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1. Introduction

Fractional calculus broadens the familiar concepts of integration and differentiation to
arbitrary (real or complex) orders, going beyond integer-order derivatives and integrals.
This field has received a lot of attention in recent years, particularly for modeling various
phenomena in biology, physics, mathematical engineering, and other disciplines. Com-
pared to ordinary differential operators, which are local in nature, fractional differential
operators provide a more nuanced and accurate representation of many real-world pro-
cesses. Readers interested in the theory of fractional differential equations should consult
the works of Abbas et al. [1], Hilfer [21], Kilbas et al. [26], Miller and Ross [29], Oldham
[30], Pudlubny [31], Sabatier et al. [32], Tarasov [35], and their references. These mono-
graphs and studies provide a deeper understanding and advances in the field of fractional
calculus. The theory is a beautiful mixture of pure and applied analysis. Over the years,
the theory of fixed points has been revealed as a very powerful and important tool in the
study of nonlinear phenomena.

Integro-differential equations combine differential and integral equations and are widely
used to model physical phenomena that involve memory effects, hereditary processes,
or systems where the current state depends on the cumulative history of prior states
such as Electromagnetism, Population Dynamics, Fluid Mechanics, Heat Conduction with
Memory and Control Theory; see, for example [3–10, 16, 22, 23].

Impulsive conditions are used to model systems that experience sudden, abrupt changes
due to external forces or internal dynamics. These conditions are essential for describing
scenarios where the state of a system shifts instantaneously such as impact and collision
dynamics, gravitational slingshot, explosions, shock waves, control systems, electrical,
structural and aerospace engineering; see, for example [11, 27]. In particular, fixed-point
techniques have been applied in many areas of mathematics, sciences, and engineering.
Various fixed-point theorems have been utilized to establish sufficient conditions for the
existence and uniqueness of solutions for different types of fractional differential problems;
see, for example, [14, 17, 28, 33, 34, 36, 37].

The study of the existence and uniqueness of solutions to fractional differential equa-
tions has garnered considerable attention in recent research. Interested readers can find
more details in earlier works [15, 19, 26] and the references therein. However, due to
the often daunting task of finding exact solutions, particularly in nonlinear analysis and
optimization, approximate solutions are also considered. It is crucial to emphasize that
only stable approximations are deemed acceptable. Therefore, various stability analysis
techniques are employed. One widely addressed approach is the concept of HU-type sta-
bility, which is straightforward and has been extensively discussed in the literature. This
type of stability was initially proposed by Ulam and further developed by Hyers in the
subsequent year. Originally, this concept was applied to ordinary differential equations
and later extended to fractional differential equations (FDEs). For further reading, we
refer the readers to sources [24, 25].

In [12] M. S. Abdo et al. discussed the Ψ-Caputo fractional differential equation
fractional boundary value problem

cDp;Ψ℘(t) = F (t, ℘(t)), t ∈ [a, b],

℘
[k]
Ψ (a) = ℘k

a, k = 0, 1, ..., n− 2,

℘
[n−1]
Ψ (b) = ℘b, k = 0, 1, ..., n− 2,
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where cDp;Ψ-Ψ-Caputo derivative and F is continuous function.
In [20], D. B. Dhaigude et al. established the solution of nonlinear Ψ-Caputo fractional

differential equations involving boundary conditions

cDp;Ψ
t ℘(t) = F (t, ℘(t)), 0 < t ≤ T ,

G (℘(0), ℘(T )) = 0,

where cDp;Ψ
t -Ψ-Caputo derivative and F is continuous function.

R. Arul et al. [13] studied the Ψ-Caputo fractional integro-differential equations with
non instantaneous impulsive boundary conditions of the form

cDp;Ψ℘(t) = F (t, ℘(t),B℘(t)), t ∈ (si, ti+1], 0 < p < 1,

℘(t) = Hi(t, ℘(t)), t ∈ (ti, si], i = 1, ...,m,

a℘(0) + b℘(T ) = c,

where cDp;Ψ is the Ψ- Caputo fractional derivatives of order p,a, b, c are real constants
with a+ b ̸= 0 and 0 = s0 < t1 ≤ t2 < ... < tm ≤ sm ≤ sm+1 = T ,- pre-fixed,
F : [0,T ] × R × R −→ R and Hi : [ti, si] × R −→ R is continuous. Moreover, B℘(t) =∫ t

0
k(t, s)℘(s)ds and k ∈ C (D,R+) with domain D = {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ T }.

We examine the existence and uniqueness of solutions for boundary value problems
involving nonlinear ψ-Caputo FDEs.

