
Nonlinear Convex Analysis and Optimization
Vol. 3, No. 2, 2024, pp. 63–89
https://ncao.design.blog

A Self-adaptive Super Set-relaxed Projection Method for
Multiple-sets Split Feasibility Problem with Multiple
Output Sets
Guash Haile Taddele a, c,1,∗, Songpon Sriwongsa a,b,2, Attapol Kaewkhaod,3

a Fixed Point Research Laboratory, Fixed Point Theory and Applications Research Group, Center of
Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King
Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung
Khru, Bangkok 10140, Thailand
b Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology
Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
c Department of Mathematics, Xiamen University Malaysia, Sepang 43900, Malaysia
d Research Group in Mathematics and Applied Mathematics, Department of Mathematics, Faculty
of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
1 guashhaile79@gmail.com; 2 songpon.sri@kmutt.ac.th; 3 attapol.k@cmu.ac.th
∗ Corresponding Author

ABSTRACT
This paper introduces an inertial accelerated super set-relaxed CQ
method to solve a multiple-sets split feasibility problem with multiple
output sets. The convex subsets involved are assumed to be level sub-
sets of given strongly convex functions. Instead of using the involved
sets, we approximate the original convex subsets with a sequence of
closed balls. The proposed method is easy to implement as the projec-
tion onto the closed ball has a closed form. Additionally, we develop
a new self-adaptive step-size that does not require any prior informa-
tion of the norm. Under suitable assumptions, we establish and prove a
strong convergence result for the algorithm. Numerical experiments are
provided to demonstrate the performance of the proposed algorithm,
which generalizes and improves upon existing literature.
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1. Introduction
In 1994, Censor and Elfving [9] initially introduced the split feasibility problem within finite-

dimensional Hilbert spaces for modeling various inverse problems, including phase retrievals
and in medical image reconstruction [9, 4], IMRT [10, 11], gene regulatory network inference
[37].
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Let H1 and H2 be two real Hilbert spaces. Let T : H1 → H2 be a bounded linear operator
and T ∗ : H2 → H1 be its adjoint. The split feasibility problem (SFP) is to find a point
x∗ ∈ H1 such that

x∗ ∈ C and Tx∗ ∈ Q (1.1)
where C and Q are nonempty, closed, and convex subsets of H1 and H2, respectively. Denote
the set of solutions of the SFP (1.1) by Γ = C ∩ T−1(Q) ̸= ∅.

Over the past century, numerous iterative methods have been developed and analyzed for
solving the SFP (1.1), with a focus on practical applications. Notably, Byrne [4, 5] introduced
the widely recognized and highly regarded CQ-algorithm, which remains the first and most
prominent method of its kind. The algorithm is as follows: given an initial point x0 ∈ H1,
iterate

xk+1 = PC (xk − τkT ∗(I − PQ)Txk), (1.2)
where PC and PQ are the metric projections onto C and Q, respectively, and the stepsize
τk ∈

(
0, 2

∥T∥2

)
, where ∥T∥2 is the spectral radius of the matrix T ∗T .

The CQ-algorithm, proposed by Byrne [4, 5], necessitates the computation of metric
projection onto the sets C and Q. However, in certain cases, exact computation of the metric
projection may be infeasible or prohibitively expensive. Additionally, determining the stepsize
relies on the computation or at least estimation of the operator norm, which is a non-trivial
task. In practical applications, the sets C and Q typically correspond to the level sets of
convex functions, defined as follows:

C := {x ∈ H1 : c(x) ≤ 0} and Q := {y ∈ H2 : q(y) ≤ 0}, (1.3)

where, c : H1 → R and q : H2 → R are convex and subdifferentiable functions on H1 and H2,
respectively. Furthermore, the subdifferentials ∂c(x) and ∂q(y) of c and q, respectively, are
bounded operators, meaning they are bounded on bounded sets.

In 2004, Yang [39] introduced a generalized version of the CQ-algorithm, known as the
relaxed CQ-algorithm. This algorithm requires the computation of the metric projection onto
relaxed sets, specifically the half-spaces Ck and Qk , where

Ck := {x ∈ H1 : c(xk) ≤ ⟨ξk , xk − x⟩}, (1.4)

where ξk ∈ ∂c(xk) and

Qk := {y ∈ H2 : q(Txk) ≤ ⟨ηk , Txk − y⟩}, (1.5)

where ηk ∈ ∂q(Txk). It is readily apparent that C ⊆ Ck and Q ⊆ Qk for all k ≥ 1.
Additionally, it is established that the projections onto the half-spaces Ck and Qk possess
closed forms. Subsequently, define a convex and differentiable function denoted as fk(.),
along with its corresponding gradient function ∇fk(.) as

fk(xk) := 1
2∥(I − PQk )Txk∥2, ∇fk(xk) := T ∗(I − PQk )Txk , (1.6)

where Qk is given as in (1.5). More precisely, Yang [39] introduced a relaxed CQ-algorithm
for solving the SFP (1.1) in a finite-dimensional Hilbert space. The algorithm starts with a
given point x0 ∈ C and iteratively updates the solution using the following equation:

xk+1 = PCk (xk − τk∇fk(xk)), (1.7)
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where τk ∈
(

0, 2
∥T∥2

)
. Since PCk and PQk can easily be calculated, this method appears to

be very practical. However, the computation of the norm of T proves to be intricate and
resource-intensive. In order to address this challenge, López et al. [21] proposed a relaxed
CQ-algorithm in 2012 for solving the SFP (1.1). This algorithm incorporates a novel adaptive
method for determining the stepsize sequence τk , which is defined as follows:

τk := ρk fk(xk)
∥∇fk(xk)∥2 , (1.8)

where ρk ∈ (0, 4) such that lim inf
k→∞

ρk(4−ρk) > 0, for all k ≥ 1. It has been demonstrated that
the sequence {xk}, generated by (1.7) with τk defined by (1.8), exhibits weak convergence
towards a solution of the SFP (1.1). In other words, their algorithm demonstrates weak
convergence within the context of infinite-dimensional Hilbert spaces.

It is an established fact that a multitude of inverse problems manifest in infinite-dimensional
spaces. In such scenarios, strong convergence is deemed more favorable than weak convergence
for effectively resolving these problems. Notably, several authors have put forth algorithms
that yield a sequence {xk}, which strongly converges to a point within the solution set of
the SFP (1.1). Relevant examples can be found in [21, 19, 40, 16, 17, 13]. In particular,
López et al. [21] proposed an iterative scheme for solving the SFP (1.1) in the context of
infinite-dimensional Hilbert spaces. The scheme is as follows: given a fixed point u ∈ H1 and
an initial guess x0 ∈ H1, the iteration is defined by (1.9):

xk+1 = υku + (1 − υk)PCk

(
xk − τk∇fk(xk)

)
, ∀k ≥ 1, (1.9)

and in a subsequent work, Cholamjiak et al. [13] updated (1.9) as follows: given an initial
guess x0 ∈ H1, the iteration is defined by (1.10):

xk+1 = PCk

(
(1 − υk)(xk − τk∇fk(xk))

)
, ∀k ≥ 1, (1.10)

where, {υk} ⊂ (0, 1) such that lim
k→∞

υk = 0 and
∞∑

k=1
υk = +∞, and Ck , ∇fk(xk), and τk are

given by (1.4), (1.6), and (1.8), respectively. Under certain standard conditions, it has been
demonstrated that the sequence {xk} produced by (1.9) exhibits strong convergence towards
the point x∗ = PΓ(u). Similarly, the sequence {xk} generated by (1.10) also converges
strongly, but towards the point x∗ = PΓ(0) of the SFP (1.1). What is particularly noteworthy
is that the iterative schemes (1.9)-(1.10) do not require any prior knowledge of the operator
norm. Additionally, they are capable of computing the projections onto the half-spaces Ck
and Qk , making them easily implementable.

