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1. Introduction

In 2011, Aoyama and Kohsaka [2] introduced the class of α-nonexpansive mappings in
Banach spaces as follows: Let E be a Banach space and let C be a nonempty subset of
E. A mapping φ : C → E is said to be α-nonexpansive for some real number 0 ≤ α < 1
if

∥φµ− φν∥ ≤ α||φµ− ν||+ α||φν − µ||+ (1− 2α)||µ− ν||,

for all µ, ν ∈ C. Clearly, 0-nonexpansive maps are exactly nonexpansive maps. This
mapping was generalized and extanded by many authors in several directions; see for
instance [3, 4] and references therein.

One of the most interesting iteration processes is the viscosity approximation method
introduced by Moudafi [5]. In 2004, Xu [6] studied such method for a nonexpansive map-
ping in a Hilbert space and introduced an iterative scheme for finding the set of fixed
points of a nonexpansive mapping in a Hilbert space. Over the past few decades, the
convergence theorem was extended and improved in many directions (see [7], [8]) due to
its applications are desirable and can be used in real-world applications. So, many au-
thors have been trying to construct new iterations to prove strong convergence theorems
for nonexpansive semigroups; see for instance [9–11] and references therein. Especially,
in 2008, Song and Xu [12] introduced the following implicit and explicit viscosity iter-
ative schemes Very recently, Song et al. [13] proved a strong convergence theorem of
the Halpern iteration for an α-nonexpansive semigroup in Hilbert spaces under suitable
conditions as the following schemes. Moreover, they also proved some strong convergence
theorems of Halperns iteration defined by a such iterative method for a family {φn} of
α-nonexpansive mappings.

In 2021, Suanoom and Khuangsatung [16] , we introduced a new class of nonexpansive
type of mapping namely, AK-generalized nonexpansive mapping, which is more general
than an α-nonexpansive mapping in Hilbert spaces as follow.

Definition 1.1. Let C be a nonempty closed convex subset of a Hilbert space H. A
mapping φ : C → C is said to satisfy condition (AK) (or AK-generalized nonexpansive)
for some real numbers α1, α2, α3, α4 with max{α1, α2, α3, α4} < 1 if

||φµ− φν|| ≤ α1||φµ− µ||+ α2||φν − ν||+ α3||φµ− ν||+ α4||φν − µ||
+ (1− 4max{α1, α2, α3, α4})||µ− ν||, (1.1)

for all µ, ν ∈ C.

Notice that the class of AK-generalized nonexpansive mappings covers several well-
known mappings. For example, every α-nonexpansive mappings is an AK-generalized
nonexpansive mapping and also 0-nonexpansive maps are exactly nonexpansive maps.
Hence we have the following diagram.

The following example shows that the reverse implication does not hold.

Example 1.2. [14] Let X = {(0, 0), (2, 0)(0, 4), (4, 0), (4, 5), (5, 4)} be a subset of R2 with
dictionary order. Define a inner product (X, ⟨· , · ⟩ = ||· , · ||). by ||µ1, µ2|| = (|µ1|+ |µ1|)2.
Then (X, ⟨· , · ⟩) is a Hilbert space. Define a mapping φ : X → X by

φ(0, 0) = (0, 0), φ(2, 0) = (0, 0), φ(0, 4) = (0, 0),

φ(4, 0) = (2, 0), φ(4, 5) = (4, 0), φ(5, 4) = (0, 4).
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Then, we have φ is not an α-nonexpansive mapping but, φ is an AK-generalized nonex-
pansive.

Example 1.3. [16] Let X = [0, 2] be a nonempty closed convex subset of a Hilbert space
(H = R, ⟨· , · ⟩ = |· |). Suppose that φ : [0, 2] → [0, 2] be given by φµ = sinµ + cosµ, for
all µ ∈ [0, 2]. Then φ is an AK-generalized nonexpansive.

In this paper, we introduce a new class of nonexpansive type of mapping namely,
CAK-generalized nonexpansive mapping, which is more general than an AK-generalized
nonexpansive mapping and α-nonexpansive mapping. Then, we obtain the proposition of
the approximation method for an CAK-generalized nonexpansive in Hilbert spaces.

2. Preliminaries

Throughout this article, let H be a real Hilbert space with inner product ⟨·, ·⟩ and
norm ∥ · ∥. Let C be a nonempty closed convex subset of H. Let φ : C → C be a
nonlinear mapping. A point µ ∈ C is called a fixed point of φ if φµ = µ. The set of fixed
points of φ is the set F (φ) := {µ ∈ C : φµ = µ}. The mapping φ : C → C is said to be
nonexpansive if ∥φµ− φν∥ ≤ ||µ− ν|| for any µ, ν ∈ C. In 1965, Browder [1] shown that
if a nonexpansive mapping φ : H → H of a Hilbert space H into itself is asymptotically
regular and has at least one fixed point then, for any µ ∈ H, a weak limit of a weakly
convergent subsequence of the sequence of successive approximations φnµ is a fixed point
of φ. And, let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥. Let C
be a nonempty closed convex subset of H. Recall that the (nearest point) projection PC

from H onto C assigns to each µ ∈ H, there exists the unique point PCx ∈ C satisfying
the property

∥µ− PCx∥ = min
ν∈C

∥µ− ν∥.