CDα,ψ
a+ x(ι) = f (ι, x(ι), Bx(ι)) , ι ∈ J := [a, T ], (1.1)

x(ι+k ) = x(ι−k ) + yk, yk ∈ R, k = 1, ...,m, (1.2)

x(T ) = Ξx(η), (1.3)

where CDα;ψ
a+ is the ψ-Caputo fractional derivative of order α ∈ (0, 1], f : [a, T ] ×

R −→ R is a given continuous function. Ξ is real constant and η ∈ (a, T ), where
Bx(ι) =

∫ ι
0
k(ι, ϱ, x(ϱ))dϱ and k : ∆ × [a, T ] → R, ∆ = {(ι, ϱ) : a ≤ ϱ ≤ ι ≤ T},

a = ι0 < ι1 < ι2 < ... < ιm = T , ∆x|ι=ιk = x(ι+k )−x(ι−k ), and x(ι
+
k ) = limh→0+ x(ιk +h)

and x(ι−k ) = limh→0− x(ιk + h) represent the right and left hand limits of x(ι) at ι = ιk.

The paper is structured as follows: Section 2 lays the groundwork by providing es-
sential definitions and preliminary results necessary for the development of our main
findings. It also introduces an auxiliary lemma, which offers a solution representation
for the solutions to Problem (1.1)-(1.3). This foundational content sets the stage for the
more complex discussions that follow. In Section 3, we delve into the core of our research
by establishing the existence and uniqueness of solutions for FDEs that incorporate the
ψ-Caputo fractional differential operator. Through rigorous proofs and detailed analysis,
we demonstrate the conditions under which these solutions are guaranteed to exist and
be unique. In Section 4, to bring our theoretical results to life, this section presents a
concrete example. This example serves to illustrate the practical applicability and rele-
vance of the theoretical results obtained in the previous sections, providing a clear and
tangible understanding of the concepts discussed.
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2. Preliminaries and Lemmas

In this section, we introduce some fractional calculus notations and terminology, as
well as offer early results that will be used in our later proofs.
Consider PC(J,R), the space of real and continuous functions with the norm

∥x∥∞ = sup{∥x(ι)∥ : ι ∈ J}.

Let L1(J,R) be the Banach space of Lebesgue integrable functions x : J → R, equipped
with the norm

∥x∥L1 =

∫
J

|x(ι)|dι.

We start by introducing ψ-Riemann-Liouville fractional integrals and derivatives. Moving
forward:

Definition 2.1. [5] Let α > 0, the left-sided ψ-Riemann-Liouville fractional integral of
order α for an integrable function u : J −→ R with respect to another function ψ : J → R,
where ψ is an increasing differentiable function and ψ′(ι) ̸= 0, for all ι ∈ J is defined as
follows

Iα;ψa+ u(ι) =
1

Γ(α)

∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1u(ϱ)dϱ,

where Γ is the classical Euler Gamma function.

Definition 2.2. [5] Let n ∈ N and let ψ ∈ Cn( J,R) and u ∈ Cn( J,R) such that
ψ′(ι) ̸= 0, for all ι ∈ J. The left-sided ψ Riemann-Liouville fractional derivative of a
function u of order α is defined by

Dα;ψ
a+ u(ι) =

(
1

ψ′(ι)

d

dι

)n
In−α;ψa+ u(ι)

=
1

Γ(n− α)

(
1

ψ′(ι)

d

dι

)n ∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))n−α−1u(ϱ)dϱ,

where n = [α] + 1.

Definition 2.3. [5] Let n ∈ N and let ψ ∈ Cn( J,R) and u ∈ Cn( J,R) such that
ψ′(ι) ̸= 0, for all ι ∈ J. The left-sided ψ-Caputo fractional derivative of u of order α is
defined by

CDα;ψ
a+ u(ι) = In−α;ψa+

(
1

ψ′(ι)

d

dι

)n
u(ι),

where n = [α] + 1 for α /∈ N, n = α for α ∈ N.

Lemma 2.4. [2] Let α, β > 0, and u ∈ L1( J,R). Then

Iα;ψa+ Iβ;ψa+ u(ι) = Iα+β;ψa+ u(ι), a.e. ι ∈ J.

In particular, if u ∈ C(J,R), then

Iα;ψa+ Iβ;ψa+ u(ι) = Iα+β;ψa+ u(ι), ι ∈ J.

