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The available literature shows that weakly contractive operators have Accepted 18 Dec 2024

been thoroughly researched in relation to metric spaces and associated Keywords:

fixed point theorems. These efforts, which broaden the concept of sym- Fixed point;

metric and asymmetric spaces, however, have not yet fully grasped the Metric-like spaces;

context of metric-like spaces. Considering this gap, this manuscripts Weakly contractive
introduces the notion of generalized weakly quasi contractive operators MSC

in metric-like space and investigates the existence and uniqueness of 47H10; 54H25
these operators’ fixed points. Non-trivial comparative examples are con-

structed to support the assertions forming the main ideas herein. Some

corollaries indicating that the idea of this paper encompasses a few

related ones in the literature are highlighted and addressed.

1. Introduction

Throughout this paper, metric space, metric-like space, complete metric-like space, partial
metric space, contractive operator and fixed point, will hereon be written as MS, MLS, CMLS,
PMS, CP and FP, respectively.

The contraction mapping concept, commonly referred to as the Banach FP theorem, is a
crucial technique in the study of MSs. It provides powerful tools and techniques for examining
the existence and uniqueness of FPs. Several researchers have developed generalisations of the
contraction mapping in an effort to investigate more FP outcomes (for example, see [19, 23]
and the references therein). Bakhtin [5] established the concept of a contraction mapping
principle in quasi MSs in 1989. The latter idea was expanded by Czerwik [?] to b-MSs. The
concept of cone MSs was first introduced by Huang and Zhang, [13], as an improvement of
MSs and the accompanying FP results. In a related advance, Mustafa and Sims [20] devised
a fresh method for generalized MSs. The quasi MS, as defined by Wilson [25], is one of the
early generalizations. The inquiry into the denotational semantics of data flow networks was
conducted by Matthews [18], who developed the concept of PMS in a similar manner. It is
established in [18] that self-distance in the PMS is not always zero. By relaxing the PMS
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axioms of non-negativity and small self-distances, Amini-Harandi [3] proposed the idea of
an MLS as a refinement of PMS. In a different path, Alber et al. [1] proposed the concept
of weak contraction mappings in the context of Hilbert space, by defining extra algebraic
structure on the space. After then, Rhoades [22] proved that weak contraction mappings have
a unique FP in MS. From then, many authors explored different generalization of the weak
contraction mapping in the context of MSs. In particular, Chen and Zhu [7] generalized the
weak contraction mapping by replacing the Banach contraction with Chatterjea [6] contractive
mapping. After that, Choudhury et al. [10] extended the weak contraction by using altering
distance function and established that the class of weakly C-contractive mappings have a
unique FP in complete MS. In a similar approach, Cho [9] generalized Choudhury et al. [10]
weak contraction mapping by adding a lower semi-continuous function and developed some
FP results for weakly contractive mappings in MS. For other related results in the context of
weak contraction mapping, see Inuwa et al [14], Kim and Han [17] and the reference therein.

In the setting of an MLS, little or no research on weakly quasi CPs has been done, as can
be seen from the review of the literature that have already been published. Inspired by the
notion in [9, 21], we therefore offer a novel idea of generalized weakly quasi CP in an MLS and
explore the existence and uniqueness of FPs of such operators. Some well-known results in the
literature are generalized by the idea put out in this manuscript. For the purpose of comparing
our suggested notion with other equivalent findings, substantial examples are provided. A few
corollaries that connect our ideas to other well-known concepts in the literature are presented
and analyzed.

The following is how the paper is set up: Section 1 provides the reviews of the rele-
vant literature. Section 2 summarizes the foundational concepts needed for the rest of the
paper. Section 3 presents the main results of the paper.

