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ABSTRACT
In this paper, we deal with monotone vector fields defined on geodesic
spaces and their zero point approximation method. In an appropriate
setting, we can define the resolvent operator for a given monotone
vector field, and then that operator has many useful properties which
are effective for the fixed point theory. We will show an approximation
theorem for a monotone vector field with the canonical proximal point
algorithm.
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1. Introduction
Let A be a set-valued mapping from a Hilbert space H to a subset of H. To find a point

x ∈ H such that 0H ∈ Ax is called a zero point problem for A. We know that the class of
zero point problems includes some nonlinear problems such as convex minimisation problems,
equilibrium problems, fixed point problems, and so forth.

For a given maximal monotone operator A on a Hilbert space H and a positive real number
r , we can define a mapping JrA by

JrAx = (I + rA)−1x

for x ∈ H. Note that (I + rA)−1 is single-valued even if A is set-valued. We call this mapping
JrA the resolvent operator for rA. One of remarkable facts is this: The set of all fixed points
of JrA coincides with the set of all zero points of A. On the other hand, the proximal point
algorithm is a typical zero point approximation method. Rockafellar [17] has proved the
following approximation theorem to find a zero point of a maximal monotone operator:

Theorem 1.1. [17] Let H be a Hilbert space and A a maximal monotone operator on H, which
has a zero point. Let {rn} be a sequence of positive real numbers such that infk∈N rk > 0.
For a given initial point x1 ∈ H, generate a sequence {xn} of H by

xn+1 = JrnAxn = (I + rnA)−1xn
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for n ∈ N. Then, {xn} converges weakly to some zero point of A.

Recently, approximation theorems with the proximal point algorithm for convex functions
and equilibrium problems have been shown on geodesic spaces having bounded curvature,
which are called CAT(κ) spaces. See [2, 8, 12] for instance. Additionally, the notion of
monotone operators on Hilbert spaces has been generalised to the framework of geodesic
spaces. For instance, Chaipunya, Kohsaka and Kumam [4] have dealt with monotone vector
fields on a CAT(0) space using tangent spaces, and recently, the author has proposed a class
of monotone vector fields on a CAT(κ) space; see [19]. For related results, refer to [6] for
instance.

In this work, we apply the proximal point algorithm with the resolvent operator of a
monotone vector field to approximate its zero point. Further, we show an application to an
equilibrium problem on CAT(κ) spaces.

2. Preliminaries
Let (M, d) be a metric space and let D ∈ ]0,∞]. For x , y ∈ M and l = d(x , y), we call

a mapping γxy from [0, l ] into M a geodesic from x to y if γxy (0) = x , γxy (l) = y and

d(γxy (s), γxy (t)) = |s − t|

for s, t ∈ [0, l ]. We say M is uniquely D-geodesic if for x , y ∈ M with d(x , y) < D, there
is a unique geodesic from x to y . In a uniquely D-geodesic space M, for x , y ∈ M with
d(x , y) < D and t ∈ [0, 1], we define their convex combination by

tx ⊕ (1 − t)y = γxy ((1 − t)d(x , y)).

Let C be a subset of a uniquely D-geodesic space M such that d(u, v) < D for any u, v ∈ C .
We say C is convex if

tx ⊕ (1 − t)y ∈ C

for x , y ∈ C and t ∈ [0, 1].
To define a CAT(κ) space, we first define a function cκ from R to [0,∞[ by

cκ(a) = 1
2a2 +

∞∑
n=2

(−κ)n−1a2n

(2n)! =



1
κ

(
1 − cos

(√
κa

))
(κ > 0);

1
2a2 (κ = 0);

1
−κ

(
cosh

(√
−κa

)
− 1

)
(κ < 0)

for a ∈ R. Then, for a ∈ R,

c ′
κ(a) = a +

∞∑
n=2

(−κ)n−1a2n−1

(2n − 1)! =



sin
(√

κa
)

√
κ

(κ > 0);

a (κ = 0);
sinh

(√
−κa

)
√
−κ

(κ < 0)
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and

c ′′
κ (a) = 1 +

∞∑
n=2

(−κ)n−1a2n−2

(2n − 2)! =


cos

(√
κa

)
(κ > 0);

1 (κ = 0);
cosh

(√
−κa

)
(κ < 0).

