
Nonlinear Convex Analysis and Optimization
Vol. 4, No. 1, 2025, pp. 17–29
https://bangmodjmcs.com/index.php/ncao

Approximating Endpoints of Multi-Valued Nonexpansive
Mappings in Uniformly Convex Hyperbolic Spaces Using
a Novel Iteration Process
Thanomsak Laokul
Department of Mathematics and Computing Science, Mahidol Wittayanusorn School, Nakorn
Pathom 73170, Thailand
thanom.kul@mwit.ac.th

ABSTRACT
This paper introduces a modified iterative process for approximating the
endpoints of multi-valued nonexpansive mappings in 2-uniformly con-
vex hyperbolic spaces, thereby extending the framework of uniformly
convex Banach spaces. We establish a ∆-convergence theorem and,
under suitable conditions, prove strong convergence results. Our results
generalize and enhance the iterative framework introduced by Makbule
Kaplan Özekes, broadening its applicability in uniformly convex hyper-
bolic spaces.
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1. Introduction
Let C be a nonempty subset of a metric space (X , d). A mapping T : C → 2X , where 2X

represents the collection of all nonempty subsets of X , is called a multi-valued mapping. If
T (x) is a singleton for every x ∈ C , the mapping T is said to be single-valued. An element
x ∈ C is defined as a fixed point of T if x ∈ T (x). Moreover, if x is a fixed point and
T (x) = {x}, then x is called an endpoint (or stationary point) of T . Clearly, the set of
endpoints is a subset of the set of fixed points, and the two coincide when T is single-valued.
Denote the set of fixed points by Fix(T ) and the set of endpoints by End(T ). Since an
endpoint satisfies a stricter condition than a fixed point, it follows that End(T ) ⊆ Fix(T ).

Fixed point theorems, which establish the existence and properties of fixed points, play
a fundamental role in various mathematical applications, particularly in optimization and
nonlinear analysis. Additionally, endpoint theory has been extensively utilized in optimization.
For instance, Corley [2] established an equivalence between cone maximization and endpoint
problems, whereas Tarafdar and Yuan [16] applied endpoint theorems to prove the existence
of Pareto optima in ordered Banach spaces.

The existence of endpoints for nonexpansive mappings was first addressed by Panyanak
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[12] in 2015 and later extended to more general settings by Espínola et al. [3] and Kudtha
and Panyanak [9]. Moreover, numerous applications of endpoint theory have been reported
in the literature (see, e.g., [4, 7, 17, 18]).

Recently, Makbule Kaplan Özekes [5] introduced an iterative scheme in Banach spaces for
approximating endpoints of multi-valued nonexpansive mappings. Given a nonempty subset
C of a metric space and a nonexpansive multi-valued mapping T : C → K(C), the iterative
process is defined as follows: for initial x1 ∈ C and real sequences αn,βn, γn ∈ [a, b] ⊂ (0, 1),

zn = (1 − γn)xn + γnvn, n ∈ N,

where vn ∈ T (xn) such that ∥xn − vn∥ = R (xn, T (xn)) , and

yn = (1 − βn)vn + βnwn,

where wn ∈ T (zn) such that ∥zn − wn∥ = R (zn, T (zn)) , and

xn+1 = (1 − αn)vn + αnun,

where un ∈ T (yn) such that ∥yn − un∥ = R (yn, T (yn)).
Kaplan Özekes subsequently proved both weak and strong endpoint convergence theorems

for this iteration in uniformly convex Banach spaces.
In this paper, we propose modified iteration processes for approximating the endpoints

of multi-valued nonexpansive mappings in 2-uniformly convex hyperbolic spaces, a natural
generalization of uniformly convex Banach spaces. We establish a ∆-convergence theorem for
the iterative sequence and, under suitable conditions, prove strong convergence results.

2. Preliminaries
Throughout this paper, N denotes the set of natural numbers and R denotes the set of

real numbers. Given a metric space (X , d), the distance from a point x to a nonempty subset
C of X , is defined as

dist(x , C) := inf{d(x , y) : y ∈ C},
and the radius of C relative to x is given by

R(x , C) := sup{d(x , y) : y ∈ C}.

Let K(X ) denote the collection of all nonempty compact subsets of X . It follows from [13]
that for a multi-valued mapping T : C → K(C), the following properties hold:

(i) x ∈ Fix(T ) if and only if dist(x , T (x)) = 0.