2. Preliminaries

In this section, we record specific basic concepts that are needed in the sequel. First, some
definitions and basic results in PMSs are recalled. For more details, the reader can consult [9].
Let © be a non-null set. A function p: © x © — R is called a partial metric on © if, for
all 4, w, z € ©, the following are satisfied:
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The pair (©, p) is called a PMS. Note that if p(u,w) = 0, then ;1 = w. An example of a
partial metric defined on R, is p(u, w) = max{u, w}, u,w > 0. For more examples of partial
metrics, see [9]. Let {i,},en be a sequence in ©. Then,

(i) {w}ien is convergent to p if lim p(u, 1) = p(u, p);
1— 00
(ii) {m }ien is called a Cauchy sequence if lim @(u,, 1)) exists and is finite;
1,J—00

(iii) if each Cauchy sequence in © converges to a point u € ©, then © is complete.
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Definition 2.1. [3] A mapping 0 : © x © — R, is referred to as a metric-like on © if for
any i, w,z € ©, the following hold:

(01) o(w)= 0= p=w,
(02) opw) = o(w, p);

(03) o1, 2) < o{1,w) + o(w, 2).

The pair (©, ) is called an MLS.

Definition 2.2. [3] A sequence {{,},en in an MLS (©, o) converges to a point 1 € © if
o, p)= lim o (pu, ).

Definition 2.3. [3] A sequence {y,},en in an MLS (0, o) is called o-Cauchy sequence if the

lim o, ;) exists and is finite. The MLS (©, o) is called complete if there is some p € ©

1,J—>00

such that

lim o(p, p) = (b ).

lim o
1—00 1,J]—00

Remark 2.4. [3] Every PMS is an MLS, but the converse is not always true. An example
given here recognizes this observation.

Example 2.5. [3] Let © = {0,1},and let

( ) 2, fu=w=0;
o(p,w)=
H 1, otherwise.

Then (©,0) is an MLS, but since ¢(0,0) & (0, 1), then (©, ) is not a PMS.

Definition 2.6. [11] Let (O, d) be a MS. A self-mapping ( : © — O is referred to as a

quasi-contraction if there exists 5 € [0, 3) such that for all p,w € ©,

d(Cp, (w) < maxn{d(p, w), d(p, (), d(w, Cw), d(p, (w), d(w, Cu)}-

Definition 2.7. [22] Let (O, d) be a MS. A mapping ¢ : © — © is referred to as weakly
contractive, if for all u,w € ©,

d(¢p, Cw) < d(p,w) — ad(p, w)),

where @ : Ry — R, is continuous and non-decreasing function such that «(0) = 0 and

lim a(t) = +o0.
t—+4oo

Definition 2.8. A function ¢ : © — [0, 00), where © is a MS, is called lower semi-continuous
if, for all € © and {u, },en C © with lim p, = pu, we have
1—00

C(p) < liminf p,.
11— 00

Let ¥V, = {¢, : Ry — R, is continuous and ¥,(t) = 0 <
¢, ={¢,: Ry — R|¢, is lower semi-continuous and ¢,(t) =0
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Raj et al. [21] established the following result in the context of MS.

Definition 2.9. [21]. Let © be a metric, ( : © — © a mapping, and ¥ : © — R, be a
lower semi-continuous function. Then, ( is called a generalized weakly contractive mapping if
it satisfies the following inequality:

¥ (d(Cp, Cw) +I(Cp) + I(Cw)
< (M(p,w, ) = ¢ (N (p, w, 9)) (2.1)
for all p,w € ©, where ¢, € V,, ¢, € d, and

d(p, w) +9(p) + Hw), d(p, Cu) + I (p) + I(Cp),

M(p, w, ) = max d(p, Cw) + I(w) + I(Cw), ] 1(5(;)w—’)_—i(§()u—~)_—i(§()w) ,

Ld(n, Cw) + 9(11) + D(Cw) + d(w, Cpr) + D(w) + D(C)]

d(p, w) + I (p) + 9(w),
d(w, (w) + I (w) +I(Cw),
) +9(w)

I(w

N(p, w,9) = max d(1w) + (c; 9o

1+ d(p,w) +9(u) +

The main result of [21] is as follows.