For any µ ∈ H and ν ∈ C. Then, PCµ = ν if and only if there holds the inequality

⟨µ− ν, ν − ω⟩ ≥ 0,∀ω ∈ C.

In a real Hilbert space H, it is well known that H satisfies Opial’s condition, i.e., for any
sequence {µn} with µn ⇀ µ, the inequality

lim
n→∞

inf ∥µn − µ∥ < lim
n→∞

inf ∥µn − ν∥ ,

holds for every ν ∈ H with ν ̸= µ.

Lemma 2.1. [15] Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− αn)sn + δn,∀n ∈ N,
where αn is a sequence in (0, 1) and {δn} is a sequence such that

(1)

∞∑
n=1

αn = ∞, (2) lim sup
n→∞

δn
αn

≤ 0 or

∞∑
n=1

|δn| < ∞.

Then, lim
n→∞

sn = 0.

Lemma 2.2. Let H be a real Hilbert space. Then

∥µ+ ν∥2 ≤ ∥µ∥2 + 2⟨ν, µ+ ν⟩,
for all µ, ν ∈ H.
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Now, we introduce the main definitions follow:

Definition 2.3. Let C be a nonempty closed convex subset of a Hilbert space H. A
mapping φ, χ : C → C is said to satisfy condition (CAK) (or common AK-generalized
nonexpansive) for some real numbers α1, α2, α3, α4 with max{α1, α2, α3, α4} < 1 if

||φµ− χν|| ≤ α1||φµ− µ||+ α2||χν − ν||+ α3||φµ− ν||+ α4||χν − µ||
+ (1− 4max{α1, α2, α3, α4})||µ− ν||, (2.1)

for all µ, ν ∈ C.

Now, we introduce the definitions follow on the results of Song et al. [13].
Let E be a Banach space. An (one-parameter) CAK-generalized nonexpansive semigroup
is a family φ = {φ(t) : t > 0} of mappings D(φ) =

∩
t>0 D(φ(t)) and range R(φ) such

that

(1): φ(0)µ = µ for all µ ∈ D(φ);
(2): φ(t+ s)x = φ(t)φ(s)x for all t, s > 0 and x ∈ D(φ);
(3): for each t > 0, T (t) is an CAK-generalized nonexpansive mapping.

Example 2.4. Let X = [0, 2] be a nonempty closed convex subset of a Hilbert space
(H = R, ⟨· , · ⟩ = |· |). Suppose that φ, χ : [0, 2] → [0, 2] be given by φµ = 3−µ, χµ = 5−µ,
for all µ ∈ [0, 2]. Now, for any t, s > 0 and µ ∈ D(φ);
(1) φ(0)x = 30µ = µ, χ(0)x = 50µ = µ;
(2) φ(t+ s)x = 3−(t+s)µ = 3−(t)3−(s)µ = φ(t)φ(s)µ
φ(t+ s)x = 5−(t+s)µ = 5−(t)5−(s)µ = φ(t)φ(s)µ ;
(3) for each t > 0, φ(t) is an CAK-generalized nonexpansive mapping, that is,

∥φµ− φν∥ = |3−x − 5−y|

=
1

2
|2(3−x − 5−y)|

=
1

2
|(3−x − 5−y) + (3−x − 5−y) + x− x+ y − y|

=
1

2
|3−x − x− 5−y + y + 3−x − y − 5−y + x|

=
1

2
|(3−x − x)− (5−y − y) + (3−x − y)− (5−y − x)|

≤ 1

2
|3−x − x|+ 1

2
|5−y − y|+ 1

2
|3−x − y|+ 1

2
|5−y − x|

≤ α1|3−x − x|+ α2|5−y − y|+ α3|3−x − y|
+ α4|5−y − x|+ (1− 4max{α1, α2, α3, α4})|x− y|

= α1||Tx− x||+ α2||Ty − y||+ α3||Tx− y||+ α4||Tx− y||
+ (1− 4max{α1, α2, α3, α4})||x− y||,

where α1 = α2 = α3 = α4 ≤ 1
2 .

Let φ = {φ(t) : t > 0} stants for one-parameter CAK-generalized nonexpansive semi-
group and F (φ) =

∩
t>0 F (φ(t)). We give the concept of the uniformly asymptotically

regular as the following definitions.
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3. Main results

In this section, we first study some properties of CAK-generalized nonexpansive map-
ping in Hilbert space.