(ii) x ∈ End(T ) if and only if R(x , T (x)) = 0.

The Pompeiu-Hausdorff distance is a fundamental concept in mathematical analysis and
topology, particularly in the study of metric spaces. It provides a way to measure the distance
between two nonempty subsets of a metric space, thereby generalizing the notion of pointwise
distance to set-valued functions. Given two nonempty subsets A, B of a metric space (X , d),
the Hausdorff distance is defined as

H(A, B) := max
{

sup
a∈A

dist(a, B), sup
b∈B

dist(b, A)
}

.
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A mapping T : C → K(C) is nonexpansive if

H(T (x), T (y)) ≤ d(x , y) for all x , y ∈ C .

According to [13, Lemma 2.2(iii) ], if T is nonexpansive, the function g : C → R defined by
g(x) := R(x , T (x)) is continuous.

Hyperbolic spaces, as introduced by Kohlenbach [8], provide a framework that extends the
notion of convexity beyond linear settings.
Definition 2.1. A hyperbolic space (X , d , W ) is a metric space together with a function
W : X × X × [0, 1] → X such that for all x , y , z , w ∈ X and s, t ∈ [0, 1], we have

(W1) d(z , W (x , y , t)) ≤ (1 − t)d(z , x) + td(z , y);
(W2) d (W (x , y , t), W (x , y , s)) = |t − s|d(x , y);
(W3) W (x , y , t) = W (y , x , 1 − t);
(W4) d(W (x , z , t), W (y , w , t)) ≤ (1 − t)d(x , y) + td(z , w).

If x , y ∈ X and t ∈ [0, 1], then we use the notation (1 − t)x ⊕ ty for W (x , y , t). A
nonempty subset C of X is said to be convex if {(1 − t)x ⊕ ty : t ∈ [0, 1]} ⊆ C for all
x , y ∈ C .

Uniform convexity can also be defined in the context of hyperbolic spaces. Leustean [11]
introduced the notion of uniformly convex hyperbolic spaces, which is defined as follows: The
hyperbolic space X is said to be uniformly convex if for any r ∈ (0,∞) and ε ∈ (0, 2] there
exists δ ∈ (0, 1] such that for all x , y , z ∈ X with d(x , z) ≤ r , d(y , z) ≤ r and d(x , y) ≥ rε,
we have

d
(

1
2x ⊕ 1

2y , z
)

≤ (1 − δ)r .

A function η : (0,∞) × (0, 2] → (0, 1] providing such a δ := η(r , ε) for given r ∈ (0,∞)
and ε ∈ (0, 2] is called a modulus of uniform convexity. We call η monotone if it is a
nonincreasing function of r (for every fixed ε).

The notion of p-uniform convexity has been extensively explored by Xu [19], while its
nonlinear variant for p = 2 was investigated by Khan and Khamsi [6]. We now present the
definition of a 2-uniformly convex hyperbolic space.
Definition 2.2. Let X be a uniformly convex hyperbolic space. For each r ∈ (0,∞) and
ε ∈ (0, 2], we define

Ψ(r , ε) := inf
{

1
2d2(x , z) + 1

2d2(y , z) − d2(1
2x ⊕ 1

2y , z)
}

,

where the infimum is taken over all x , y , z ∈ X such that d(x , z) ≤ r , d(y , z) ≤ r , and
d(x , y) ≥ rε. We say that X is 2-uniformly convex if

cM := inf
{
Ψ(r , ε)

r2ε2 : r ∈ (0,∞), ε ∈ (0, 2]
}

> 0.

According to [14, Example 2.9], every uniformly convex Banach space is also a 2-uniformly
convex hyperbolic space. In [10, Theorem 2.2], the authors prove that if X is a 2-uniformly
convex hyperbolic space, then for all x , y , z ∈ X and t ∈ [0, 1],

d2((1 − t)x ⊕ ty , z) ≤ (1 − t)d2(x , z) + td2(y , z) − 4cMt(1 − t)d2(x , y). (2.1)
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Henceforth, X denotes a complete 2-uniformly convex hyperbolic space with a monotone
modulus of uniform convexity.