It is noteworthy that a ball-relaxed CQ-algorithm for solving the SFP (1.1) has been
introduced by Yu et al. [41]. This algorithm is applicable under the condition that c : H1 →
(−∞, +∞] and q : H2 → (−∞, +∞] are ϱ-strongly and σ-strongly convex subdifferentiable
functions on H1 and H2, respectively. The conditions for c(x) and q(y) are as follows:

c(x) ≥ c(xk) + ⟨ξk , x − xk⟩ + ϱ

2∥x − xk∥2, where ξk ∈ ∂c(xk),

q(y) ≥ q(Txk) + ⟨ηk , y − Txk⟩ + σ

2 ∥y − Txk∥2, where ηk ∈ ∂q(Txk).
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Replacing the half-spaces Ck ((1.4)) and Qk ((1.5)), respectively, by the balls C̃k and Q̃k ,
where

C̃k =
{

x ∈ H1 : c(xk) + ⟨ξk , x − xk⟩ + ϱ

2∥x − xk∥2 ≤ 0
}

, (1.11)

Q̃k =
{

y ∈ H2 : q(Txk) + ⟨ηk , y − Txk⟩ + σ

2 ∥y − Txk∥2 ≤ 0
}

, (1.12)

Yu et al. [41] proposed the ball-relaxed method follows. For any initial guess x0 ∈ H1;

xk+1 = PC̃k

(
xk −

ρk∥(I − PQ̃k
)Txk∥2

2∥T ∗(I − PQ̃k
)Txk∥2 T ∗(I − PQ̃k

)Txk

)
, (1.13)

where ρk ∈ (0, 4) with lim inf
k→∞

ρk(4−ρk) > 0. Under certain standard assumptions, it has been
demonstrated that the sequence {xk}, generated by (1.13), converges weakly to a solution of
the SFP (1.1).

In order to enhance the convergence rate, Nesterov [28] introduced a modified heavy ball
method based on Polyak’s [29] approach. The method is defined as follows:

yk = xk + βk(xk − xk−1),
xk+1 = yk − τk∇g(yk), ∀k ≥ 1, (1.14)

where, {τk} is a positive sequence, g is a smooth convex function, and βk ∈ [0, 1) is an inertial
factor. The term βk(xk − xk−1) represents the inertia. Numerical experiments conducted in
various fields of study have demonstrated that this method, along with other related techniques
such as those presented in [1, 14, 15, 22, 24, 25], significantly improves the performance of
non-inertial algorithms where βk = 0. In light of this, several inertial-type methods have been
proposed for solving SFPs, including those discussed in [34, 17, 33, 35].

Numerous variations/generalizations of the SFP have been extensively researched by nu-
merous authors. Examples include the multiple-sets split feasibility problem [10], the split
feasibility problem with multiple output sets [31], the split common fixed point problem
[12, 26, 8, 20], the multiple-operator split common fixed point problem [3], and the split
common null point problem [6, 36].

In the year 2020, Reich et al. [31] introduced and studied the following split feasibility
problem with multiple output sets in infinite-dimensional Hilbert spaces. Let H, Hj , j =
1, 2, ... , r , be real Hilbert spaces and let Aj : H → Hj , j = 1, 2, ... , r , be bounded linear
operators. The split feasibility problem with multiple output sets (SFPMOS, for short) is to
find an element x∗ such that

x∗ ∈ Π := C ∩
(
∩r

j=1 A−1
j (Qj)

)
̸= ∅ (1.15)

where C and Qj , j = 1, 2, ... , r , are nonempty, closed and convex subsets of H and Hj , j =
1, 2, ... , r , respectively.

Reich et al. [31] have proposed a projection gradient algorithm and a viscosity approx-
imation iterative method for effectively solving the SFPMOS (1.15) in infinite-dimensional
Hilbert spaces. These methods necessitate the computation of metric projections onto the
sets C and Qj , as well as the operator norm, which can be challenging to perform. The
two iterative methods are as follows: for any given points x0, w0 ∈ H, {xk} and {wk} are
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sequences generated by

xk+1 := PC

(
xk − τk

r∑
j=1

A∗
j (I − PQj )Ajxk

)
, (1.16)

wk+1 := υk f (wk) + (1 − υk)PC

(
wk − τk

r∑
j=1

A∗
j (I − PQj )Ajwk

)
, (1.17)

where f : C → C is a strict contraction mapping of H into itself with the contraction constant
θ ∈ [0, 1), {τk} ⊂ (0,∞) and {υk} ⊂ (0, 1). It was proved that if the sequence {τk} satisfies
the condition:

0 < a ≤ τk ≤ b <
2

r maxj=1,2,...,r{∥Aj∥2}
for all k ≥ 1, then the sequence {xk} generated by (1.16) converges weakly to a solution point
x∗ ∈ Π of the SFPMOS (1.15). Furthermore, if the sequence {υk} satisfies the conditions:

lim
k→∞

υk = 0 and
∞∑

k=1
υk = ∞,

then the sequence {wk} generated by (1.17) converges strongly to a solution point x∗ ∈ Π of
the SFPMOS (1.15), which is a unique solution of the variational inequality

⟨(I − f )x∗, x − x∗⟩ ≥ 0 ∀x ∈ Π.

Besides, using the viscosity approximation iterative method, Reich et al. in [32] proposed an
optimization approach method which uses a self-adaptive step-size, for solving the SFPMOS
(1.15). It In the context of SFPMOS (1.15), it is evident that the analysis solely focuses on
scenarios where the first Hilbert space H comprises a single nonempty, closed, and convex
subset C .

Motivating by the above works, in this work, we consider the following multiple-sets split
feasibility problem with multiple output sets in general Hilbert spaces. In light of the afore-
mentioned literature, our present study focuses on the following problem: multiple-sets split
feasibility problem with multiple output sets.

Let H, Hj , j = 1, 2, ... , r , be real Hilbert spaces and let Tj : H → Hj , j = 1, 2, ... , r , be
bounded linear operators. The multiple-sets split feasibility problem with multiple output sets
(MSSFPMOS, for short) is to find an element x∗ such that

x∗ ∈ Ω :=
(
∩s

i=1 Ci

)
∩
(
∩r

j=1 T−1
j

(
Qj

))
̸= ∅ (1.18)

where Ci , i = 1, 2, ... , s, and Qj , j = 1, 2, ... , r , are nonempty, closed and convex subsets of
H and Hj , j = 1, 2, ... , r , respectively, s, r ≥ 1 are given integers. That is, x∗ ∈ Ci for each
i = 1, 2, ... , s, and Tjx∗ ∈ Qj for each j = 1, 2, ... , r . It is readily seen that, for the case
where s = 1, the MSSFPMOS (1.18) reduced to the SFPMOS (1.15). If s = 1 = r , then
MSSFPMOS (1.18) also reduced to the SFP (1.1).

A question at hand is that whether it is possible to extend the iterative method presented
in (1.10) to solve the MSSFPMOS (1.18) within the framework of infinite dimensional Hilbert
spaces, incorporating acceleration and the concept of the ball-relaxation. We are motivated
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to explore this question due to the numerous results found in existing literature. Therefore, in
this paper, we propose an inertial accelerated self-adaptive super set (ball)-relaxed CQ method
for solving the MSSFPMOS (1.18), where the closed convex sets are defined as level sets of
strongly convex functions. This algorithm ensures strong convergence within the framework
of infinite-dimensional Hilbert spaces.

The structure of this paper is as follows. In Section 2, we recall some definitions and basic
results which are needed in the sequel. In Section 3, we present the algorithm we propose
along with its convergence analysis. In Section 4, we present some newly driven results to
solve another problem. We provide a set of numerical experiments to illustrate the efficacy of
our proposed method in Section 5.

2. Preliminaries
In this section, we recall some definitions and basic results which are needed in the sequel.
Throughout this paper, let H, H1 or H2 be a real Hilbert space with the inner product

⟨., .⟩, and induced norm ∥.∥. Let I denote the identity operator on H, H1 or H2. Let the
symbols “ ⇀ " and “ → ", denote the weak and strong convergence, respectively. For any
sequence {xk} ⊆ H, ωw (xk) =

{
x ∈ H : ∃{xkm} ⊆ {xk} such that xkm ⇀ x

}
denotes the

weak ω-limit set of {xk}.

Definition 2.1. [2] Let C be a nonempty closed convex subset of H. An operator T : C → H
is called

(1) Lipschitz continuous with constant σ > 0 on C if

∥Tx − Ty∥ ≤ σ∥x − y∥, ∀x , y ∈ C ;

(2) nonexpansive on C if
∥Tx − Ty∥ ≤ ∥x − y∥, ∀x , y ∈ C ;

(3) firmly nonexpansive on C if

∥Tx − Ty∥2 ≤ ∥x − y∥2 − ||(I − T )x − (I − T )y∥2, ∀x , y ∈ C ,

which is equivalent to

∥Tx − Ty∥2 ≤ ⟨Tx − Ty , x − y⟩, ∀x , y ∈ C ;

(4) σ-inverse strongly monotone (σ − ism) on C if there is σ > 0 such that

⟨Tx − Ty , x − y⟩ ≥ σ∥Tx − Ty∥2, ∀x , y ∈ C .