It hold from the definition of cκ that cκ(0) = c ′
κ(0) = 0 and c ′′

κ (0) = 1. Remark that

(1 − c ′′
κ (a))cκ(b) = cκ(a)(1 − c ′′

κ (b))

for a, b ∈ R.
We denote the diameter of model spaces by Dκ, and define it by

Dκ =


π√
κ

(κ > 0);

∞ (κ ≤ 0).

Note that cκ is increasing on [0, Dκ[. For a metric space (M, d) and a real number κ, we
define a function ϕκ from M2 to R by

ϕκ(x , y) = cκ(d(x , y))

for x , y ∈ M. We know the following properties of ϕκ:

• ϕκ(x , y) ≥ 0 for x , y ∈ M;

• ϕκ(x , y) = 0 if and only if x = y for x , y ∈ M with d(x , y) < 2Dκ;

• ϕκ(x , y) = ϕκ(y , x) for x , y ∈ M.

We define a coefficient adjuster (·)κl on [0, 1] by

(t)κl =


c ′
κ(tl)
c ′
κ(l) (l ∈ ]0, Dκ[);

t (l = 0)

for t ∈ [0, 1].
Now, we define a CAT(κ) space. It is usually defined with a notion of model spaces

and their triangles. However, we can define a CAT(κ) space with the following equivalent
condition to the definition: That is, a uniquely Dκ-geodesic space M for κ ∈ R is a CAT(κ)
space if and only if

ϕκ(tx ⊕ (1 − t)y , z) ≤ (t)κl ϕκ(x , z) + (1 − t)κl ϕκ(y , z)
− (t)κl ϕκ(x , tx ⊕ (1 − t)y) − (1 − t)κl ϕκ(y , tx ⊕ (1 − t)y)

for x , y , z ∈ M with d(y , z) + d(z , x) + l < 2Dκ and t ∈ [0, 1], where l = d(x , y). We call
this inequality Stewart’s inequality. For more details about Stewart’s inequality, see [13]. We
say that a CAT(κ) space M is admissible [12] if

d(u, v) < Dκ

2
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for any u, v ∈ M. CAT(κ) spaces are always admissible when κ ≤ 0. If M is admissible, then

c ′′
κ (d(u, v)) > 0

for u, v ∈ M.
Let M be a metric space and T a mapping on M. We call a point x ∈ M a fixed point of

T if Tx = x , and denote the set of all fixed points of T by

Fix T = {x ∈ M | Tx = x}.

Further, we say T is quasinonexpansive if Fix T is nonempty and

d(Tx , y) ≤ d(x , y)

for x ∈ M and y ∈ Fix T . If M is an admissible CAT(κ) space and T is quasinonexpansive,
then its fixed point set is closed and convex. For the sake of completeness, we give a poof.

Proposition 2.1. Let M be an admissible CAT(κ) space and T a quasinonexpansive mapping
on M. Then, Fix T is closed and convex.

Proof. We first show that Fix T is closed and convex. Take a sequence {xn} of Fix T con-
verging to x ∈ M. Then, since T is quasinonexpansive,

d(Tx , x) ≤ d(Tx , xn) + d(xn, x) ≤ 2d(xn, x).

Letting n → ∞, we have d(Tx , x) ≤ 0, and hence x is a fixed point of T . Thus, Fix T is
closed.

Let x , y ∈ Fix T and t ∈ [0, 1]. Then, for

w = tx ⊕ (1 − t)y

and l = d(x , y), from Stewart’s inequality of M and the quasinonexpansiveness of T ,

ϕκ(Tw , w) ≤ (t)κl ϕκ(Tw , x) + (1 − t)κl ϕκ(Tw , y) − (t)κl ϕκ(x , w) − (1 − t)κl ϕκ(y , w)
≤ (t)κl ϕκ(w , x) + (1 − t)κl ϕκ(w , y) − (t)κl ϕκ(x , w) − (1 − t)κl ϕκ(y , w)
= 0.