In nonlinear analysis and metric fixed point theory, the asymptotic center is a key con-
cept for analyzing the limiting behavior of sequences, offering insights into the stability and
convergence of iterative processes, particularly in fixed point approximation and optimization.
Let C be a nonempty subset of X , and let {xn} be a bounded sequence in X . The asymptotic
radius of {xn} relative to C is defined by

r(C , {xn}) = inf
{

lim sup
n→∞

d(xn, x) : x ∈ C
}

.

The asymptotic center of {xn} relative to C is defined by

A(C , {xn}) =
{

x ∈ C : lim sup
n→∞

d(xn, x) = r(C , {xn})
}

.

According to [11, Proposition 3.3], any bounded sequence {xn} in X has a unique asymp-
totic center relative to any nonempty closed convex subset C of X .

We now define ∆-convergence and outline its key properties, which are essential to this
study.

Definition 2.3. Let C be a nonempty closed convex subset of X and x ∈ C . A bounded se-
quence {xn} in X is said to be ∆−converges to x if A(C , {un}) = {x} for every subsequence
{un} of {xn}. In this case we write xn

∆−→ x and call x the ∆−limit of {xn}.

Definition 2.4. Let C be a nonempty closed convex subset of X and T : C → K(C) and let
I be the identity mapping on C . We say that I − T is semiclosed if for any sequence {xn} in
C such that xn

∆−→ x and R(xn, T (xn)) → 0, one has T (x) = {x}.

As shown in [14, Theorem 3.1], for a multi-valued nonexpansive mapping T on a closed
convex set, I − T is semiclosed. The following facts, as shown in [14, Lemma 2.13], are also
needed.

Lemma 2.5. Let C be a nonempty subset of X and T : C → K(C). Then the following
statements hold.

1. If C is convex and T is nonexpansive, then End(T ) is convex.

2. If C is closed and convex and I − T is semiclosed, then End(T ) is closed.

Lemma 2.6. [14, Lemma 4.3] Let C be a nonempty closed convex subset of X , and let
T : C → K(C) be a mapping such that I − T is semiclosed. Suppose {xn} is a bounded
sequence in C such that lim

n→∞
R(xn, T (xn)) = 0 and {d(xn, q)} converges for all q ∈ End(T ),

then ωw (xn) ⊆ End(T ). Here ωw (xn) :=
⋃

A(C , {un}) where the union is taken over all
subsequences {un} of {xn}. Moreover, ωw (xn) consists of exactly one point.
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3. Main Results
First, we define a modified iteration process, analogous to the version in [5], within the

setting of hyperbolic spaces as follows: Let C be a nonempty subset of X , and αn,βn, γn ∈
[a, b] ⊂ (0, 1) be real sequences, and T : C → K(C) be a multi-valued mapping. For x1 ∈ C ,

zn = (1 − γn)xn ⊕ γnvn, n ∈ N,

where vn ∈ T (xn) such that d(xn, vn) = R (xn, T (xn)) , and
yn = (1 − βn)vn ⊕ βnwn, (3.1)

where wn ∈ T (zn) such that d(zn, wn) = R (zn, T (zn)) , and
xn+1 = (1 − αn)vn ⊕ αnun,

where un ∈ T (yn) such that d(yn, un) = R (yn, T (yn)).
A sequence {xn} in X is said to be Fejér monotone with respect to C if

d(xn+1, p) ≤ d(xn, p) for all p ∈ C and n ∈ N.

The following lemma establishes the Fejér monotonicity of the sequence defined in (3.1)
with respect to the endpoint set of a multi-valued nonexpansive mapping.
Lemma 3.1. Let C be a nonempty convex subset of X and let T : C → K(C) be a multi-
valued nonexpansive mapping with End(T ) ̸= ∅. If {xn} be the sequence as defined by (3.1),
then {xn} is Fejér monotone with respect to End(T ).

Proof. Let p ∈ End(T ). Then, for each n ∈ N, we have
d(zn, p) ≤ (1 − γn)d(xn, p) + γnd(vn, p)

≤ (1 − γn)d(xn, p) + γnH(T (xn), T (p))
≤ (1 − γn)d(xn, p) + γnd(xn, p)
≤ d(xn, p).

This implies that
d(yn, p) ≤ (1 − βn)d(vn, p) + βnd(wn, p)

≤ (1 − βn)H(T (xn), T (p)) + βnH(T (zn), T (p))
≤ (1 − βn)d(xn, p) + βnd(zn, p)
≤ (1 − βn)d(xn, p) + βnd(xn, p)
≤ d(xn, p).