Definition 2.2. [2] Let C ⊆ H be a nonempty closed convex set. For every element x ∈ H,
there exists a unique nearest point in C , denoted by PC (x) such that

∥x − PC (x)∥ = min{∥x − y∥ : y ∈ C}.

The operator PC : H → C is called a metric projection of H onto C .
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Lemma 2.3. [2] Let C ⊆ H be a nonempty closed convex set. Then, the following assertions
hold for any x , y ∈ H and z ∈ C :

(1) ⟨x − PC (x), z − PC (x)⟩ ≤ 0;

(2) ∥PC (x) − PC (y)∥ ≤ ∥x − y∥;

(3) ∥PC (x) − PC (y)∥2 ≤ ⟨PC (x) − PC (y), x − y⟩;

(4) ∥PC (x) − z∥2 ≤ ∥x − z∥2 − ∥x − PC (x)∥2.

(5) The mappings PC and I − PC are both firmly nonexpansive and nonexpansive.

Lemma 2.4. For all x , y ∈ H and for all σ ∈ R, we have

(1) ∥x + y∥2 ≤ ∥x∥2 + 2⟨y , x + y⟩;

(2) ∥x + y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x , y⟩;

(3) ⟨x , y⟩ = 1
2∥x∥2 + 1

2∥y∥2 − 1
2∥x − y∥2;

(4) ∥σx + (1 − σ)y∥2 = σ∥x∥2 + (1 − σ)∥y∥2 − σ(1 − σ)∥x − y∥2.

Definition 2.5. [2] A f : H → (−∞, +∞] be a given function. Then,

(1) The function f is proper if

{x ∈ H : f (x) < +∞} ̸= ∅.

(2) A proper function f is convex if for each σ ∈ (0, 1),

f (σx + (1 − σ)y) ≤ σf (x) + (1 − σ)f (y), ∀x , y ∈ H.

(3) f is σ-strongly convex, where σ > 0, if

f (δx +(1−δ)y)+ σ

2 δ(1−δ)∥x −y∥2 ≤ δf (x)+(1−δ)f (y), ∀δ ∈ (0, 1) and ∀x , y ∈ H.

Moreover, f is σ-strongly convex if f (x) − (σ/2)∥x∥2 is convex.

Definition 2.6. Let f : H → (−∞, +∞] be a proper function.

(1) A vector ξ ∈ H is a subgradient of f at a point x if

f (y) ≥ f (x) + ⟨ξ, y − x⟩, ∀y ∈ H.

(2) The set of all subgradients of f at x ∈ H, denoted by ∂f (x), is called the subdifferential
of f , and is defined by

∂f (x) = {ξ ∈ H : f (y) ≥ f (x) + ⟨ξ, y − x⟩, for each y ∈ H}.

(3) If ∂f (x) ̸= ∅, f is said to be subdifferentiable at x . If the function f is continuously
differentiable then ∂f (x) = {∇f (x)}.
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Definition 2.7. Let f : H → (−∞, +∞] be a proper function. Then,

(1) f is lower semi-continuous (lsc) at x if xk → x implies

f (x) ≤ lim inf
k→∞

f (xk).

(2) f is weakly lower semi-continuous (w-lsc) at x if xk ⇀ x implies

f (x) ≤ lim inf
k→∞

f (xk).

(3) f is weakly/lower semi-continuous on H if it is weakly/lower semi-continuous at every
point x ∈ H.

Lemma 2.8. [2] Let f : H → (−∞, +∞] be a proper convex function. Then f is lower
semi-continuous if and only if it is weakly lower semi-continuous.

Lemma 2.9. [2] Let f : H → (−∞, +∞] be a ϱ-strongly convex function. Then for all
x , y ∈ H,

f (y) ≥ f (x) + ⟨ξ, y − x⟩ + ϱ

2∥y − x∥2, ξ ∈ ∂f (x).

Lemma 2.10. [38] Let C and Q be closed convex subsets of real Hilbert spaces H1 and H2,
respectively, and f : H1 → (−∞, +∞] is given by f (x) = 1

2∥(I−PQ)Tx∥2, where T : H1 → H2
be a bounded linear operator. Then for σ > 0 and x∗ ∈ H1, the following statements are
equivalent.

(1) The point x∗ solves the SFP (1.1).

(2) The point x∗ is the fixed point of the mapping PC (I − σ∇f ), i.e,

x∗ = PC (x∗ − σ∇f (x∗)).

(3) The point x∗ solves the variational inequality problem with respect to the gradient ∇f
of f ; i.e., find a point z ∈ C such that

⟨∇f (z), x − z⟩ ≥ 0, ∀x ∈ C .

Lemma 2.11. [5] Let the function f be given as in Lemma 2.10. Then,

(1) the function f is convex and weakly lower semi-continuous on H1;

(2) ∇f (x) = T ∗(I − PQ)Tx , for x ∈ H1;

(3) ∇f is ∥T∥2-Lipschitz, i.e.,

∥∇f (x) −∇f (y)∥ ≤ ∥T∥2∥x − y∥, ∀x , y ∈ H1.

Lemma 2.12. [23, 27] Let {sk} and {γk} be sequences of nonnegative real numbers, such
that

sk+1 ≤ (1 − σk)sk + εk + γk , k ≥ 1,
where {σk} ⊂ (0, 1) and {εk} is a real sequence. Assume that

∑∞
k=1 γk < ∞. Then the

following results hold:
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(1) If εk ≤ σkM for some M ≥ 0, then {sk} is a bounded sequence;

(2) If
∑∞

k=1 σk = ∞ and lim sup
k→∞

εk
σk

≤ 0, then sk → 0 as k → ∞.

Lemma 2.13. [18] Let {sk} be a non-negative real sequence, such that

sk+1 ≤ (1 − σk)sk + σkµk , k ≥ 1,
sk+1 ≤ sk − ϕk + φk , k ≥ 1,

where {σk} ⊂ (0, 1), {ϕk} is a non-negative, real sequence, and {µk} and {φk} are real
sequences such that

(1)
∑∞

k=1 σk = ∞;

(2) lim
k→∞

φk = 0;

(3) lim
m→∞

ϕkm = 0 implies lim sup
m→∞

µkm ≤ 0 for any subsequence {km} of {k}.

Then, lim
k→∞

sk = 0.

3. The Proposed Algorithm with Convergence Analysis
In this section, we hereby present our proposed algorithm in the following manner. For

simplicity, hereafter, denote J1 := {1, 2, ... , s} and J2 := {1, 2, ... , r}.
We examine the MSSFPMOS (1.18), where the sets Ci (i ∈ J1) and Qj (j ∈ J2) are

defined as follows:

Ci = {x ∈ H : ci(x) ≤ 0} and Qj = {y ∈ Hj : qj(y) ≤ 0}, (3.1)

where, ci : H → (−∞, +∞] for all i ∈ J1 and qj : Hj → (−∞, +∞] for all j ∈ J2 are
ϱi -strongly and σj -strongly convex functions, respectively. It is important to note that ϱi ≥ 0
and σj ≥ 0, allowing for the inclusion of cases where ci or qj are only convex.
Assumption 3.1. for the MSSFPMOS (1.18), we require the following standard assumptions.

(1) Both ci(i ∈ J1) and qj(j ∈ J2) are subdifferentiable on H and Hj , respectively.

(2) For any x ∈ H and for each i ∈ J1, a subgradient ξi ∈ ∂ci(x) can be calculated.

(3) For any y ∈ Hj and for each j ∈ J2, a subgradient ηj ∈ ∂qj(y) can be calculated.

(4) Both ∂ci(i ∈ J1) and ∂qj(j ∈ J2) are bounded operators (bounded on bounded sets).

According to Assumption 3.1, it is evident that the functions ci(i ∈ J1) and qj(j ∈ J2) are
lower semi-continuous. Also, since ci(i ∈ J1) and qj(j ∈ J2) are convex, it can be inferred
from Lemma 2.8 that ci(i ∈ J1) and qj(j ∈ J2) are weakly lower semi-continuous.