Therefore, w is a fixed point of T , and hence Fix T is convex.

Let C be a nonempty closed convex subset of an admissible complete CAT(κ) space M.
For x ∈ M, there exists a unique point yx ∈ C such that

d(x , yx ) = inf
y∈C

d(x , y).

We call a mapping PC : x 7→ yx the metric projection onto C . The metric projection PC is
quasinonexpansive with the fixed point set Fix PC = C . That is,

d(PC x , y) ≤ d(x , y)

for x ∈ M and y ∈ C . For more details, see [2, 5].
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Let M be a metric space and {xn} a bounded sequence of M. We call a point w ∈ M an
asymptotic centre of {xn} if

lim sup
n→∞

d(xn, w) = inf
y∈M

lim sup
n→∞

d(xn, y).

We say {xn} ∆-converges to a ∆-limit x ∈ M if x is a unique asymptotic centre of any
subsequence of {xn}. A sequence {xn} of an admissible CAT(κ) space M is said to be
κ-bounded if

inf
y∈M

lim sup
n→∞

d(xn, y) < Dκ

2 .

Every κ-bounded sequence is bounded in the usual sense. Moreover, it is well known that a
κ-bounded sequence of an admissible complete CAT(κ) space has a unique asymptotic centre;
refer to [2, 5, 15] for example.

3. Tangent spaces and monotone vector fields
In what follows, we define tangent spaces and a metric on a CAT(κ) space corresponding

to Riemannian metrics. For more details, see [14] and references therein.
We first define the Alexandrov angle. Let M be an admissible CAT(κ) space, and let

p, x , y ∈ M. We define the Alexandrov angle Ap at p by

Ap(x , y) = lim
t→0+

arccos
(

1 − d(γpx (t), γpy (t))2

2t2

)
∈ [0,π]

if p 6= x and p 6= y ; Ap(x , p) = Ap(p, x) = π/2 if p 6= x ; Ap(p, p) = 0. For more details
about the Alexandrov angles, refer to [3, Proposition 1.14 in Chapter I.1 and Proposition 3.1
in Chapter II.3] for instance.

Let M be an admissible CAT(κ) space, and let p ∈ M. We define an equivalence relation
∼p on M by x ∼p y if

Ap(x , y) = 0.
For x ∈ M, we denote an equivalence class of x by

[x ]p = {z ∈ M | x ∼p z}.

Notice that [p]p = {p} since Ap(p, x) = π/2 if p 6= x . Further, let

DpM = M/∼p = {[x ]p | x ∈ M}.

Then, (DpM, Ap) is a metric space, where the distance Ap is defined by

Ap([x ]p, [y ]p) = Ap(x , y)

for [x ]p, [y ]p ∈ DpM. We next define a function ζ from DpM to {0, 1} by

ζ([x ]p) =
{

0 ([x ]p = [p]p);
1 ([x ]p 6= [p]p)

for [x ]p ∈ DpM. We define an equivalence relation 'p on a Cartesian product

[0,∞[ × DpM

by (r1, [x ]p) 'p (r2, [y ]p) if one of the following conditions is satisfied:
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• r1ζ([x ]p) = r2ζ([y ]p) = 0;

• r1ζ([x ]p) = r2ζ([y ]p) > 0 and [x ]p = [y ]p.

Now, we define a tangent space on M. We define a set TpM by

TpM = ([0,∞[ × DpM)/'p.

For the simplicity, denote an element [(r , [x ]p)]≃p ∈ TpM by r [x ]p. Particularly, we denote
0[p]p by 0p. Furthermore, we let TpM equip a distance function dp defined by

dp(r [x ]p, s[y ]p) =
√

r2ζ([x ]p) + s2ζ([y ]p) − 2rsζ([x ]p)ζ([y ]p) cos Ap(x , y)

for r [x ]p, s[y ]p ∈ TpM. We call this metric space (TpM, dp) the tangent space of M at p.
Set