Hence,
d(xn+1, p) ≤ (1 − αn)d(vn, p) + αnd(un, p)

≤ (1 − αn)H(T (xn), T (p)) + αnH(T (yn), T (p))
≤ (1 − αn)d(xn, p) + αnd(yn, p)
≤ (1 − αn)d(xn, p) + αnd(xn, p)
≤ d(xn, p).

Thus, the sequence {xn} is Fejér monotone with respect to End(T ).
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Now, we prove ∆-convergence theorem.

Theorem 3.2. Let C be a nonempty closed convex subset of X and let T : C → K(C) be
a multi-valued nonexpansive mapping with End(T ) ̸= ∅. If {xn} be the sequence defined by
(3.1), then {xn} ∆-converges to an endpoint of T .

Proof. Let p ∈ End(T ). By applying (2.1), we obtain

d2(zn, p) ≤ (1 − γn)d2(xn, p) + γnd2(vn, p) − 4cMγn(1 − γn)d2(xn, vn)
≤ (1 − γn)d2(xn, p) + γnH2(T (xn), T (p)) − 4cMγn(1 − γn)d2(xn, vn)
≤ (1 − γn)d2(xn, p) + γnd2(xn, p) − 4cMγn(1 − γn)d2(xn, vn)
≤ d2(xn, p) − 4cMγn(1 − γn)d2(xn, vn),

which yields

d2(yn, p) ≤ (1 − βn)d2(vn, p) + βnd2(wn, p) − 4cMβn(1 − βn)d2(vn, wn)
≤ (1 − βn)H2(T (xn), T (p)) + βnH2(T (zn), T (p)) − 4cMβn(1 − βn)d2(vn, wn)
≤ (1 − βn)d2(xn, p) + βnd2(zn, p) − 4cMβn(1 − βn)d2(vn, wn)
≤ (1 − βn)d2(xn, p) + βnd2(zn, p)
≤ (1 − βn)d2(xn, p) + βn

(
d2(xn, p) − 4cMγn(1 − γn)d2(xn, vn)

)
≤ d2(xn, p) − 4cMβnγn(1 − γn)d2(xn, vn).

We have

d2(xn+1, p) ≤ (1 − αn)d2(vn, p) + αnd2(un, p) − 4cMαn(1 − αn)d2(un, vn)
≤ (1 − αn)H2(T (xn), T (p)) + αnH2(T (yn), T (p)) − 4cMαn(1 − αn)d2(un, vn)
≤ (1 − αn)d2(xn, p) + αnd2(yn, p) − 4cMαn(1 − αn)d2(un, vn)
≤ (1 − αn)d2(xn, p) + αnd2(yn, p)
≤ (1 − αn)d2(xn, p) + αn

(
d2(xn, p) − 4cMβnγn(1 − γn)d2(xn, vn)

)
≤ d2(xn, p) − 4cMαnβnγn(1 − γn)d2(xn, vn).

Consequently, the following inequality holds

d2(xn+1, p) ≤ d2(xn, p) − 4cMαnβnγn(1 − γn)d2(xn, vn).

Since 4cM > 0, it follows that

a3(1 − b)d2(xn, vn) ≤ αnβnγn(1 − γn)d2(xn, vn) ≤ d2(xn, p) − d2(xn+1, p)
4cM

.

By Lemma 3.1, the sequence {xn} is Fejér monotone with respect to End(T ), and therefore
the lim

n→∞
d2(xn, p) exist. Consequently, summing over n yields

∞∑
n=1

a3(1 − b)d2(xn, vn) ≤
∞∑

n=1
αnβnγn(1 − γn)d2(xn, vn) < ∞.
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This implies that lim
n→∞

d2(xn, vn) = 0, and hence

lim
n→∞

R(xn, T (xn)) = lim
n→∞

d(xn, vn) = 0. (3.2)

Furthermore, by Lemma 3.1, the sequence {d(xn, q)} converges for all q ∈ End(T ). and by
Lemma 2.6, ωw (xn) consists of exactly one point and is contained in End(T ). This shows
that {xn} ∆-converges to an endpoint of T .