Proposition 3.1. Let C be a nonempty closed convex subset of a Hilbert space H and
φ, χ : C → C be an CAK-generalized nonexpansive mapping with F (φ

∩
χ) ̸= ∅. Then

F (φ
∩
χ) is closed convex and ∥φµ− p∥ ≤ ∥µ− p∥ for all µ ∈ C and p ∈ F (φ

∩
χ).

Proof. Since φ, χ are an CAK-generalized nonexpansive mapping, for all µ ∈ C and
p ∈ F (φ

∩
χ)

||φµ− p|| = ||φµ− χp||
≤ α1||Tx− x||+ α2||χp− p||+ α3||φµ− p||+ α4||χp− x||
+ (1− 4max{α1, α2, α3, α4})||µ− p||
≤ α1(||φµ− p||+ ||p− µ||) + α3||φµ− p||+ α4||p− µ||
+ (1− 4max{α1, α2, α3, α4})||µ− p||, (3.1)

and so

||φµ− p|| ≤ 1− 2max{α1, α2, α3, α4}
1− α1 − α3

||µ− p|| < ||µ− p||. (3.2)

Likewise,

∥χµ− p∥ = ∥χµ− φp∥ ≤ ∥φp− χµ∥ < ||µ− p||. (3.3)

Let p, q ∈ F (φ
∩
χ), (0 ≤ λ ≤ 1) and set ω = λp + (1 − λ)q. Using the Parallelogram

Law, we get

||ω − p

2
− φω − p

2
||2 + 1

4
||ω − φω||2 =

1

2
||ω − p||2 + 1

2
||φω − p||2

≤ ||ω − p||2,

||ω − q

2
− φω − q

2
||2 + 1

4
||ω − φω||2 =

1

2
||ω − q||2 + 1

2
||φω − q||2

≤ ||ω − q||2.

By (3.2) imply that

||ω + φω

2
− p||2 = ||ω − p

2
+

φω − p

2
||2 ≤ ||ω − p||2 − 1

4
||ω − φω||2

= (1− λ)2||p− q||2 − 1

4
||ω − φω||2,

||ω + φω

2
− q||2 = ||ω − q

2
+

φω − q

2
||2 ≤ ||ω − q||2 − 1

4
||ω − φω||2

= λ2||p− q||2 − 1

4
||ω − φω||2.

Suppose that ω ̸= φω. Then, we have

||ω + φω

2
− p||2 < (1− λ)2||p− q||2, ||ω + φω

2
− q||2 < λ2||p− q||2.
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So, we obtain that

||p− q|| ≤ ||ω + φω

2
− p||+ ||ω + φω

2
− q|| < (1− λ)||p− q||+ λ||p− q|| = ||p− q||,

which is a contradiction and so ω = φω. Vice versa, ω = χω. Thus F (φ
∩

χ) is convex.
Now, we show F (φ

∩
χ) is closed. Suppose that {µn} ∈ F (φ

∩
χ) with limn→∞ µn = µ,

it follows from (3.2) that ||µn −φµ|| = ||µn −µ|| → 0 as n → ∞ and hence limn→∞ µn =
φµ = µ, and by (3.3) χµ = µ. Thus F (φ

∩
χ) is closed.

Proposition 3.2. Let C be a nonempty subset of a Hilbert space H and Φ : C → C be
an CAK-generalized nonexpansive mapping. Then, for all x, y ∈ C :

∥µ− χν∥ ≤ (1 + α1 + α3)

(1− α2 − α4)
∥µ− φµ∥

+
(1 + α2 + α3 − 4max{α1, α2, α3, α4})

(1− α2 − α4)
||x− y||

≤ (1 + α1 + α3)

(1− α2 − α4)
∥µ− φµ∥+ ∥µ− ν∥ (3.4)

and

∥ν − φµ∥ ≤ (1 + α2 + α4)

(1− α1 − α3)
∥ν − χν∥

+
(1 + α1 + α4 − 4max{α1, α2, α3, α4})

(1− α1 − α3)
||x− y||

≤ (1 + α2 + α4)

(1− α1 − α3)
∥ν − χν∥+ ∥µ− ν∥. (3.5)

Proof. In first case, we get

∥µ− χν∥ ≤ ∥µ− φµ∥+ ∥φµ− χν∥
≤ ∥µ− φµ∥+ α1∥φµ− µ∥+ α2∥χν − ν∥+ α3∥φµ− ν∥
+ α4∥χν − µ∥+ (1− 4max{α1, α2, α3, α4})∥µ− ν∥
≤ ∥µ− φµ∥+ α1∥φµ− µ∥+ α2∥χν − µ∥+ α2∥µ− ν∥+ α3∥φµ− µ∥
+ α3∥µ− ν∥+ α4∥χν − µ∥+ (1− 4max{α1, α2, α3, α4})∥µ− ν∥