TM =
⊔

p∈M
TpM =

⋃
p∈M

{(vp, p) | vp ∈ TpM} ,

and call it the tangent bundle of M.
Let M be an admissible CAT(κ) space, and let p ∈ M. For vp = r [v ]p ∈ TpM and

t ∈ [0,∞[, we denote a point (tr)[v ]p in TpM by tvp. Particularly, for t > 0, we denote a
point (r/t)[v ]p by vp/t. We define a logarithmic mapping logp from M to TpM by

logp x = d(p, x)[x ]p ∈ TpM

for x ∈ M. This logarithmic mapping is a generalisation of the inverse mapping of the expo-
nential mapping on Riemannian manifolds. We further define another logarithmic mapping
logκ,p from M to TpM by

logκ,p x = c ′
κ(d(p, x))[x ]p ∈ TpM

for x ∈ M. We define a function gp : TpM × TpM → R by

gp(up, vp) = dp(up, 0p)2 + dp(vp, 0p)2 − dp(up, vp)2

2
for up, vp ∈ TpM. We call g = {gp}p∈M a metric on M. The following hold:

• gp(vp, vp) ≥ 0 for vp ∈ TpM;

• gp(up, vp) = gp(vp, up) for up, vp ∈ TpM;

• gp(vp, 0p) = 0 for vp ∈ TpM;

• tgp(up, vp) = gp(up, tvp) for up, vp ∈ TpM and t ≥ 0;

• d(x , y)2 = gx (logx y , logx y) = gy (logy x , logy x) for x , y ∈ M;

• c ′
κ(d(x , y))2 = gx (logκ,x y , logκ,x y) = gy (logκ,y x , logκ,y x) for x , y ∈ M.

Theorem 3.1. [14] For an admissible CAT(κ) space M and p, x , y ∈ M,

gp(logκ,p x , logκ,p y) ≥ ϕκ(p, x) + c ′′
κ (d(p, x))ϕκ(p, y) − ϕκ(x , y)

≥ ϕκ(p, x) − ϕκ(x , y).



The Proximal Point Algorithm for Monotone Vector Fields on Complete Geodesic Spaces 7

We next introduce a notion of monotone vector fields. Let M be an admissible CAT(κ)
space and A a set-valued mapping from M to a subset of the tangent bundle TM. We call A
a set-valued vector field if Ax ⊂ Tx M for x ∈ M. Henceforth, suppose that A is a set-valued
vector field on M. We denote the domain of A by

Dom A = {x ∈ M | Ax 6= ∅}.

We denote the graph of A by

Gph A = {(x , vx ) ∈ Dom A × TM | vx ∈ Ax}.

We call a point x ∈ M a zero point of A if 0x ∈ Ax , denote the set of all zero points of A by

Zero A = {x ∈ M | 0x ∈ Ax} .

For r > 0, we define a set-valued vector field rA on M by

rAx = {rvx ∈ Tx M | vx ∈ Ax}

for x ∈ M. Notice that Dom(rA) = Dom A and Zero(rA) = Zero A. We say that A is
monotone if

gx (logx y , ux ) + gy (logy x , vy ) ≤ 0
for (x , ux ), (y , vy ) ∈ Gph A. If A is monotone, then so is rA for r > 0. Further, we immediately
obtain the following:

Proposition 3.2. Let M be an admissible CAT(κ) space and A a set-valued vector field on
M. Then, A is monotone if and only if

gx (logκ,x y , ux ) + gy (logκ,y x , vy ) ≤ 0

for (x , ux ), (y , vy ) ∈ Gph A.

For a monotone vector field A on an admissible CAT(κ) space M, we consider a condition
as follows: For fixed x ∈ M, there exists z ∈ M such that

logκ,z x ∈ Az .

In this case, such a point is unique since A is monotone, and therefore we define a mapping
JA on M by

{JAx} =
{

z ∈ M
∣∣ logκ,z x ∈ Az

}
for x ∈ M. We call the mapping JA the resolvent operator of A. We say that A is resolvably
monotone if it is monotone, and{

z ∈ M
∣∣∣∣ logκ,z x

r ∈ Az
}

6= ∅

for any r > 0 and any x ∈ M. If A is resolvably monotone, then so is rA for r > 0. In this
case, we can define the resolvent operator JrA of rA for r > 0.