In our algorithm, given the k th iterative point xk , we construct ”s” super-sets C̃ik (i ∈ J1)
and ”r” super-sets Q̃jk (j ∈ J2). These super-sets include the original sets Ci (i ∈ J1) and Qj

(j ∈ J2) respectively. The set C̃ik (i ∈ J1) is constructed as

C̃ik =
{

x ∈ H : ci(xk) + ⟨ξik , x − xk⟩ + ϱi
2 ∥x − xk∥2 ≤ 0

}
, (3.2)
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where ξik ∈ ∂ci(xk). If ϱi = 0, then C̃ik above is reduced to the following half-space

Cik =
{

x ∈ H : ci(xk) + ⟨ξik , x − xk⟩ ≤ 0
}

. (3.3)

If ϱi > 0, then for i ∈ J1, C̃ik can be defined by (see in [41])

C̃ik =
{

x ∈ H :
∥∥∥x −

(
xk − 1

ϱi
ξik

)∥∥∥2
≤ 1

ϱ2
i
∥ξik∥2 − 2

ϱi
ci(xk)

}
and it follows from the fact that C̃ik ⊇ Ci ̸= ∅ (i ∈ J1) the set C̃ik is nonempty. Furthermore,
let x∗ ∈ Ci (i ∈ J1). Since each ci (i ∈ J1) is ϱi -strongly convex function, it then follows
from Lemma 2.9 that

ci(xk) + ⟨ξik , x∗ − xk⟩ + ϱi
2 ∥x∗ − xk∥2 ≤ ci(x∗) ≤ 0,

which implies that for each i ∈ J1

2
ϱi

ci(xk) ≤ 2
ϱi
∥ξik∥∥xk − x∗∥ − ∥xk − x∗∥2 ≤ 1

ϱ2
i
∥ξik∥2

which also yields 1
ϱ2

i
∥ξik∥2 − 2

ϱi
ci(xk) ≥ 0. Therefore, each C̃ik (i ∈ J1) is a nonempty ball of

radius
√

1
ϱ2

i
∥ξik∥2 − 2

ϱi
ci(xk) centred at xk − 1

ϱi
ξik . The set Q̃jk (j ∈ J2) is defined as

Q̃jk =
{

y ∈ Hj : qj(Tjxk) + ⟨ηjk , y − Tjxk⟩ + σj
2 ∥y − Tjxk∥2 ≤ 0

}
, (3.4)

where ηjk ∈ ∂qj(Tjxk). If σj = 0, then Q̃jk above is reduced to the following half-space

Qjk =
{

y ∈ Hj : qj(Tjxk) + ⟨ηjk , y − Tjxk⟩ ≤ 0
}

. (3.5)

If σj > 0, then Q̃jk above is nothing but a nonempty closed ball. Indeed, Q̃jk is nonempty
because Q̃jk ⊇ Qj ̸= ∅ (j ∈ J2). Similarly, for all k ≥ 0 and for each j ∈ J2, observe that

Q̃jk =
{

y ∈ Hj :
∥∥∥y −

(
Tjxk − 1

σj
ηjk

)∥∥∥2
≤ 1

σ2
j
∥ηjk∥2 − 2

σj
qj(Tjxk)

}
.

That is, each Q̃jk (j ∈ J2) is also a nonempty closed ball of radius
√

1
σ2

j
∥ηjk∥2 − 2

σj
qj(Tjxk)

centred at Tjxk− 1
σj
ηjk . Therefore, both C̃ik and Q̃jk are nothing but nonempty closed balls and

it is easy to verify that (see [41]) C̃ik ⊇ Ci (i ∈ J1) and Q̃jk ⊇ Qj (j ∈ J2) hold for every k ≥ 0.

In order to enhance the efficiency and ease of implementation of the algorithm, we utilize
metric projections onto the balls C̃ik and Q̃jk as defined in (3.2) and (3.4), respectively,
instead of the given sets Ci and Qj . Additionally, to circumvent the need for estimating the
operator norm (which can be a challenging task), we introduce a self-adaptive approach for
updating the step-size in solving the MSSFPMOS (1.18) within the framework of infinite
dimensional real Hilbert spaces.

Here, we present our proposed self-adaptive relaxed CQ algorithm for solving the MSSF-
PMOS (1.18). In building our algorithm, we also require the following assumption.
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Assumption 3.2. Let {υk}, {ρk}, and {εk} be three sequences satisfy the conditions:

(a1) {υk} ⊂ (0, 1) such that lim
k→∞

υk = 0 and
∞∑

k=0
υk = ∞.

(a2) {ρk} ⊂ (0, 2) such that lim inf
k→∞

ρk(2 − ρk) > 0.

(a3) {εk} ⊂ [0, ε), where ε ∈ (0, 1) such that εk = o(υk).

Algorithm 1:
Step 0. Choose three sequences {υk}, {ρk}, and {εk} satisfying the conditions in
Assumption 3.2 and select β ∈ [0, 1). Fix u ∈ H and let x0, x1 ∈ H be arbitrary initial
guesses and set k := 1. Take the weights αk

i (i ∈ J1) > 0 and the constant parameters
δj (j ∈ J2) > 0 such that

s∑
i=1

αk
i = 1 and inf

i∈Ik
αk

i > α > 0, where Ik = {i ∈ J1 : αk
i > 0}, and

r∑
j=1

δj = 1.

Step 1. Given the iterates xk−1, xk ∈ H, then compute yk via the manner

yk = xk + βk(xk − xk−1) (3.6)

where βk is chosen in [0,—βk) and

—βk :=


min

{
β, εk

max
{
∥xk−xk−1∥2, ∥xk−xk−1∥

}}, if xk ̸= xk−1,

β, if xk = xk−1.
(3.7)

Step 2. Compute the next iterate xk+1 via the manner

xk+1 =
s∑

i=1
αk

i PC̃ik

(
υku + (1 − υk)

(
yk − τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk

))

where C̃ik and Q̃jk are the balls given as in (3.2) and (3.4), respectively and the stepsize
τk is self-adaptively updated via

τk :=
ρk
∑r

j=1 δj

∥∥∥(I − PQ̃jk

)
Tjyk

∥∥∥2

λ2
k

(3.8)

where
λk := max

{
1,
∥∥∥ r∑

j=1
δjT ∗

j

(
I − PQ̃jk

)
Tjyk

∥∥∥}.

Step 3. If xk+1 = yk , then stop; otherwise, set k := k + 1 and return to Step 1.
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Remark 3.3. We note that the positive sequence {εk} satisfies the conditions:

lim
k→∞

εk
υk

= 0 and
∞∑

k=1
εk < ∞.

Remark 3.4. From (3.7), we have that βk∥xk − xk−1∥2, βk∥xk − xk−1∥ ≤ εk , ∀k ≥ 1. This
together with Remark 3.3 give

lim
k→∞

βk
υk

∥xk − xk−1∥2 ≤ lim
k→∞

εk
υk

= 0 and lim
k→∞

βk
υk

∥xk − xk−1∥ ≤ lim
k→∞

εk
υk

= 0.

Thus, there exist two positive constant M1 and M2 such that

βk
υk

∥xk − xk−1∥2 ≤ M1 and βk
υk

∥xk − xk−1∥ ≤ M2.

Furthermore, by assuming (3.7), we have that
∞∑

k=1
βk∥xk − xk−1∥2 < ∞ and

∞∑
k=1

βk∥xk − xk−1∥ < ∞, (3.9)

which implies

lim
k→∞

βk∥xk − xk−1∥2 = 0 and lim
k→∞

βk∥xk − xk−1∥ = 0. (3.10)

Lemma 3.5. Assume that the sequences {υk}, {ρk}, and {εk} satisfy all the conditions in
Assumption 3.2. Then the sequence {xk} generated by Algorithm 1 is bounded.

Proof. Let x∗ ∈ Ω, then we have the following estimation∥∥∥yk − τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk − x∗

∥∥∥2

=
∥∥∥(yk − x∗) − τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk

∥∥∥2

= ∥yk − x∗∥2 + τ 2
k

∥∥∥ r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk

∥∥∥2

−2τk

〈 r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk , yk − x∗

〉
. (3.11)

Note that for each j ∈ J2, I −PQ̃jk
is firmly nonexpansive and

∑r
j=1 δjT ∗

j

(
I −PQ̃jk

)
Tjx∗ = 0.