This implies that

(1− α2 − α4)∥µ− χν∥ ≤ (1 + α1 + α3)∥µ− φµ∥+ α2∥ν − χν∥
+ (1 + α2 + α3 − 4max{α1, α2, α3, α4})∥x− y∥.
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From 2α2 + α3 + α4 < 4max{α1, α2, α3, α4}, we get

∥µ− χν∥ ≤ (1 + α1 + α3)

(1− α2 − α4)
∥µ− φµ∥

+
(1 + α2 + α3 − 4max{α1, α2, α3, α4})

(1− α2 − α4)
||x− y||

≤ (1 + α1 + α3)

(1− α2 − α4)
∥µ− φµ∥+ ∥µ− ν∥. (3.6)

Likewise,

∥ν − φµ∥ ≤ ∥ν − χν∥+ ∥χν − φµ∥
≤ ∥ν − χν∥+ α1∥φµ− µ∥+ α2∥χν − ν∥+ α3∥φµ− ν∥
+ α4∥χν − µ∥+ (1− 4max{α1, α2, α3, α4})∥µ− ν∥
≤ ∥ν − χν∥+ α1∥φµ− ν∥+ α1∥ν − µ∥+ α2∥χν − ν∥+ α3∥φµ− ν∥
+ α4∥χν − ν∥+ α4∥ν − µ∥+ (1− 4max{α1, α2, α3, α4})∥µ− ν∥

Since 2α2 + α3 + α4 < 4max{α1, α2, α3, α4}, we have

∥ν − φµ∥ ≤ (1 + α2 + α4)

(1− α1 − α3)
∥ν − χν∥

+
(1 + α1 + α4 − 4max{α1, α2, α3, α4})

(1− α1 − α3)
||x− y||

≤ (1 + α2 + α4)

(1− α1 − α3)
∥ν − χν∥+ ∥µ− ν∥. (3.7)

The complete proof.

Theorem 3.3. Let H be a nonempty closed convex subset of a Hilbert space H and
φ, χ : C → C be an CAK-generalized nonexpansive mapping. If a sequence {µn} in C
converges weakly to µ ∈ C and limn→∞ ||µn − φµn|| = 0 = limn→∞ ||µn − χµn||, then
µ = φµ = χµ.

Proof. Since {µn} is weakly convergent, we have {µn} is bounded. Since

∥φµn∥ ≤ ∥φµn − µn∥+ ∥µn∥, ∥χµn∥ ≤ ∥χµn − µn∥+ ∥µn∥

we get {φµn}, {χµn} are a bounded. This implies that

∥φµn − χµ∥ ≤ ∥φµn − µn∥+ ∥µn − χµ∥

≤ ∥φµn − µn∥+
(1 + α1 + α3)

(1− α2 − α4)
∥µn − φµn∥+ ∥µ− ν∥ ; (3.6). (3.8)

Thus,

lim sup
n→∞

∥φµn − χµ∥ ≤ lim sup
n→∞

∥µn − µ∥, (3.9)

lim sup
n→∞

∥χµn − χµ∥ ≤ lim sup
n→∞

∥µn − µ∥. (3.10)
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And so,

lim sup
n→∞

∥φµn − φµ∥ ≤ lim sup
n→∞

∥µn − µ∥, (3.11)

lim sup
n→∞

∥χµn − φµ∥ ≤ lim sup
n→∞

∥µn − µ∥. (3.12)

Thus, by the properties of a Hilbert space H, we have

∥µn − µ∥2 = ∥(µn − φµ) + (φµ− µ)∥2

= ∥µn − φµ∥2 + ∥φµ− µ∥2 + 2⟨µn − φµ,φµ− µ⟩
≤ (∥µn − φµn∥+ ∥φµn − φµ∥)2 + ∥φµ− µ∥2 + 2⟨µn − φµ,φµ− µ⟩.

Since {µn} weakly converges to x ∈ C, it follows that

lim sup
n→∞

∥µn − x∥2 ≤ lim sup
n→∞

∥φµn − φµ∥2 + ∥φµ− µ∥2 + 2 lim sup
n→∞

⟨µn − φµ,φµ− µ⟩

≤ lim sup
n→∞

∥φµn − φµ∥2 + ∥φµ− µ∥2 + 2⟨µ− φµ,φµ− µ⟩

≤ lim sup
n→∞

∥µn − µ∥2 − ∥φµ− µ∥2

respectively, and hence ∥φµ − µ∥2 ≤ 0. In the same way ∥χµ − µ∥2 ≤ 0. The complete
proof.
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