Let M be an admissible CAT(κ) space and A a resolvably monotone vector field on M.
Then, for r > 0, we know that

Zero A = Fix JrA.
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Furthermore, JA is geodesically nonspreading, that is,

ϕκ(JAx , JAy) + ϕκ(JAy , JAx) ≤ ϕκ(JAx , y) + ϕκ(JAy , x)

for x , y ∈ M. Such a mapping is also said to be metrically nonspreading [16] if κ = 0;
spherically nonspreading of sum type [7, 10] if κ = 1; hyperbolically nonspreading [9] if
κ = −1. If A has a zero point, then for x ∈ M and y ∈ Fix JA,

ϕκ(JAx , y) + ϕκ(y , JAx) = ϕκ(JAx , JAy) + ϕκ(JAy , JAx)
≤ ϕκ(JAx , y) + ϕκ(JAy , x)
= ϕκ(JAx , y) + ϕκ(y , x),

and therefore
d(JAx , y) ≤ d(x , y).

It means that JA is quasinonexpansive. Thus, Zero A is closed and convex. For more details
about monotone vector fields, refer to [19].

In what follows, we see an equilibrium problem on geodesic spaces as an example of
monotone vector fields.

Let M be an admissible CAT(κ) space. We say that a nonempty closed convex subset
K has the convex hull finite property [10, 18] if every continuous mapping on cl co E has a
fixed point for every finite subset E of K , where cl co E is the closed convex hull of E . If K
is compact, then it enjoys the convex hull finite property according to [1].

Let K be a nonempty closed convex subset of an admissible CAT(κ) space M. In this
work, for a function f from K 2 to R, we consider the following equilibrium problem: To find
a point x ∈ K such that

inf
y∈K

f (x , y) ≥ 0.

We call such a point an equilibrium point of f , and we denote the set of all equilibrium points
of f by Equil f . We further assume the following conditions:

(E1) For x ∈ K , f (x , x) = 0;

(E2) for x , y ∈ K , f (x , y) + f (y , x) ≤ 0;

(E3) for x ∈ K , a real function f (x , ·) on K is lower semicontinuous and

f (x , ty1 ⊕ (1 − t)y2) ≤ tf (x , y1) + (1 − t)f (x , y2)

for y1, y2 ∈ K and t ∈ [0, 1];

(E4) for x , y ∈ K , lim supt→0+ f (ty ⊕ (1 − t)x , y) ≤ f (x , y).

Then, the following holds:
Theorem 3.3. [19] Let M be an admissible complete CAT(κ) space and K a nonempty closed
convex subset of M having the convex hull finite property. For a function f from K 2 to R
satisfying the four conditions (E1) to (E4), define a set-valued vector field Af on M by

Af x =
{

vx ∈ Tx M
∣∣∣∣ 0 ≤ inf

y∈M
(f (x , y) − gx (logx y , vx ))

}
if x ∈ K ; Af x = ∅ if x /∈ K . Assume that Equil f is nonempty. Then, the following hold:
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(i) The set-valued vector field Af is resolvably monotone;

(ii) for r > 0 and x ∈ M,

{JrAf x} =
{

z ∈ K
∣∣∣∣ inf

y∈K

(
f (z , y) + 1

r ϕκ(y , x)
)
− 1

r ϕκ(z , x) ≥ 0
}

;

(iii) Equil f = Zero Af , and K = cl Dom Af .

4. The proximal point algorithm for a monotone vector field
In this section, we show that a zero point approximation theorem with the proximal point

algorithm. At first, we prove the following lemma. Termkaew, Chaipunya and Kohsaka [20]
have shown this in the case where κ = 0.

Lemma 4.1. Let M be an admissible complete CAT(κ) space and C a nonempty closed
convex subset of M. Let {xn} be a sequence of M such that

d(xn+1, p) ≤ d(xn, p)

for any p ∈ C and n ∈ N. Then, a sequence {PC xn} converges to a point in C .