Hence, it follows from lemma 2.3 that〈
τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk , yk − x∗

〉
= τk

r∑
j=1

δj

〈
T ∗

j

(
I − PQ̃jk

)
Tjyk , yk − x∗

〉
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= τk

r∑
j=1

δj

〈(
I − PQ̃jk

)
Tjyk , Tjyk − Tjx∗

〉
≥ τk

r∑
j=1

δj

∥∥∥(I − PQ̃jk

)
Tjyk

∥∥∥2
, (3.12)

Substituting (3.12) in to (3.11), we get∥∥∥yk − τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk − x∗

∥∥∥2

≤ ∥yk − x∗∥2 + τ 2
k

∥∥∥ r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk

∥∥∥2
− 2τk

r∑
j=1

δj

∥∥∥(I − PQ̃jk

)
Tjyk

∥∥∥2
.

(3.13)

(3.13) together with (3.8) and
∥∥∥∑r

j=1 δjT ∗
j

(
I − PQ̃j,n

)
Tjyk

∥∥∥ ≤ λk implies that

∥∥∥yk − τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk − x∗

∥∥∥2

≤ ∥yk − x∗∥2 + τ 2
kλ

2
k − 2τk

r∑
j=1

δj

∥∥∥(I − PQ̃jk

)
Tjyk

∥∥∥2

= ∥yk − x∗∥2 − ρk(2 − ρk)

(∑r
j=1 δj

∥∥∥(I − PQ̃jk

)
Tjyk

∥∥∥2)2

λ2
k

≤ ∥yk − x∗∥2. (3.14)

By Lemma 2.3, we also obtain the following estimation.

∥xk+1 − x∗∥ =
∥∥∥ s∑

i=1
αk

i PC̃ik

(
υku + (1 − υk)

(
yk − τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk

))
− x∗

∥∥∥
=
∥∥∥ s∑

i=1
αk

i PC̃ik

(
υku + (1 − υk)

(
yk − τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk

))
−

s∑
i=1

αk
i PC̃ik

x∗
∥∥∥

≤
∥∥∥υku + (1 − υk)

(
yk − τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk

)
− x∗

∥∥∥
=
∥∥∥υk(u − x∗) + (1 − υk)

[(
yk − τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk

)
− x∗

]∥∥∥
≤ (1 − υk)

∥∥∥yk − τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk − x∗

∥∥∥+ υk∥u − x∗∥. (3.15)

From (3.6), we have that

∥yk − x∗∥ = ∥xk + βk(xk − xk−1) − x∗∥ ≤ ∥xk − x∗∥ + βk∥xk − xk−1∥. (3.16)
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Combining (3.14)-(3.16), we obtain

∥xk+1 − x∗∥ ≤ (1 − υk)∥yk − x∗∥ + υk∥u − x∗∥
≤ (1 − υk)[∥xk − x∗∥ + βk∥xk − xk−1∥] + υk∥u − x∗∥
≤ (1 − υk)∥xk − x∗∥ + υk [Σk + ∥u − x∗∥]. (3.17)

where Σk = (1 − υk)βk
υk
∥xk − xk−1∥ and by Remark 3.4, we have

lim
k→∞

Σk = lim
k→∞

(1 − υk)βk
υk

∥xk − xk−1∥ = 0. (3.18)

This implies that the sequence {Σk} is bounded. Setting

M = max
{

sup
k∈N

Σk , ∥u − x∗∥

}
, (3.19)

as well as using Lemma 2.12, we conclude that the sequence {∥xk − x∗∥} is bounded. This
shows that the sequence {xk} is bounded and so are {yk} and {Tjyk} for each j ∈ J2. This
completes the proof.

Theorem 3.6. Assume that the sequences {υk}, {ρk}, and {εk} satisfy the conditions (a1)-
(a3) of Assumption 3.2. Then the sequence {xk} generated by Algorithm 1 converges strongly
to the point x∗ ∈ Ω of the MSSFPOMS (1.18), where x∗ = PΩu.

Proof. Let x∗ ∈ Ω. Since {∥xk −x∗∥} is bounded, assume that there exists a constant K1 > 0
such that ∥xk − x∗∥ ≤ K1. Hence, it follows from (3.16)

∥yk − x∗∥2 ≤ ∥xk − x∗∥2 + β2
k∥xk − xk−1∥2 + 2βk∥xk − xk−1∥.∥xk − x∗∥

≤ ∥xk − x∗∥2 + βk∥xk − xk−1∥2 + 2K1.βk∥xk − xk−1∥. (3.20)

This together with (3.14) further gives

∥xk+1 − x∗∥2 =
∥∥∥ s∑

i=1
αk

i PC̃ik

(
υku + (1 − υk)

(
yk − τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk

))
− x∗

∥∥∥2

=
∥∥∥ s∑

i=1
αk

i PC̃ik

(
υku + (1 − υk)

(
yk − τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk

))
−

s∑
i=1

αk
i PC̃ik

x∗
∥∥∥2

≤
∥∥∥υku + (1 − υk)

(
yk − τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk

)
− x∗

∥∥∥2

=
∥∥∥υk(u − x∗) + (1 − υk)

[(
yk − τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk

)
− x∗

]∥∥∥2

≤
∥∥∥(1 − υk)

[
yk − τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk − x∗

]∥∥∥2
+ 2υk⟨u − x∗, xk+1 − x∗⟩

≤ (1 − υk)
[
∥yk − x∗∥2 − ρk(2 − ρk)

(∑r
j=1 δj

∥∥∥(I − PQ̃jk

)
Tjyk

∥∥∥2)2

λ2
k

]
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+ 2υk⟨u − x∗, xk+1 − x∗⟩

≤ (1 − υk)
[
∥xk − x∗∥2 + βk∥xk − xk−1∥2 + 2K1.βk∥xk − xk−1∥

− ρk(2 − ρk)

(∑r
j=1 δj

∥∥∥(I − PQ̃jk

)
Tjyk

∥∥∥2)2

λ2
k

]
+ 2υk⟨u − x∗, xk+1 − x∗⟩. (3.21)

Now, we can see from (3.21) that

∥xk+1 − x∗∥2 ≤ (1 − υk)∥xk − x∗∥2 + υk

[
βk
υk
∥xk − xk−1∥2 + 2K1.βk

υk
∥xk − xk−1∥

+2⟨u − x∗, xk+1 − x∗⟩
]
,

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − ρk(2 − ρk)

(∑r
j=1 δj

∥∥∥(I−PQ̃jk

)
Tj yk

∥∥∥2)2

λ2
k

+βk∥xk − xk−1∥2 + 2K1.βk∥xk − xk−1∥ + 2υk⟨u − x∗, xk+1 − x∗⟩.
(3.22)

Then (3.21) can be transformed to the inequalities

sk+1 ≤ (1 − υk)sk + υkµk , k ≥ 1,
sk+1 ≤ sk − ϕk + φk , k ≥ 1, (3.23)

where

sk = ∥xk+1 − x∗∥2;
µk = βk

υk
∥xk − xk−1∥2 + 2K1.βk

υk
∥xk − xk−1∥ + 2⟨u − x∗, xk+1 − x∗⟩;

ϕk = ρk(2 − ρk)

(∑r
j=1 δj

∥∥∥(I−PQ̃jk

)
Tj yk

∥∥∥2)2

λ2
k

;
φk = βk∥xk − xk−1∥2 + 2K1.βk∥xk − xk−1∥ + 2υk⟨u − x∗, xk+1 − x∗⟩.