)

Theorem 2.10. [21]. Let © be a complete MS. If ( is a generalized weakly contractive
mapping, then there exists a unique z € © such that z = (z and ¥(z) = 0.

Lemma 2.11. [4]. Let (©,0) be an MLS and let {u,},en be a sequence in © such that if
{1 }1en is not a o-Cauchy sequence in (©, o). Then, there exists ™ > 0 and two subsequences
{100 Yeen and {0y }een of {p,}ien, where n, m are positive integers with n(¢) > m({) > k
such that

o (ko) tuey) = €F (2.2)
and
o(tye)-1. tugey) < € (2.3)
Moreover, suppose that
:Lm;o o (b put1) = 0. (2.4)

Then, the following hold:

(1) Ell[go o (e, tie)) = et

(2) Jim o0y, puges)) = €7
+.

(3) im o (hye—1), b)) = €

(4) Jim. o(tye—1) u(e+1)) = €
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3. Main Results
In this section, the concept of Ciri¢-Rhoades CP in the framework of an MLS is introduced
and the conditions for the existence of a FP of such operator are examined.

Definition 3.1. Let (©, o) be an MLS. A mapping ( : © — © is called a Cirié-Rhoades-type
CP, if it satisfies the following inequality:

V(o (Cu, Cp) + o (Cun Cw) + I(Cp) + I(Cw)) < P (K(p, w, ) — ¢u(L(p,w, D)), (3.1)
for all yu,w € ©, where ¥, e V,, ¢,,9 € Y, and

op, ) + o(p,w) +9(u) + 9(w), o (u( );ngf)wg( )),
B o(p,w "
K(p,w,9) =max{ o(w,w)+ o(w, (w) + I (w) + I(¢w), T+ ol 0) £ 000 1 9(@)’
3lo(u Cw) +9(p) + 9(Cw) + o(w, () + I(w) + I(¢p)]
(3.2)
and
o, p) + o w) +9(p) + I(w),
L(p, w, ) = max ow,w) +ow, w) + 9(w) £ I(Cw), (3.3)

o (1) + 0(p) + 9(w)
1+ o(p w) +9(p) +9(w)

The following is the main result of this paper.

Theorem 3.2. Let (©,0) be a 0-CMLS. If  is a Ciri¢-Rhoades-type CP, then there exists a
unique u € © such that u = (u and ¥(u) = 0.

Proof. Let 1o € © be arbitrary but fixed. We will construct a recursive sequence {y,},en in
the following manner:

o = and pu, = Cpy,—1, for all 1 € N.

It is detected that if pu, = p,—1 = (p,—1, for some n € N, then pu, is a FP of  and the
proof is finished. Hence, we assume that u, # p,—1 for all 1 € N.

By replacing 1 = p,—1 and y = p, in equation (3.2), we acquire

o(p—1, 1) + o (pi—1, ) +9(pi—1) + (1),
o (-1, Cpi—1) + 9(p-1) + I(Cp—1)
o (b i) + o (pn Cp) +9(w) + (Cp),
K1, ptr, 9) = max o(pi—1, ) +9(pi—1) + 9w
L o(uu—y, ) + 9(ui—1) + 0(p)’
2[0-(/11 1, C:u ) + 19(/11 1) + 19((:“!)
+o(pn Cru—1) + 9() + 9(Cpu-1)]

o(pu—1, pu—1) + o (-1, ) + 9(pti—1) + I(1),
o (-1, pu) + 9(pi—1) + (),
o, ) + o (i, prsr) + () + 9(ptir),
= max o (=1, ) + 9(pi—1) + (1) . (34)
14 U(Ml—lv /J//) + 19(#/—1) + 19(,“//) ,
%[U(ﬂ/—lv HH—I) + 19(.“:—1) + ﬂ(ﬂl-‘rl)
Fo () + ) + 9 ()]
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We notice that
1
E[U(Nl—lv ti) + Dp—1) + I(ptira) + o (g, ) + () + ()]