Proof. We show a sequence {PC xn} is a Cauchy one. Henceforth, we denote PC by P for
the simplicity. From the definition of the metric projection P and the assumption of {xn}, we
have

d(Pxn+1, xn+1) ≤ d(Pxn, xn+1) ≤ d(Pxn, xn)

for n ∈ N, and thus {ϕκ(Pxn, xn)} is convergent. Note that there exists a nonnegative real
sequence {an} converging to 0 such that

|ϕκ(Pxm, xm) − ϕκ(Pxn, xn)| ≤ an

for m, n ∈ N with m ≥ n. Moreover, there exists a positive real number c such that

c ≤ inf
n∈N

c ′′
κ (d(Pxn, xn)).

Actually, we should take c as

c =
{

c ′′
κ (d(Px1, x1)) (κ > 0);

1 (κ ≤ 0).

Fix m, n ∈ N with m ≥ n arbitrarily. Let l = d(Pxn, Pxm) and t ∈ ]0, 1[. From the definition
of the metric projection P and Stewart’s inequality of M, we have

ϕκ(xm, Pxm) ≤ ϕκ(xm, tPxn ⊕ (1 − t)Pxm)
≤ (t)κl ϕκ(xm, Pxn) + (1 − t)κl ϕκ(xm, Pxm) − (t)κl cκ((1 − t)l),

and hence
1 − (1 − t)κl

(t)κl
ϕκ(xm, Pxm) ≤ ϕκ(xm, Pxn) − cκ((1 − t)l). (∗)
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From l’Hôpital’s rule, if l 6= 0, then

lim
t→0+

1 − (1 − t)κl
(t)κl

= lim
t→0+

c ′
κ(l) − c ′

κ((1 − t)l)
c ′
κ(tl) = lim

t→0+

l · c ′′
κ ((1 − t)l)
l · c ′′

κ (tl) = c ′′
κ (l).

If l = 0, then
1 − (1 − t)κl

(t)κl
= 1 − (1 − t)

t = 1 = c ′′
κ (l).

Therefore, letting t → 0+ for the equation (∗), we have

c ′′
κ (l)ϕκ(xm, Pxm) ≤ ϕκ(xm, Pxn) − ϕκ(Pxn, Pxm).

Then,

0 ≤ ϕκ(Pxn, xm) − c ′′
κ (l)ϕκ(Pxm, xm) − ϕκ(Pxn, Pxm)

= ϕκ(Pxn, xm) − ϕκ(Pxm, xm) +
(
1 − c ′′

κ (l)
)
ϕκ(Pxm, xm) − ϕκ(Pxn, Pxm)

= ϕκ(Pxn, xm) − ϕκ(Pxm, xm) − c ′′
κ (d(Pxm, xm))ϕκ(Pxn, Pxm)

≤ ϕκ(Pxn, xm) − ϕκ(Pxm, xm) − c · ϕκ(Pxn, Pxm),

and hence
ϕκ(Pxn, Pxm) ≤ ϕκ(Pxn, xm) − ϕκ(Pxm, xm)

c .

On the other hand, from the assumption of {xn}, we have

d(Pxn, xm) ≤ d(Pxn, xm−1) ≤ · · · ≤ d(Pxn, xn).

Hence,

ϕκ(Pxn, Pxm) ≤ ϕκ(Pxn, xm) − ϕκ(Pxm, xm)
c ≤ ϕκ(Pxn, xn) − ϕκ(Pxm, xm)

c

≤ |ϕκ(Pxm, xm) − ϕκ(Pxn, xn)|
c ≤ an

c .

It means that {Pxn} is a Cauchy sequence, which completes the proof.

We further have known the following result:

Theorem 4.2. [8, 11, 12] For an admissible complete CAT(κ) space M, let {xn} be a κ-
bounded sequence of M and {bn} a positive real sequence such that

∑∞
i=1 bi = ∞. Then, a

function h on M defined by

h(y) = lim sup
n→∞

1∑n
j=1 bj

n∑
i=1

biϕκ(xi , y)

for y ∈ M has a unique minimiser.

