∞

0
|f (x)|pg(x)h(x)dx ≤ κmax(2p−1, 1)

∫ +∞

0
|f (x)|pg(x)h(x)dx

+ θ−1 max(2p−1, 1) {max [|1 − θ|, |1 − 2θ|]}γ ζ
∫ +∞

0

∫ +∞

0

|f (x) − f (y)|p
|h(x) − y |γ dydx .

This gives[
1 − κmax(2p−1, 1)

] ∫ +∞

0
|f (x)|pg(x)h(x)dx

≤ θ−1 max(2p−1, 1) {max [|1 − θ|, |1 − 2θ|]}γ ζ
∫ +∞

0

∫ +∞

0

|f (x) − f (y)|p
|h(x) − y |γ dydx .

Since κ ∈ (0, [max(2p−1, 1)]−1), we can isolate the main integral of interest, as follows:∫ +∞

0
|f (x)|pg(x)h(x)dx

≤
[
1 − κmax(2p−1, 1)

]−1
θ−1 max(2p−1, 1) {max [|1 − θ|, |1 − 2θ|]}γ ζ×∫ +∞

0

∫ +∞

0

|f (x) − f (y)|p
|h(x) − y |γ dydx

= Cp,θ,κ,γ,ζ

∫ +∞

0

∫ +∞

0

|f (x) − f (y)|p
|h(x) − y |γ dxdy ,

where Cp,θ,κ,γ,ζ is indicated in Equation (2.3). The proof of Theorem 2.1 ends.
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3.2. Proof of Theorem 2.2

Proof. The proof follows the lines of that of Theorem 2.1, with the consideration of the new
intermediate functions and parameters. Applying the inequality in Equation (2.4), we have

φ[f (x)] = φ [f (y) + [f (x) − f (y)]] ≤ αφ[f (y)] + αφ[f (x) − f (y)].

Multiplying both sides by θ−1g(x) ≥ 0, we have

θ−1φ[f (x)]g(x) ≤ αθ−1φ[f (y)]g(x) + αθ−1φ[f (x) − f (y)]g(x).

Integrating both sides with respect to the variable y ∈ (θh(x), 2θh(x)), we get

θ−1
∫ 2θh(x)

θh(x)
φ[f (x)]g(x)dy ≤ αθ−1

∫ 2θh(x)

θh(x)
φ[f (y)]g(x)dy

+ αθ−1
∫ 2θh(x)

θh(x)
φ[f (x) − f (y)]g(x)dy .

For the left-hand side term, we have

θ−1
∫ 2θh(x)

θh(x)
φ[f (x)]g(x)dy = θ−1φ[f (x)]g(x)

∫ 2θh(x)

θh(x)
dy = φ[f (x)]g(x)h(x).

Using this and integrating both sides with respect to the variable x ∈ (0, +∞), we obtain∫ +∞

0
φ[f (x)]g(x)h(x)dx ≤ αΥ + αΩ, (3.4)

where
Υ = θ−1

∫ +∞

0

∫ 2θh(x)

θh(x)
φ[f (y)]g(x)dydx

and
Ω = θ−1

∫ +∞

0

∫ 2θh(x)

θh(x)
φ[f (x) − f (y)]g(x)dydx .

We now want to majorize Υ and Ω appropriately.
For Υ, the Fubini-Tonelli integral theorem, which ensures the validity of interchanging the

order of integration, combined with the fact that h is increasing with limx→0 h(x) = 0 and
limx→+∞ h(x) = +∞, gives

Υ = θ−1
∫ +∞

0

∫ h−1(y/θ)

h−1[y/(2θ)]
φ[f (y)]g(x)dxdy = θ−1

∫ +∞

0
φ[f (y)]

[∫ h−1(y/θ)

h−1[y/(2θ)]
g(x)dx

]
dy .