(3.24)

Moreover, by Assumption 3.2, we have that
∞∑

k=0
υk = ∞, (3.25)

lim
k→∞

φk = lim
k→∞

[βk∥xk − xk−1∥2 + 2K1.βk∥xk − xk−1∥+ 2υk⟨u− x∗, xk+1 − x∗⟩] = 0. (3.26)

Let {km} be a subsequence of {k} and suppose

lim sup
m→∞

ϕkm ≤ 0, (3.27)

which further yields

lim
m→∞

[(∑r
j=1 δj

∥∥∥(I − PQ̃jkm

)
Tjykm

∥∥∥2)2

λ2
km

]
= 0 (3.28)
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which also implies that

lim
m→∞

[∑r
j=1 δj

∥∥∥(I − PQ̃jkm

)
Tjykm

∥∥∥2

λkm

]
= 0. (3.29)

Since the sequence {ykm} is bounded and by the Lipschitz continuity of the
(

I −PQ̃jkm

)
Tjykm

for each j ∈ J2 and for all m ∈ N, the sequence
{∥∥∥∑r

j=1 δjT ∗
j

(
I − PQ̃jkm

)
Tjykm

∥∥∥} is bound.
And hence the sequence {λkm} is bounded as well. Therefore, we get from (3.29) that

lim
m→∞

r∑
j=1

δj

∥∥∥(I − PQ̃jkm

)
Tjykm

∥∥∥2
= 0, (3.30)

which implies for each j ∈ J2 that

lim
m→∞

∥∥∥(I − PQ̃jkm

)
Tjykm

∥∥∥ = 0. (3.31)

Next, we prove that ωw (xk) ⊂ Ω. Since {xk} is bounded, ωw (xk) ̸= ∅. Let —x ∈ ωw (xk);
then we may assume that there exists a subsequence {xkm} of {xk} such that xkm ⇀ —x .
Furthermore,

∥yk − xk∥ = ∥xk + βk(xk − xk−1) − xk∥ = βk∥xk − xk−1∥ → 0, (3.32)

and hence ykm ⇀—x , and since each Tj for j ∈ J2 is linear and bounded, Tjykm ⇀ Tj—x . Since
∂qj for each j ∈ J2 is bounded on bounded set, we may assume that there is a constant η > 0
such that ∥ηjkm∥ ≤ η, where ηjkm ∈ ∂qj(Tjykm ) for each j ∈ J2. That is the sequence {ηjkm}
is bounded. Note that PQ̃jkm

(Tjykm ) ∈ Q̃jkm for each j ∈ J2. Now, it follows from (3.4) and
(3.31) for all j ∈ J2 and as m → ∞ that

qj

(
Tjykm

)
≤

〈
ηjkm , Tjykm − PQ̃jkm

(Tjykm )
〉
− σj

2

∥∥∥Tjykm − PQ̃jkm
(Tjykm )

∥∥∥2

≤
〈
ηjkm , Tjykm − PQ̃jkm

(Tjykm )
〉

≤
∥∥∥ηjkm

∥∥∥∥∥∥(I − PQ̃jkm

)
Tjykm

∥∥∥
≤ η

∥∥∥(I − PQ̃jkm

)
Tjykm

∥∥∥→ 0. (3.33)

By the weakly lower semi-continuity of qj together with (3.33) we get for all j ∈ J2 that

qj(Tj—x) ≤ lim inf
m→∞

qj

(
Tjykm

)
≤ lim

m→∞
η
∥∥∥(I − PQ̃jkm

)
Tjykm

∥∥∥ = 0.

It turns out that, Tj—x ∈ Qj , ∀j ∈ J2.
Observe that

∥xk+1 − yk∥ ≤ (1 − υk)
∥∥∥yk − τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk − yk

∥∥∥+ υk∥u − yk∥
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≤ (1 − υk)τkλk + υk∥u − yk∥

= (1 − υk)
ρk
∑r

j=1 δj

∥∥∥(I − PQ̃jk

)
Tjyk

∥∥∥2

λk
+ υk∥u − yk∥ → 0. (3.34)

Since ∂ci for each i ∈ J1 is bounded on bounded set, we may again assume that for all km ≥ 0,
there is a constant ξ > 0 such that ∥ξikm∥ ≤ ξ, where ξikm ∈ ∂ci(ykm ) for each i ∈ J1. That is
the sequence {ξikm} is bounded. Since (xkm+1 − υkm u) ∈ C̃ikm for all i ∈ J1 and by (3.2) and
(3.34), we have for all i ∈ J1 as m → ∞ that

ci(ykm ) ≤
〈
ξikm , ykm + υkm u − xkm+1

〉
− ϱi

2

∥∥∥ykm + υkm u − xkm+1

∥∥∥2

≤
∥∥∥ξikm

∥∥∥∥∥∥ykm + υkm u − xkm+1

∥∥∥
≤ ξ

∥∥∥ykm + υkm u − xkm+1

∥∥∥→ 0. (3.35)

By the weakly lower semi-continuity of ci together with (3.35) we get for all i ∈ J1 that

ci(—x) ≤ lim inf
m→∞

ci(ykm ) ≤ lim
m→∞

ξ
∥∥∥ykm + υkm u − xkm+1

∥∥∥ = 0,

Thus,—x ∈ Ci , ∀i ∈ J1, i.e., ωw (xk) ⊂ Ω.
Next, we show that lim

k→∞
∥xk+1 − xk∥ = 0. Indeed, we have

∥xk+1 − xk∥ ≤ (1 − υk)
∥∥∥yk − τk

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk − xk

∥∥∥+ υk∥u − xk∥

≤ (1 − υk)
[
∥yk − xk∥ + τk∥

r∑
j=1

δjT ∗
j

(
I − PQ̃jk

)
Tjyk∥

]
+ υk∥u − xk∥

≤ (1 − υk)
[
∥yk − xk∥ + τkλk

]
+ υk∥u − xk∥

= (1 − υk)
[
∥yk − xk∥ +

ρk
∑r

j=1 δj

∥∥∥(I − PQ̃jk

)
Tjyk

∥∥∥2

λk

]
+ υk∥u − xk∥ → 0. (3.36)

For x∗ = PΩu and xkm ⇀—x ∈ Ω, it follows from Lemma 2.3 that ⟨u − x∗,—x − x∗⟩ ≤ 0.
So,

lim sup
k→∞

⟨u − x∗, xk − x∗⟩ = lim sup
m→∞

⟨u − x∗, xkm − x∗⟩ = ⟨u − x∗,—x − x∗⟩ ≤ 0. (3.37)

Hence,

lim sup
k→∞

⟨u − x∗, xk+1 − x∗⟩ = lim sup
k→∞

(⟨u − x∗, xk+1 − xk⟩ + ⟨u − x∗, xk − x∗⟩) ≤ 0. (3.38)

And then

lim sup
k→∞

µk = lim sup
k→∞

[
βk
υk

∥xk − xk−1∥2 + 2K1.βk
υk

∥xk − xk−1∥ + 2⟨u − x∗, xk+1 − x∗⟩
]
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≤ 0. (3.39)

Therefore, applying Lemma 2.13, we conclude that the sequence {xk} converges strongly to
the point x∗ ∈ Ω, where x∗ = PΩu. This completes the proof.

Remark 3.7. For the special case, where s = 1 = r , the MSSFPMOS (1.18) becomes the
SFP (1.1). Thus, it is worth to mention that, we have corollary 3.8 for solving the SFP (1.1),
an immediate consequence of Theorem 3.6.

Corollary 3.8. Let H1 and H2 be two real Hilbert spaces and let T : H1 → H2 be bounded
linear operator. Let C and Q be nonempty, closed and convex subsets of H1 and H2, respec-
tively. Assume that Γ = C ∩T−1(Q) ̸= ∅. Let {xk} be the sequence generated by Algortihm
2. Suppose that the sequences {υk}, {ρk}, and {εk} satisfy all conditions in Assumption 3.2.
Then, the sequence {xk} converges strongly to the point x∗ ∈ Γ of the SFP (1.1), where
x∗ = PΓu.

Algorithm 2:
Step 0. Choose three sequences {υk}, {ρk}, and {εk} satisfying the conditions in
Assumption 3.2 and select β ∈ [0, 1). Fix u ∈ H and let x0, x1 ∈ H1 be arbitrary initial
guesses and set k := 1.

Step 1. Given the iterates xk−1, xk ∈ H1, then compute yk via the manner

yk = xk + βk(xk − xk−1)

where βk is chosen in [0,—βk) and

—βk :=


min

{
β, εk

max
{
∥xk−xk−1∥2, ∥xk−xk−1∥

}}, if xk ̸= xk−1,

β, if xk = xk−1.

Step 2. Compute the next iterate xk+1 via the manner

xk+1 = PC̃k

(
υku + (1 − υk)

(
yk − τkT ∗(I − PQ̃k

)
Tyk

))
where C̃k and Q̃k are the balls as in (1.11) and (1.12), respectively and τk is
self-adaptively updated via

τk :=
ρk
∥∥(I − PQ̃k

)Tyk
∥∥2

λ2
k

where
λk := max

{
1,
∥∥T ∗(I − PQ̃k

)Tyk
∥∥}.