Next, we establish strong convergence theorems by imposing additional conditions. Recall
that a multi-valued mapping T : C → K(C) is said to satisfy condition (J) if there exists a
nondecreasing function h : [0,∞) → [0,∞) with h(0) = 0 and h(r) > 0 for every r ∈ (0,∞)
such that

R(x , T (x)) ≥ h(dist(x , End(T ))) for all x ∈ C .

Furthermore, the mapping T : C → K(C) is called semicompact if for any sequence {xn} in
C satisfying

lim
n→∞

R(xn, T (xn)) = 0,

there exists a subsequence {xnk} of {xn} and q ∈ C such that lim
k→∞

xnk = q.

Additionally, we require the following facts.

Lemma 3.3 ([1], Lemma 3.4). Let C be a nonempty closed subset of X and {xn} be a Fejér
monotone sequence with respect to C . Then {xn} converges strongly to an element of C if
and only if lim

n→∞
dist(xn, C) = 0.

Lemma 3.4 ([15], Lemma 2). Let {αn}, {βn} be two real sequences in [0, 1) such that
βn → 0 and

∑
αnβn = ∞. Let {γn} be a nonnegative real sequence such that

∞∑
n=1

αnβn(1 − βn)γn < ∞.

Then, {γn} has a subsequence which converges to zero.

Theorem 3.5. Let C be a nonempty closed convex subset of X and let T : C → K(C)
be a multi-valued nonexpansive mapping with End(T ) ̸= ∅. Assume that the sequences
{αn}, {βn}, {γn} ∈ [a, b] ⊂ (0, 1) such that γn → 0 as n → ∞ and

∑∞
n=1 αnβnγn = ∞. Let

{xn} be the sequence defined by (3.1). If T is semicompact, then {xn} converges strongly to
an endpoint of T .

Proof. It follows from the proof of Theorem 3.2 that
∞∑

n=1
αnβnγn(1 − γn)d2(xn, vn) < ∞.

By Lemma 3.4, there exists a subsequence {d2(xnk , vnk )} of {d2(xn, vn)} such that
lim

k→∞
d2(xnk , vnk ) = 0, which implies

lim
k→∞

R(xnk , T (xnk )) = lim
k→∞

d(xnk , vnk ) = 0. (3.3)
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Since T is semicompact, by passing to a subsequence, we may assume that xnk → q ∈ C .
Moreover, because T is continuous, we have

dist(q, T (q)) ≤ d(q, xnk ) + dist(xnk , T (xnk )) + H(T (xnk ), T (q))
≤ 2d(xnk , q) + dist(xnk , T (xnk ))
≤ 2d(xnk , q) + R(xnk , T (xnk )) → 0 as k → ∞.

Thus, q ∈ T (q). Let w ∈ T (q). For each k, there exists wnk in T (xnk ) such that

d(w , wnk ) = dist(w , T (xnk )).

Then, using (3.3) and the continuity of T , we obtain

d(q, w) ≤ d(q, xnk ) + d(xnk , vnk ) + d(vnk , w)
≤ d(q, xnk ) + R(xnk , T (xnk )) + H((Txnk ), T (q))
≤ 2d(xnk , q) + R(xnk , T (xnk )) → 0 as k → ∞.

Hence, w = q for every w ∈ T (q), which implies q ∈ End(T ). Finally, by Lemma 3.1 the
sequence {d(xn, q)} converges. Therefore, q is the strong limit of {xn}.

Theorem 3.6. Let C be a nonempty closed convex subset of X , and let T : C → K(C) be
a multi-valued nonexpansive mapping. Assume that the sequence {xn} is defined by (3.1). If
T satisfies condition (J), then {xn} converges strongly to an endpoint of T .

Proof. Since T is nonexpansive, the set End(T ) is closed. Moreover, because T satisfies
condition (J), it follows from (3.2) that

lim
n→∞

dist(xn, End(T )) = 0.

Furthermore, by Lemma 3.1, the sequence {xn} is Fejér monotone with respect to End(T ).
Consequently, the desired conclusion follows from Lemma 3.3.

The following examples illustrate the validity of the main theorems.

Example 3.7. Let X = R and C = [3, 8]. We define a multi-valued mapping T : C → K(C)
by

T (x) = [3, x ] for each x ∈ C .