< G100t ) + 0t 1) +9(02) + Do) + 0 ) +90) + 9G]
< max{o (-1, ) + I(pi—1) + (), o (s, i) + o (s ps) + () + 9(psa) }-

Hence, (3.4) becomes

Pty pu—1) + (=1, ) + 9(pi—1) + I(), } _

_ a(
K1, p, 9) = max{ ot )+ 0 i pess)  0() £ D (pnet)

Similarly, (3.5) reduces to

U(M,—l, Nl—l) + U(Mr—lv u,) + 19(”!—1) + ﬁ(M:)v
o ) + o (o, Cu) + 9(p) +I(Cp),
o (=1, ) + I pi—1) + 9(s)
1+ o(p—1, ) + 9 (pi—1) + ()

L1, p, ¥) = max

U(Mr—lv Nl—l) + U(P’/—lv MI) + 19(,“!—1) + 19(/%),
o, ) + o (i, per) + () +9(pir1),
O'(M/—lv /J/I) + 79(”1—1) + '19(/1/)
1+ o(p—1, ) + 9(pt—1) + ()

= max

Consequently, (3.1) gives

V(o (pn pir) + o (pn pirr) + () + 9(pis1))
= (o (Cpu—1, Cpi—1) + o(Cpti—1, Cpu) + I(Cpu—1) + I(Cpui))
< %(’C(M,—L Mo "9)) - (ZSL(‘C(,UJI—lr 2m 19)) (35)

o (-1, pi—1) + o (-1, ) + 9(pi-1) + ()
< o ) + o purr) + () + 9(piga),

for some positive integer 1, then it follows from (3.5) that

Yo (o (i) + o (s pigr) + () +I(pir1))
S 1/&(57(#“ /Ll) + O—(;u’lr ,LLI+1) + 19(:“") + 19(/“‘I+1))
= ¢u(o (s ) + o (p puga) + () + 9(is1)),

which shows that

G (i, ) + (s prigr) +9(s) +9(pi11)) = 0.

Thus,

U(Mu /’[’I) + O'(l,t,, MH»I) + 19(”1) + 19([”’/+1) = Ov
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from which we notice that

= 1, o) =0 and  I(p,) =I(p4+1) =0

which is logically impossible. Therefore,

o (ki pr) + o (pn pira) + () + 9(tti41)
< o(pi—1, 1) + o (-1, p) +I(p—1) + 9 () (3.6)
foralln=1,2,3, ...

Hence,

K1, i, 9) = o (pi—1, pu—1) + o (pti—1, p,) + (1) + 9(p)

and

L1, p, 9) = (i1, pu—1) + (-1, ) +I(pt—1) + ().
From (3.5), we have

Voo () + o (i, tigr) +9() + (1))
< (o(pi—1, 1) + o (-1, ) +I(p—1) +I())
= ¢u(o(pi—1, pri—1) + o (-1, 1) + 9(pi—1) + (1)) (3.7)

It follows from (3.6) that the sequence {o(p,, ;) + o (s, 1) + 9 () +¥(pi41) } is bounded
below and non-increasing. Therefore, o (s, 1) + o (e pr1) +9(p) +9(i41) — 0 as 1 — oo,
for some p > 0.

Assume that ¢ > 0. Using the continuity of v,, the lower semi-continuity of ¢,, and as
1 — 00 in (3.7), lead to

V(o) < (o) — Iiln_1>(i>2f b (o (-1, 1) + o (i1, ) + 9(pi—1) + (1))

<o) —¢u(e) < (o),
which is logically impossible. Thus, |_i>m (o (s 1) + o, pig1) + (1) + 9(pi11)) = 0, from

which we have

lim o(p,, ;) = lim o(p,, p41) =0 (3.8)
1— 00 1—00
and
lim () = lim 9(p11) = 0. (3.9)

Now, we prove that the sequence {u,},cn is Cauchy. Assume that {1, },cn is not Cauchy. Then
by Lemma 2.11, there exist et > 0 and subsequences {11,s)}een and {14,(p) }een of {1}ien
such that (2.2) and (2.3) hold.