The assumption in Equation (2.6) says that there exist θ ∈ (0, +∞) and κ ∈ (0,α−1) such
that, for any y ∈ (0, +∞), ∫ h−1(y/θ)

h−1[y/(2θ)]
g(x)dx ≤ θκg(y)h(y).
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This implies that

Υ ≤ κ

∫ +∞

0
φ[f (y)]g(y)h(y)dy . (3.5)

For Ω, a suitable fractional-type decomposition of the integrand gives

Ω = θ−1
∫ +∞

0

∫ 2θh(x)

θh(x)
ψ[h(x) − y ]g(x) × φ[f (x) − f (y)]

ψ[h(x) − y ] dydx

≤ θ−1

[
sup

x∈(0,+∞)
sup

y∈(θh(x),2θh(x))
{ψ[h(x) − y ]g(x)}

]∫ +∞

0

∫ 2θh(x)

θh(x)

φ[f (x) − f (y)]
ψ[h(x) − y ] dydx

≤ θ−1

[
sup

x∈(0,+∞)
sup

y∈(θh(x),2θh(x))
{ψ[h(x) − y ]g(x)}

]∫ +∞

0

∫ +∞

0

φ[f (x) − f (y)]
ψ[h(x) − y ] dydx .

Since ψ is continuous and monotonic, we have

sup
x∈(0,+∞)

sup
y∈(θh(x),2θh(x))

{ψ[h(x) − y ]g(x)}

= sup
x∈(0,+∞)

max [ψ[h(x) − θh(x)]g(x),ψ[h(x) − 2θh(x)]g(x)] .

It follows from the assumption in Equation (2.5) that

ψ[h(x) − θh(x)] = ψ[(1 − θ)h(x)] ≤ βψ(1 − θ)ψ[h(x)]

and

ψ[h(x) − 2θh(x)] = ψ[(1 − 2θ)h(x)] ≤ βψ(1 − 2θ)ψ[h(x)].

This combined with the assumption in Equation (2.7) gives

sup
x∈(0,+∞)

max [ψ[h(x) − θh(x)]g(x),ψ[h(x) − 2θh(x)]g(x)]

≤ βmax [ψ(1 − θ),ψ(1 − 2θ)]
{

sup
x∈(0,+∞)

[ψ[h(x)]g(x)]
}

≤ βmax [ψ(1 − θ),ψ(1 − 2θ)] ζ.

We therefore obtain

Ω ≤ θ−1βmax [ψ(1 − θ),ψ(1 − 2θ)] ζ
∫ +∞

0

∫ +∞

0

φ[f (x) − f (y)]
ψ[h(x) − y ] dydx . (3.6)

Combining Equations (3.4), (3.5) and (3.6) together, we get∫ +∞

0
φ[f (x)]g(x)h(x)dx ≤ κα

∫ +∞

0
φ[f (x)]g(x)h(x)dx

+ αθ−1βmax [ψ(1 − θ),ψ(1 − 2θ)] ζ
∫ +∞

0

∫ +∞

0

φ[f (x) − f (y)]
ψ[h(x) − y ] dydx .
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This gives

(1 − κα)
∫ +∞

0
φ[f (x)]g(x)h(x)dx

≤ αθ−1βmax [ψ(1 − θ),ψ(1 − 2θ)] ζ
∫ +∞

0

∫ +∞

0

φ[f (x) − f (y)]
ψ[h(x) − y ] dydx .

Since κ ∈ (0,α−1), we can isolate the main integral of interest as follows:∫ +∞

0
φ[f (x)]g(x)h(x)dx ≤ (1 − κα)−1 αθ−1βmax [ψ(1 − θ),ψ(1 − 2θ)] ζ×∫ +∞

0

∫ +∞

0

φ[f (x) − f (y)]
ψ[h(x) − y ] dydx

= Dα,β,θ,κ,ζ

∫ +∞

0

∫ +∞

0

φ[f (x) − f (y)]
ψ[h(x) − y ] dydx ,

where Dα,β,θ,κ,ζ is indicated in Equation (2.8). This concludes the proof of Theorem 2.2.

As previously noted, the proofs of the theorems are entirely self-contained and do not rely
on auxiliary lemmas. Their structure may also inspire further extensions and improvements,
representing an additional contribution of this work.

4. Conclusion and Future Work
In this article, we have presented two theorems that generalize the fractional Hardy inte-

gral inequality in several ways. Notably, these results introduce new intermediate functions
and parameters that significantly increase the flexibility and applicability of this inequality.
The self-contained proofs ensure both clarity and completeness, making our results accessible
for further theoretical exploration. Potential future directions include refining the obtained in-
equalities for different function classes beyond sub-additive and sub-multiplicative functions,
extending the results to integral operators, and exploring discrete analogues. In addition,
future work could address the numerical aspects, where fractional Hardy-type integral in-
equalities could provide rigorous bounds for approximation methods.
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