Step 3. If xk+1 = yk , then stop; otherwise, set k := k + 1 and return to Step 1.
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4. Application to the Generalized Split Feasibility Problem
In this section, we present an application of Theorem 3.6 for solving generalized split

feasibility problem (another generalization of the SFP) in Hilbert spaces. To begin, we will
provide a brief overview of the generalized split feasibility problem.

Very recently, Reich and Tuyen [30] first introduced and studied the following generalized
split feasibility problem. Let Hj , j = 1, 2, ... , r , be real Hilbert spaces and Cj , j = 1, 2, ... , r ,
be closed and convex subsets of Hj , respectively. Let Bj : Hj → Hj+1, j = 1, 2, ... , r − 1, be
bounded linear operators such that

S := C1 ∩ B−1
1 (C2) ∩ · · · ∩ B−1

1

(
B−1

2 ...
(

B−1
r−1(Cr )

))
̸= ∅.

The generalized split feasibility problem (GSFP, for short) [30] is to find an element

x∗ ∈ S, (4.1)

that is x∗ ∈ C1, B1x∗ ∈ C2, ... , Br−1Br−2 ... B1x∗ ∈ Cr . In [30], Reich and Tuyen proved a
strong convergence theorem for a modification of the CQ-algorithm which solves the GSFP
(4.1). For more details on the GSFP (4.1), one can go through the paper [30].

Remark 4.1. It is readily seen that, letting H = H1, C = C1, Qj = Cj+1, 1 ≤ j ≤ r − 1,
A1 = B1, A2 = B2B1, ... , and Ar−1 = Br−1Br−2Br−3 ... B2B1, then the SFPMOS (1.15)
becomes the GSFP (4.1). Moreover, for the special case where r = 1, both the GSFP (4.1)
and the SFPMOS (1.15) become the SFP (1.1).

Remark 4.2. For the special case, where s = 1, the MSSFPMOS (1.18) becomes the SFP-
MOS (1.15). In this case, by Remark 4.1, the MSSFPMOS (1.18) also becomes the GSFP
(4.1). Thus, using Theorem 3.6 and Remark 4.1, we obtain Theorem 4.3 for solving the GSFP
(4.1).

Theorem 4.3. Let H = H1, C = C1, Qj = Cj+1, 1 ≤ j ≤ r − 1, T1 = B1, T2 = B2B1, ... , and
Tr−1 = Br−1Br−2Br−3 ... B2B1. Assume that the GSFP (4.1) is consistent (i.e., S ̸= ∅). Fix
u ∈ H and let x0, x1 ∈ H be arbitrary initial guesses and set k := 1. Let {xk} be a sequence
generated by the iterative scheme. Given the iterates xk−1, xk ∈ H, then compute yk via the
manner

yk = xk + βk(xk − xk−1)

where βk is chosen in [0,—βk) and

—βk :=


min

{
β, εk

max
{
∥xk−xk−1∥2, ∥xk−xk−1∥

}}, if xk ̸= xk−1,

β, if xk = xk−1.

Compute the next iterate xk+1 via the manner

xk+1 = PC̃1k

(
υku + (1 − υk)

(
yk − τk

r−1∑
j=1

δjT ∗
j

(
I − PC̃j+1,k

)
Tjyk

))
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where C̃1,k and C̃j+1,k are balls containing C1 and Cj+1, respectively, the stepsize τk is self-
adaptively updated via

τk :=
ρk
∑r−1

j=1 δj

∥∥∥(I − PC̃j+1,k

)
Tjyk

∥∥∥2

λ2
k

where

λk := max
{

1,
∥∥∥ r−1∑

j=1
δjT ∗

j

(
I − PC̃j+1,k

)
Tjyk

∥∥∥},

and the parameters δj (j ∈ J2) are positive constants such that
∑r

j=1 δj = 1. Suppose
the sequences {υk}, {ρk}, and {εk} satisfying the conditions in Assumption 3.2. Then, the
sequence {xk} converges strongly to the point x∗ ∈ S of the SFP (1.1), where x∗ = PSu.

5. Numerical Experiments
In this section, we provide two numerical examples that demonstrate the effectiveness of

our proposed scheme. All experiments were conducted on a standard FUJITSUNOTEBOOK
laptop equipped with an 11th Gen Intel(R) Core(TM) i7-1165G7 processor running at 2.80GHz
with 16GB of memory. The code was implemented using MATLAB R2022a. In Examples 5.1
and 5.2, the terms Iter. (k) and CPU(s) denote the number of iterations and the CPU time
in seconds, respectively.

Example 5.1. Let H = RS , H1 = RR , H2 = RN , H3 = RM , H4 = RL. Consider the sets Ci
and Qj , an ellipsoids in n-dimensional space, defined by

C1 = {x ∈ RS : (x − z1)T D1(x − z1) ≤ r1},
C2 = {x ∈ RS : (x − z2)T D2(x − z2) ≤ r2},
C3 = {x ∈ RS : (x − z3)T D3(x − z3) ≤ r3},
C4 = {x ∈ RS : (x − z4)T D4(x − z4) ≤ r4},
Q1 = {T1x ∈ RR : (T1x − w1)T P1(T1x − w1) ≤ ρ1},
Q2 = {T2x ∈ RN : (T2x − w2)T P2(T2x − w2) ≤ ρ2},
Q3 = {T3x ∈ RM : (T3x − w3)T P3(T3x − w3) ≤ ρ3},
Q4 = {T4x ∈ RL : (T3x − w4)T P4(T4x − w4) ≤ ρ4},

where each Di ∈ RS×S , P1 ∈ RR×R , P2 ∈ RN×N , P3 ∈ RM×M , P4 ∈ RL×L are positive
definite matrices, zi ∈ RS , w1 ∈ RR , w2 ∈ RN , w3 ∈ RM , w4 ∈ RL, each ri , ρj > 0, and
T1 : RS → RR , T2 : RS → RN , T3 : RS → RM , T4 : RS → RL are bounded linear operators.
The goal is to find a point x∗ ∈ RS such that

x∗ ∈ Ω :=
(
∩4

i=1 Ci

)
∩
(
∩4

j=1 T−1
j

(
Qj

))
̸= ∅. (5.1)

It should be noted that an ellipsoid is a closed and convex set that can be mathematically
expressed as a sublevel set of a specific convex function, as demonstrated in [7]. Indeed,
define ci : RS → R and qj : RR/N/M/L → R by ci(x) = 1

2
[
(x − z)T Di(x − z) − ri

]
and

qj(Tjx) = 1
2
[
(Tjx − wj)T Pj(Tjx − wj) − ρj

]
. Then, Ci = {x ∈ RS : ci(x) ≤ 0} and

Qj = {Tjx ∈ RR/N/M/L : qj(Tjx) ≤ 0} are level sets of ci and qj , respectively. In what follows
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the subgradients ξik and ηjk of respectively ci(x) and qj(Tjx) can be calculated respectively
at the points x and Tjx by ξik(x) = Di(x − z) and ηjk(Tjx) = Pj(Tjx −wj). Moreover, since
∇ci(x) = Di(x − z), it can be easily seen that

∥∇ci(x) −∇ci(y)∥ = ∥Di(x − z) − Di(y − z)∥ = ∥Di(x − y)∥ ≤ ∥Di∥∥x − y∥, ∀x , y ∈ RS

which further implies that ∇ci is a ∥Di∥-Lipschitz continuous mapping.
Thus, according to (3.2) and (3.4), the balls C̃ik (i = 1, 2, 3, 4) and Q̃jk (j = 1, 2, 3, 4),

respectively of the sets Ci and Qj can be easily determined at a point yk and Tjyk , respectively
and the metric projections onto the balls C̃ik (i = 1, 2, 3, 4) and Q̃jk (j = 1, 2, 3, 4), can be
easily calculated.

For simplicity, we denote e0 = (1, , 1, ... , 1)T ∈ RS , e1 = (1, , 1, ... , 1)T ∈ RR , e2 =
(1, , 1, ... , 1)T ∈ RN , e3 = (1, , 1, ... , 1)T ∈ RM , e4 = (1, , 1, ... , 1)T ∈ RL. We fix u = e0 and
we choose the starting points x0 = 100e0 and x1 = −10e0.