Now, we prove the following theorem:
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Theorem 4.3. Let M be an admissible complete CAT(κ) space and A a resolvably monotone
vector field on M. Let {rn} be a sequence of positive real numbers whose sum is divergent to
∞. For a given initial point x1 ∈ M, generate a sequence {xn} of M by

xn+1 = JrnAxn

for n ∈ N. Then, the following hold:

(i) The resolvably monotone vector field A has a zero point if and only if the generated
sequence {xn} is κ-bounded;

(ii) if A has a zero point and infk∈N rk > 0, then the generated sequence {xn} ∆-converges
to a zero point of A, which equals to

lim
n→∞

PZero Axn.

Proof. We first show (i). If A has a zero point, then the resolvent operator JrnA is quasinon-
expansive for n ∈ N. Thus, for w ∈ Zero A and n ∈ N, we have

d(xn+1, w) = d(JrnAxn, w) ≤ d(xn, w),

and therefore

inf
y∈M

lim sup
n→∞

d(xn, y) ≤ lim sup
n→∞

d(xn, w) ≤ d(x1, w) < Dκ

2 ,

which means that {xn} is κ-bounded. We inversely assume that {xn} is κ-bounded. We define
a function h on M by

h(y) = lim sup
n→∞

1∑n
j=1 rj

n∑
i=1

riϕκ(xi+1, y)

for y ∈ M. From Theorem 4.2, this function h has a unique minimiser. Let w ∈ M be its
unique minimiser. Fix i ∈ N arbitrarily. From the definition of the resolvent operators Jri A
and JA, we know that

(JAw , logκ,JAw w),
(

xi+1,
logκ,xi+1 xi

ri

)
∈ Gph A.

From the monotonicity of A, we obtain

0 ≥ gJAw (logκ,JAw xi+1, logκ,JAw w) +
gxi+1(logκ,xi+1 JAw , logκ,xi+1 xi)

ri

≥ ϕκ(JAw , xi+1) − ϕκ(xi+1, w) + ϕκ(xi+1, JAw) − ϕκ(JAw , xi)
ri

,

and hence

riϕκ(xi+1, JAw) ≤ riϕκ(xi+1, w) + ϕκ(xi , JAw) − ϕκ(xi+1, JAw)

for i ∈ N. Fix n ∈ N. Summing up this inequality with respect to i = 1, 2, ... , n, we have
n∑

i=1
riϕκ(xi+1, JAw) ≤

n∑
i=1

riϕκ(xi+1, w) + ϕκ(x1, JAw) − ϕκ(xn+1, JAw).
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Dividing both sides by
∑n

j=1 rj , and letting n → ∞, we have

h(JAw) = lim sup
n→∞

1∑n
j=1 rj

n∑
i=1

riϕκ(xi+1, JAw)

≤ lim sup
n→∞

1∑n
j=1 rj

n∑
i=1

riϕκ(xi+1, w) = h(w).

Since w is a unique minimiser of h, we obtain JAw = w , which means that w is a zero point
of A. Therefore, A has a zero point.

We next show (ii). From the assumption and (i), the sequence {xn} is κ-bounded. Since
JrnA is quasinonexpansive for n ∈ N, for any p ∈ Zero A and n ∈ N, we have

d(xn+1, p) = d(JrnAxn, p) ≤ d(xn, p).

From Lemma 4.1, the sequence {PZero Axn} converges to some zero point x0 of A. In particular,
for n ∈ N, we know that

d(xn+1, x0) ≤ d(xn, x0).

Therefore, the real sequence {d(xn, x0)} is convergent. Note that there exists a positive real
number c such that

c ≤ inf
n∈N

c ′′
κ (d(xn, x0)).

On the other hand, from the definition of the resolvent operator JrnA, we have

(x0, 0x0),
(

xn+1,
logκ,xn+1 xn

rn

)
∈ Gph A.

Since A is monotone, we get

0 ≥ gxn+1

(
logκ,xn+1 x0,

logκ,xn+1 xn

rn

)
+ gx0(logκ,x0 xn+1, 0x0)

=
gxn+1(logκ,xn+1 x0, logκ,xn+1 xn)

rn

≥ ϕκ(xn+1, x0) + c ′′
κ (d(xn+1, x0))ϕκ(xn+1, xn) − ϕκ(x0, xn)

rn

≥ ϕκ(xn+1, x0) + c · ϕκ(xn+1, xn) − ϕκ(x0, xn)
rn

.