Clearly, T is nonexpansive with End(T ) = {3}. We now prove that T satisfies condition (J).
Let h(t) = t. For x ∈ C = [3, 8], we have

h (dist(x , End(T ))) = h (dist(x , {3}))
= h

(∣∣x − 3
∣∣)

=
∣∣x − 3

∣∣
= sup

{∣∣x − y
∣∣ : y ∈ [3, x ]

}
= R (x , [3, x ])
= R (x , T (x)) .
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This completes the verification that T satisfies condition (J). Next, we show that the sequence
{xn} defined by (3.1) converges strongly to 3. For this demonstration, we choose
αn,βn, γn = 1

2 for all n ∈ N. Let x1 = 5, then T (x1) = [3, 5]. Select v1 ∈ [3, 5] such that∣∣5 − v1
∣∣ = R (5, T (5)) = R (5, [3, 5]) = sup{

∣∣5 − y
∣∣ : y ∈ [3, 5]} =

∣∣5 − 3
∣∣.

Thus, we have v1 = 3. Consequently,

z1 = (1 − γ1) x1 + γ1v1 = 1
2(5) + 1

2(3) = 4.

Next, since T (z1) = T (4) = [3, 4], choose w1 ∈ T (z1) satisfying∣∣4 − w1
∣∣ = R (4, T (4)) = R (4, [3, 4]) = sup{

∣∣4 − y
∣∣ : y ∈ [3, 4]} =

∣∣4 − 3
∣∣.

Hence, w1 = 3 and
y1 = (1 − β1) v1 + β1w1 = 1

2(3) + 1
2(3) = 3.

Now, T (y1) = [3, 3], implies u1 = 3, and therefore,

x2 = (1 − α1) v1 + α1u1 = 1
2(3) + 1

2(3) = 3.

Repeating this process shows that xn = 3 for all n ≥ 2, so the sequence {xn} converges
strongly to 3 ∈ End(T ).

Example 3.8. Let X = R2 and define the set C =
{

(x , y) ∈ X : x2 + y2 ≤ 1
}

. We then
define a multi-valued mapping T : C → 2C by

T (x , y) = {(tx ,−ty) : 0 ≤ t ≤ 1} for all (x , y) ∈ C .

We first note that T is semicompact. Next, we show that T is nonexpansive. For any two
points (x1, y1) and (x2, y2) in C , their images under the multi-value mapping T are given by

T (x1, y1) = {(tx1,−ty1) : 0 ≤ t ≤ 1},

T (x2, y2) = {(sx2,−sy2) : 0 ≤ s ≤ 1}.

Select arbitrary points v1 = (tx1,−ty1) ∈ T (x1, y1) and v2 = (sx2,−sy2) ∈ T (x2, y2) with
0 ≤ t, s ≤ 1. Their distance is

d(v1, v2) =
√

(tx1 − sx2)2 + (−ty1 + sy2)2.

Expanding the square, we obtain

d(v1, v2) =
√

t2
(
x2

1 + y2
1
)

+ s2
(
x2

2 + y2
2
)
− 2ts (x1x2 + y1y2).

Taking the supremum over t and s in [0, 1], we observe:

• The farthest distance occurs when t = s = 1, which gives

d(v1, v2) =
√

(x1 − x2)2 + (y1 − y2)2 = d((x1, y1), (x2, y2)).
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• The closest distance occurs when t = s = 0, yielding d(v1, v2) = 0.

Since the Hausdorff distance reflects the worst-case (i.e., maximum) distance, we have

H (T (x1, y1), T (x2, y2)) = d((x1, x1), (x2, y2)).

Thus, T is nonexpansive. It is also evident that (0, 0) ∈ End(T ).
Next, we prove that the sequence {xn} defined by (3.1) converges strongly to (0, 0) ∈ End(T ).
Choose αn,βn, γn = 1

3√n+1 for all n ∈ N.
Let x1 = (1, 0); then

T (x1) = {(t · 1,−t · 0) : 0 ≤ t ≤ 1} = {(t, 0) : 0 ≤ t ≤ 1}.

Choose v1 ∈ T (x1) such that

d(x1, v1) = R (x1, T (x1)) = sup {d ((1, 0), (t, 0)) : 0 ≤ t ≤ 1} .