The coordinates of the points zi (i = 1, 2, 3, 4) and wj (j = 1, 2, 3, 4) are randomly
generated in the closed interval [−1, 1]. The radii ri (i = 1, 2, 3, 4) are randomly generated
in the closed interval [S, 2S]. Whereas the radii ρ1, ρ2, ρ3, ρ4 are randomly generated in
the closed intervals [R, 2R], [N, 2N], [M, 2M], and [L, 2L], respectively. The positive definite
matrices are chosen as Di = diag(ie0) (i = 1, 2, 3, 4), and Pj = diag(ej) (j = 1, 2, 3, 4).
Furthermore, the elements of the representing matrices Tj are randomly generated in the
closed interval [−5, 5]. We also fix the parameter sequences as β = 0.3, ϵk = 1

(k+1)3 ,
ρk = k

4k+1 , υk = 1
100k+5 , αk

i = i
10 , for i = 1, 2, 3, 4, ϱi = 0 = σj , δj = j

10 , for j = 1, 2, ... 4.
We use Ek = ∥xk+1 − xk∥2 < ϵ for sufficiently small ϵ > 0 as a stopping criteria. In Table

1 and Figure 1, we report the results of Algorithm 1 with different choices of the dimensions
S, R, N, M, L and different values of ϵ.

Table 1. Experimental results of Algorithm 1 for different choices of S, R, N, M, L and
different values of ϵ.

ϵ = 10−4 ϵ = 10−6 ϵ = 10−8 ϵ = 10−10

Iter. (k) 34 67 71 230
S = 40, R = 60, N = 90, M = 100, L = 120 CPU(s) 0.023679 0.029949 0.032250 0.046630

Iter. (k) 31 90 137 339
S = 100, R = 500, N = 800, M = 200, L = 150 CPU(s) 0.111460 0.260385 0.376923 0.896085

Iter. (k) 74 306 500 844
S = 300, R = 200, N = 600, M = 100, L = 80 CPU(s) 0.215468 0.774572 1.223163 2.120658

Iter. (k) 57 78 81 401
S = 80, R = 50, N = 200, M = 300, L = 250 CPU(s) 0.046596 0.058950 0.074887 0.201119

Iter. (k) 139 174 370 1145
S = 800, R = 30, N = 10, M = 40, L = 50 CPU(s) 0.839825 0.989611 2.094726 6.272305
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Fig. 1. Iter. (k) vs Error, experimental results of Algorithm 1 for different choices of
S, R, N, M, L and different values of ϵ.

Example 5.2. Let H = R3, H1 = R6, H2 = R9, H3 = R12, H4 = R15. Find a point x∗ ∈ R3

such that

x∗ ∈ Ω := C1 ∩
(
∩4

j=1 T−1
j
(
Qj
))

̸= ∅, (5.2)

where
C1 = {x ∈ R3 : ∥x − o1∥2 ≤ r2

1 },
Q1 = {T1x ∈ R6 : ∥T1x − w1∥2 ≤ ρ2

1},
Q2 = {T2x ∈ R9 : ∥T2x − w2∥2 ≤ ρ2

2},
Q3 = {T3x ∈ R12 : ∥T3x − w3∥2 ≤ ρ2

3},
Q4 = {T4x ∈ R15 : ∥T4x − w4∥2 ≤ ρ2

4},

where o1, w1 ∈ R6, w2 ∈ R9, w3 ∈ R12, w4 ∈ R15, r1, ρ1, ρ2, ρ3, ρ4 ∈ R, and T1 : R3 → R6,
T2 : R3 → R9, T3 : R3 → R12, T4 : R3 → R15. For any x ∈ R3, we have c1(x) =
∥x − o1∥2 − r2

1 and qj(Tjx) = ∥Tjx − wj∥2 − ρ2
j for j = 1, 2, 3, 4. In what follows the

subgradients ξ1k and ηjk of respectively c1(yk) and qj(Tjyk) can be calculated respectively at
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the points yk and Tjyk by ξ1k(yk) = 2(yk −o1) and ηjk(Tjyk) = 2(Tjyk −wj). Thus, according
to (3.2) and (3.4), the balls C̃1k and Q̃jk (j = 1, 2, 3, 4), respectively of the sets C1 and Qj
can be easily determined at a point yk and Tjyk , respectively and the metric projections onto
the balls C̃1k and Q̃jk (j = 1, 2, 3, 4), can be easily calculated. Now, we take the radii r1 = 4,
ρ1 = 8, ρ2 = 15, ρ3 = 22, ρ4 = 18, the matrices

T1 =


−3.0 0.9 −1.0
−2.0 −3.0 −4.0
−1.0 3.0 −2.0
−2.0 −3.0 −1.0
4.0 0.0 −1.0
−4.0 4.0 −2.0

 , T2 =



4.0 4.0 3.0
1.0 2.0 −2.0
4.0 3.0 −0.0
−0.6 0.7 3.0
4.0 2.0 1.0
−4.0 −1.0 4.0
1.1 −2.0 −2.0
3.0 −1.8 3.2
−2.6 0.8 1.7


,

T3 =



−2.5 2.4 0.0
−0.2 2.5 0.2
−1.0 −1.1 −4.1
0.9 −0.7 4.0
3.0 4.5 3.8
−3.9 0.7 −0.6
3.2 3.5 2.8
3.4 −2.2 −3.5
−1.4 1.2 1.2
−0.7 0.8 −2.3
0.7 4.6 −0.5
2.0 −4.1 3.4



, T4 =



−3.0 1.3 1.5
−1.9 4.8 −3.9
−0.1 0.5 −4.6
−1.6 4.3 1.1
2.9 2.2 0.6
4.8 −0.1 4.6
−3.4 1.3 2.4
−2.6 3.8 1.6
2.0 −3.0 0.2
−1.2 −1.0 −2.4
4.7 4.9 4.6
4.7 −0.9 0.4
1.4 1.5 −4.7
3.6 4.0 1.9
−0.9 4.9 0.2



,

and the centers

o1 = (0.4, 0.6, 0.6)T , w1 = (0.1,−0.5, 0.4,−0.5,−0.1,−0.2)T ,
w2 = (0.1, 1.0, 0.5, 1.0,−0.5, 0.1,−0.9, 0.5, 0.2)T ,
w3 = (0.7, 1.0, 0.9,−0.2,−1.0, 0.1,−0.6,−0.6,−0.3,−0.9, 0.5, 0.5)T ,
w4 = (0.1,−0.3, 0.7, 0.1, 0.9, 0.8,−0.3, 0.1,−0.3, 0.26, 0.6, 0.5,−0.7, 0.6,−0.9)T .

In Example 5.2, we examine the convergence of the sequence {xk} generated by Algorithm
1 compared to the iterative methods given by Algorithm (1.16) and Algorithm (1.17). For
this purpose, we consider the values of the parameters appeared in the methods as follows.
We take β = 0.3, ϵk = 1

(k+1)3 , ρk = k
2k+1 , υk = 1

10k , αk
1 = 1, ϱi = 0.95, σj = 0.5, δj = j

10 ,
for j = 1, 2, ... 4, u = (0.5, 0.5, 0.1)T , x0 = (−1, 3,−2)T , x1 = (4,−2,−3)T . Moreover, in
Algorithms (1.16) and (1.17), we take τk = 0.0005 and f (x) = 0.975x in Algorithm (1.17).
We use Ek = ∥xk+1 − xk∥2 < ϵ for small enough ϵ > 0 as a stopping criteria. In Table 2 and
Figure 2, we report the experimental results of the compared methods for different values of
ϵ.
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Table 2. Numerical results of compared methods for different values of ϵ.

Algorithm 1 Algorithm (1.16) Algorithm (1.17)
Iter. (k) 31 31 32

ϵ = 10−4 CPU(s) 0.022829 72.381332 142.056268
Iter. (k) 57 122 122

ϵ = 10−6 CPU(s) 0.023292 44.119178 103.183311
Iter. (k) 83 253 252

ϵ = 10−8 CPU(s) 0.024672 41.280574 80.067036
Iter. (k) 109 387 410

ϵ = 10−10 CPU(s) 0.022095 38.690317 85.302461
Iter. (k) 259 521 4072

ϵ = 10−12 CPU(s) 0.024679 43.836248 104.222961
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Fig. 2. Iter. (k) vs Error, experimental results of compared methods for different values of ϵ.

It is readily apparent from Table 2 and Figure 2 that Algorithm 1 exhibits superior perfor-
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mance compared to the other algorithms, as evidenced by its lower number of iterations and
shorter runtime in seconds.
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