Therefore,
ϕκ(JrnAxn, xn) ≤ ϕκ(xn, x0) − ϕκ(xn+1, x0)

c .

Letting n → ∞, we obtain
lim

n→∞
d(JrnAxn, xn) = 0.

Take a subsequence {xni} of {xn} arbitrarily, and let w ∈ M be a unique asymptotic centre
of {xni}. Set

wi = Jrni Axni
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for i ∈ N. Remark that
lim

i→∞
d(wi , xni ) = 0.

Then, w is a unique asymptotic centre of {wi}. Indeed, for arbitrary v ∈ M, we get

lim sup
i→∞

d(wi , w) ≤ lim sup
i→∞

(d(wi , xni ) + d(xni , w)) = lim sup
i→∞

d(xni , w)

≤ lim sup
i→∞

d(xni , v)

≤ lim sup
i→∞

(d(wi , v) + d(wi , xni )) = lim sup
i→∞

d(wi , v).

Now, we prove that w is a zero point of A. Since

(JAw , logκ,JAw w),
(

wi ,
logκ,wi xni

rni

)
∈ Gph A

and A is monotone, from Theorem 3.1,

0 ≥
gwi (logκ,wi JAw , logκ,wi xni )

rni

+ gJAw (logκ,JAw wi , logκ,JAw w)

≥ ϕκ(wi , JAw) − ϕκ(JAw , xni )
rni

+ ϕκ(JAw , wi) − ϕκ(wi , w).

Hence,

ϕκ(wi , JAw) ≤ ϕκ(wi , w) + ϕκ(JAw , xni ) − ϕκ(wi , JAw)
rni

≤ ϕκ(wi , w) + |cκ(d(JAw , xni )) − cκ(d(wi , JAw))|
infk∈N rk

.
(∗∗)

Remark that cκ is uniformly continuous on a compact interval, and

lim
i→∞

|d(JAw , xni ) − d(wi , JAw)| ≤ lim
i→∞

d(wi , xni ) = 0.

Therefore, letting i → ∞ for the equation (∗∗), we have

lim sup
i→∞

ϕκ(wi , JAw) ≤ lim sup
i→∞

ϕκ(wi , w).

Hence, JAw = w since w is a unique asymptotic centre of {wi}, and therefore w is a zero
point of A since Fix JA = Zero A. Then,

lim sup
i→∞

d(xni , x0) ≤ lim sup
i→∞

(d(xni , PZero Axni ) + d(PZero Axni , x0))

= lim sup
i→∞

d(xni , PZero Axni ) ≤ lim sup
i→∞

d(xni , w),

which implies that x0 = w since w is a unique asymptotic centre of {xni}. Therefore, the
generated sequence {xn} ∆-converges to x0, which completes the proof.

As a direct consequence of Theorem 4.3, we obtain the following:
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Theorem 4.4. Let M be an admissible complete CAT(κ) space and K a nonempty closed
convex subset of M having the convex hull finite property. Let f be a function from K 2 to R
satisfying the four conditions (E1) to (E4), and suppose that Equil f is nonempty. Let {rn} be
a sequence of positive real numbers such that infk∈N rk > 0. For a given initial point x1 ∈ M,
generate a sequence {xn} of M as follows:

xn+1 =
{

z ∈ K
∣∣∣∣ inf

y∈K

(
f (z , y) + 1

rn
ϕκ(y , xn)

)
− 1

rn
ϕκ(z , xn) ≥ 0

}
for n ∈ N. Then, the generated sequence {xn} ∆-converges to an equilibrium point of f ,
which equals to

lim
n→∞

PEquil f xn.

Conclusion
In this work, we obtain a convergence theorem to find zero points of monotone set-valued

vector fields. In the setting of Hilbert or Banach spaces, we have got some other iterative
scheme to generate iterative sequence such as Mann’s one, Halpern’s one and projection
methods. The main result of this paper gives us a ∆-convergence theorem, and it is not
convergent strongly in general. We ought to obtain convergence theorem with the above
typical schemes using some techniques in this paper.
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