Since the supremum is achieved when t = 0, we have v1 = (0, 0).
Thus,

z1 = (1 − γ1)x1 + γ1v1 =
(

1 − 1
3
√

2

)
(1, 0) + 1

3
√

2
(0, 0) =

(
1 − 1

3
√

2
, 0
)

.

Next,
T (z1) = T

(
1 − 1

3
√

2
, 0
)

=
{(

t
(

1 − 1
3
√

2

)
, 0
)

: 0 ≤ t ≤ 1
}

.

Choose w1 ∈ T (z1) such that d(z1, w1) = R (z1, T (z1)). Again, the supremum distance is
attained when t = 0, so w1 = (0, 0).
Then,

y1 = (1 − β1)v1 + β1w1 =
(

1 − 1
3
√

2

)
(0, 0) + 1

3
√

2
(0, 0) = (0, 0).

Since T (y1) = T (0, 0) = {(0, 0)}, it follows that u1 = (0, 0), and therefore,

x2 = (1 − α1)v1 + α1u1 =
(

1 − 1
3
√

2

)
(0, 0) + 1

3
√

2
(0, 0) = (0, 0).

By iterating this process, we conclude that xn = (0, 0), for all n ≥ 2, ensuring that
the sequence{xn} converges strongly to (0, 0) ∈ End(T ). Furthermore, applying a similar
numerical approach, we observe that if the initial point x1 satisfies the required conditions,
the sequence {xn}consistently converges to (0, 0) ∈ End(T ), as illustrated in Table 1 and
Table 2.
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Table 1. The iterative process of {xn} with the initial points (−1, 0), (−0.5, 0), (0.6, 0)
(0, 1), and (0,−1).

x1 (−1, 0) (−0.5, 0) (0.6, 0) (0, 1) (0,−1)
x2 (0, 0) (0, 0) (0, 0) (0,−0.4125989480) (0, 0.4125989480)
x3 (0, 0) (0, 0) (0, 0) (0, 0.1155046486) (0,−0.1155046486)
x4 (0, 0) (0, 0) (0, 0) (0,−0.0277302348) (0, 0.0277302348)
x5 (0, 0) (0, 0) (0, 0) (0, 0.0063888493) (0,−0.0063888493)
x6 (0, 0) (0, 0) (0, 0) (0,−0.0014866272) (0, 0.0014866272)
x7 (0, 0) (0, 0) (0, 0) (0, 0.0003570854) (0,−0.0003570854)
x8 (0, 0) (0, 0) (0, 0) (0,−0.0000892714) (0, 0.0000892714)
x9 (0, 0) (0, 0) (0, 0) (0, 0.0000232751) (0,−0.0000232751)
x10 (0, 0) (0, 0) (0, 0) (0,−0.0000063234) (0, 0.0000063234)

Table 2. The iterative process of {xn} with the initial points (0, 0.4), (0,−0.9), and
(−0.67, 0.73)

x1 (0, 0.4) (0,−0.9) (−0.67, 0.73)
x2 (0,−0.1650395792) (0, 0.3713390532) (−0.1382206476,−0.1505986160)
x3 (0, 0.0462018594) (0,−0.1039541837) (−0.0717710911, 0.0141603825)
x4 (0,−0.0110920939) (0, 0.0249572113) (0, 0)
x5 (0, 0.0025555397) (0,−0.0057499644) (0, 0)
x6 (0,−0.0005946509) (0, 0.0013379645) (0, 0)
x7 (0, 0.0001428342) (0,−0.0003213769) (0, 0)
x8 (0,−0.0000357085) (0, 0.0000803442) (0, 0)
x9 (0, 0.0000093100) (0,−0.0000209475) (0, 0)
x10 (0,−0.0000025294) (0, 0.0000056911) (0, 0)

4. Conclusion
This study proposed a novel iterative process for approximating endpoints of multi-valued

nonexpansive mappings in 2-uniformly convex hyperbolic spaces, extending prior results in
Banach spaces. The established ∆-convergence and strong convergence theorems strengthen
the theoretical foundation of endpoint approximation in nonlinear analysis. The Fejér mono-
tonicity of the sequence was verified, ensuring convergence under suitable conditions. These
findings enhance the applicability of iterative methods in hyperbolic spaces, with potential ex-
tensions to broader classes of mappings and optimization problems. Future research may focus
on refining convergence rates and exploring practical applications in computational mathemat-
ics and optimization.
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