From (3.2), we have

oty taey) + o (itaeys 1)) + Opgey) + 9 pye)),
a(tugey, Ctgey) + 9(pey) + I(Chiey)
a(tugey, tugey) + o (iyey, Criygey) + (10 ) + I(Chyey),
08/!:(@), (o)) + 19{ () + 19(!@(@))
L+ oy, tyeey) + Ipugey) + i)’
3oy, Cogey) + Ipge ) I(Chye))
o (tye), Ctugey) + 19(#,(@)) + I (Cpuey)]

K (ko) 1500, ) = max
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o (tugey, tgey) + o (e, tiycey) + (ecey) + 9(ye)),
a(tugeys tier1y) + 9(ge)) + I(tigesr)),
a(tyey ) + o () yer)) + P(yee)) + 9y e41)),
= max a(teys tyeey) + I (aey) + 9(e)
11 + U( 1oy 1yey) + o)) + 9py00))
slo(rgey, yger1y) + 9(ugey) + 9y er))
+U(Mj(e) 1 e+1) (/tj(z)) I(pge+1))]}
(3.10)
As ¢ — oo in (3.10), applying Lemma 2.11 and using equations (3.8) and (3.9) yield
Jim Koy ey, 9) = € (3.11)
In similar steps, it follows from (3.3) that
a(tugey, tgey) + o (tgey, tycey) + (eiey) + 9y e)),
a (o), ty0e)) + o (e Cyey)
L0y, 1y(e), ¥) = max +0(y0)) + I(Caye)),
a (), yey) + (aey) + 9 ey)
L+ o(pey 1)) + 9gey) + (1))
a(tgey tgey) + o (), o)) + (e + 9y e)),
(o) 1)) + o (o) 1yer1))
= max +19(MJS)) +19(u18z+1))
a(tugeys ty0e)) + Iptey) + (e
L+ o (pugeys tye)) + 9(tey) + 91ye))
Thus,
Jim L(pey, 0y, 9) = € (3.12)
From (3.1), we have
Yoo (per1) uges1)) + o (fagesy, M;(z+1)) + 0(pet1)) + 9y e41)))
< YKoy, 1), 9)) — D(Ltageys g0y, 9))- (3.13)

Letting £ — oo in (3.13), and applying Lemma 2.11, the continuity of ,, the lower semi-
continuity of ¢,, and by using equations (3.8) (3.9), (3.11) and (3.12), we acquire 1, (e*) <
¥, (e7) — ¢.(e"), a contradiction because ¢,(e") > 0. Therefore, {1, },cn is a Cauchy se-
quence. The completeness of © implies that there exists u € © such that I|m i, = u. Given

that ¢, is lower semi-continuous, ¥(u) < liminf J(x,) < lim J(w,) =0, from wh|ch it follows
1—00 1—00
that ¢(u) =0

Now, from (3.2), we acquire

o ) + o, u) + () +9(u),
o, Cr) +9( ),
o(u,u) +o(u, Cu) + I(u) + I(Cu),

o(p, u) 19
1+U(MI )
Q[U(I“Ll CU)
+o(u, () +

K (g, u, ¥) = max
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o (b pir) + o (pur u) + 9 () + 9(u),
U(M:, Ul+1) + 19(/“1) + 19(#,4.1),
o(u, u) + o(u, Cu) + I(u) + I(Cu),

= max o, u) + () + 9(u)
1+ o (i, u) +9(p) + O(u)’
3lo(p, Cu) +9() + 9(Cu)

+o(u, 1) +9(u) + 9(pi41)]

from which we have

lim KC(u,, u,9) = max {a(u, u),o(u, u) +o(u, Cu) +I(Cu), %[O’(U, Cu) + ﬁ((u)]}

=o(u,u) + o(u, Cu) + I(Cu). (3.14)

In like manner, we have

) o)1 0 s 9
. . olu,u)+o(u,Cu)+v(u)+ u),
lim L(, u,9) = lim max o, 1) + D) + 9(u)

1+ o(, u) + () + 0(u)

= max{o(u, u),o(u, u) + o(u, Cu) + ¥ (Cu)}
=o(u, u) + o(u, Cu) + I(Cu). (3.15)

Therefore, from (3.1), we have

Voo (s, 1) + o (s, Cu) + 9(pis) + 9(Cu))
= Y (o(Crur, ) + o (S, Cu) + F(Cpi) + V(Cw))
< (K, v, ) = ¢ (L, u, 9)). (3.16)
Letting 1+ — oo in (3.16) and utilizing the continuity of 1),, the lower continuity of ¢, and
using equations (3.14) and (3.13), we have
Pu(o(u, u) + o(u, Cu) + 9(Cu))
< u(o(u, u) + o(u, Cu) +9(Cu)) = ¢u(o(u, u) + o(u, Cu) + I(Cu)). (3.17)
The expression (3.17) implies that ¢,(o(u, u) + o(u, Cu) + 9(Cu)) = 0 and hence, o(u, u) +
o(u, Cu) +9({u) = 0. Therefore, o(u, u) =0, u = Cu and I(Cu) = 0.
To show that the FP of ( is unique, suppose that p is another FP of { with 4 = u and
w = p. Then, p = ¢p and ¥(p) = 0. Now, using (3.1), we have
(o (u, u) + o(u, p)) +9(u) + 9(p))
= ¢.(o(Cu, Cu) + o(Cu, ¢p) + I(Cu) + I(Cp))
< Pu(K(u, p,9)) = ou(L(u, p, D))
= pu(o(u, u) +o(u, p)) = ¢u(o(u, u) + o(u, p)). (3.18)
From, (3.18), it is clear that 1, (o (u, p)) < ¥, (u, p)) — ¢.(o(u, p)). From which ¢,(co(u, p)) <

0. But 0 < ¢,(0(u, p)) <0. That is, ¢,(c(u, p)) = 0. Hence, by the defining property of ¢,,
o(u, p) = 0. Therefore, condition (o1) of metric-like reveals that u = p. ]
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We construct the following example to support the hypotheses of Theorem 3.2.

Example 3.3. Let © = R, and o(, w) = p+w for all u, w € ©. Then obviously o is a metric-
like on © and (©, o) is complete. Also, o is not a metric on ©, since o(1,1) = 2 # 0. Define
the self-mapping ¢ by (u = 4 for all u € ©. To see that ( is a Cirié—Rhoades—type CP, let
Y. (t) =t, ¢.(t) = 5 and I(t) = t?. Let p,w € Ry, then

Y (a(Cp, ) + (G, Cw) +I(Cp) + I(Cw))

2 2
A d
_2+2+2+2+<2)+(2)

2
woop? o w
2+4+4
w;ﬂw
2 2 2

+

271 + 9w + 9y +9w>

54 + 18w + 1842 4 18w? — 271 — 9w — 9 —Qw)

5l 8le Bl vl vl

/—\/—\/_\

1
54 + 18w + 18% + 18w ) — 18(27u+9w+9u2 +9w2>
1
—3M+w+u2+w22<3u+w+u2+w2)

1
—u+u+u+w+u2+w2—2<u+u+,u+w+u2+w2>

=dmm+UWM%H%D+W@—;(dMM+UWM%H%O+MW>

= Y (max{K(u, w,9)}) = ¢, (max{L(p, w, 0)})-

Hence, all the hypotheses of Theorem 3.2 are satisfied. We can see therefore that the map-
ping ¢ has a unique fixed in ©. However, since o is not a metric on ©, then the corresponding
results in [21, 9] are not applicable/useful in this example to find a FP of (.

Take

o(p, 1) + o (p, w) + Hp) + I(w), o(p, ) + I(p) + I(Cp),
C(p, w,¥) = max o(w,w)o(w, (w) + Hw) + I(¢w), ,
2o (i Cw) +9(k) +9(Cw) + o(w, Cu) + I(w) + I(Cp)]

for all u,w € ©, where ¥, € ¥, and ¢,,9 € d,. In what follows, we present some
consequences of Theorem 3.2.

Corollary 3.4. [8] Let (©,0) be a 0-CMLS. Suppose that the self-mapping ¢ satisfies the
following inequality:

(o (Cun ) + o (Cp, Cw) +9(Cp) + D(Cw))
< (C(p w, D)) = 6u(C(p, w, D)), (3.19)
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for all u,w € ©, where ¢, € V, and ¢, € ®,. Then, there exists a unique FP u € © of
and ¥(u) = 0.
Corollary 3.5. Let (©,0) be a 0-CMLS. Suppose that the self-mapping ( satisfies the fol-
lowing inequality:
Yu(o () + o (G, Cw) +I(¢u) + I(Cw))
< U (K(p, w, D)) — ¢ (K(p, w, D)), (3:20)
for all u,w € ©, where ¢, € V, and ¢, € ®,. Then, there exists a unique FP u € © of
and 9(u) = 0.
By taking ¢,(t) =0, for all t € R™ in Theorem 3.2, we have the next result.

Corollary 3.6. Let (©,0) be a 0-CMLS. Suppose that the self~mapping ¢ satisfies the fol-
lowing inequality:

V(o (Cp Cpr) + o (Cp Cw) + F(Cp) + I (Cw)) < o (K(p, w, D)), (3.21)
for all p,w € ©, wherep, € W,. Then, there exists a unique FP of {, say u € © and ¥(u) = 0.
Corollary 3.7. Let (©,0) be a 0-CMLS. Suppose that the self-mapping ( satisfies the fol-
lowing inequality:

Pu(o(Cp ) + o (G Cw) +9(Cp) +I(Cw))
<Gl 1) + o lpn )+ 9(2) + 9()) — D1l 1) + 0, 0) + (1) + 0()),
for all p,w € ©, where ¢, € V, and ¢,,9 € ®,. Then, there exists a unique FP of {, say
u€© and¥(u)=0.
Corollary 3.8. Let (©,0) be a 0-CMLS. Suppose that the self-mapping ( satisfies the fol-
lowing inequality:
$u(o(p ) + o(p, Fw) + 9(C ) + I w))
< (K, w, 9)) = ¢ (L1, w, 1)),

for all p,w € ©, where v, € V,, ¢,,9 € ®, and j is a positive integer. Then, there exists a
unique FP of ¢, say u € © and ¥(u) = 0.

Proof. Let S = (/. Then by Theorem 3.2, S has a unique FP, say u € ©. Then {Ju= Su=u
and 9(u) = 9(Su) = ¥({u) = 0. Since *lu = Cu, SCu= ¢(Cu) = ¢Tu = Cu and so Cu
is a FP of S. By the uniqueness of a FP of S, (u = u. |

4. Conclusion

In this manuscript, the idea of Ciri¢-Rhoades CPs in an MLS is introduced, and conditions
for the existence of fixed points for such mappings are investigated. Non-trivial comparative
examples have been presented to illustrate the proposed ideas and to show that they are
indeed generalizations of a few concepts in the literature. By extending the concepts from
metric domains to the framework of dislocated metrics, the result produced in this paper
contributes to the development of fixed point theory and serves as a foundation for further
study.

The scope of the main ideas in this work is constrained by the fact that the problem
formulation, analysis, and conclusion described here are all abstract.
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