Lemma 2.5. [2] Let α > 0, if u ∈ PC(J,R) then
CDα;ψ

a+ Iα;ψa+ u(ι) = u(ι), ι ∈ J.
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If u ∈ Cn( J,R), n− 1 < α < n. Then

Iα;ψa+

(
CDα;ψ

a+ u
)
(ι) = u(ι)−

n−1∑
k=0

u
[k]
ψ (a)

k!
[ψ(ι)− ψ(a)]k, ι ∈ J.

Lemma 2.6. [2] Let ι > a, α ≥ 0, and β > 0. Then

(i) Iα;ψa+ (ψ(ι)− ψ(a))β−1 = Γ(β)
Γ(β+α) (ψ(ι)− ψ(a))β+α−1;

(ii) CDα;ψ
a+ (ψ(ι)− ψ(a))β−1 = Γ(β)

Γ(β−α) (ψ(ι)− ψ(a))β−α−1;

(iii) CDα;ψ
a+ (ψ(ι)− ψ(a))k = 0, for all k ∈ {0, . . . , n− 1}, n ∈ N.

Lemma 2.7. Let 0 < α < 1, ρ > 0 and x ∈ PC(J,R). Then the linear antiperiodic
boundary value problem

CDα,ψx(ι) = σ(ι), ι ∈ J := [a, T ], (2.1)

x(ι+k ) = x(ι−k ) + yk, yk ∈ R k = 1, ...,m, (2.2)

x(T ) = Ξx(η). (2.3)

x(ι) =



1
Γ(α)

∫ ι
a
ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1σ(ι)dϱ

+ 1
ν {

Ξ
Γ(α)

∫ η
a
ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1σ(ι)dϱ

+ 1
Γ(α)

∫ T
a
ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1σ(ι)dϱ}, for ι ∈ [1, ι1),

ϑ1 +
1

Γ(α)

∫ ι
a
ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1σ(ι)dϱ

+ 1
ν {

Ξ
Γ(α)

∫ η
a
ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1σ(ι)dϱ

+ 1
Γ(α)

∫ T
a
ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1σ(ι)dϱ}, for ι ∈ (ι1, ι2),

ϑ1 + ϑ2 +
1

Γ(α)

∫ ι
a
ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1σ(ι)dϱ

+ 1
ν {

Ξ
Γ(α)

∫ η
a
ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1σ(ι)dϱ

+ 1
Γ(α)

∫ T
a
ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1σ(ι)dϱ}, for ι ∈ (ι2, ι3),

.

.

.∑m
κ=1 ϑi +

1
Γ(α)

∫ ι
a
ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1σ(ι)dϱ

+ 1
ν {

Ξ
Γ(α)

∫ η
a
ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1σ(ι)dϱ

+ 1
Γ(α)

∫ T
a
ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1σ(ι)dϱ}, for ι ∈ (ιk, ιk+1),

(2.4)

where

ν = (1− Ξ).

Proof. Assume that ℵ satisfies (2.1) and (2.3). If ι ∈ [1, ι1) then

CDα,ψx(ι) = σ(ι), ι ∈ J

x(T ) = Ξx(η).
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We can obtain

x(ι) =
1

Γ(α)

∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1σ(ι)dϱ

+
1

ν

{
Ξ

Γ(α)

∫ η

a

ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1σ(ι)dϱ

+
1

Γ(α)

∫ T

a

ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1σ(ι)dϱ

}
.

If ι ∈ (ι1, ι2) then

x(ι) =y(ι+1 )−
1

Γ(α)

∫ ι1

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1σ(ι)dϱ

+
1

Γ(α)

∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1σ(ι)dϱ

+
1

ν

{
Ξ

Γ(α)

∫ η

a

ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1σ(ι)dϱ

+
1

Γ(α)

∫ T

a

ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1σ(ι)dϱ

}

=y(ι+1 ) + y1 −
1

Γ(α)

∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1σ(ι)dϱ

+
1

ν

{
Ξ

Γ(α)

∫ η

a

ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1σ(ι)dϱ

+
1

Γ(α)

∫ T

a

ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1σ(ι)dϱ

}

=y1 +
1

Γ(α)

∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1σ(ι)dϱ

+
1

ν

{
Ξ

Γ(α)

∫ η

a

ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1σ(ι)dϱ

+
1

Γ(α)

∫ T

a

ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1σ(ι)dϱ

}
.

If ι ∈ (ι2, ι3) then

x(ι) =y(ι+2 )−
1

Γ(α)

∫ ι2

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1σ(ι)dϱ

+
1

Γ(α)

∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1σ(ι)dϱ

+
1

ν

{
Ξ

Γ(α)

∫ η

a

ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1σ(ι)dϱ
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+
1

Γ(α)

∫ T

a

ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1σ(ι)dϱ

}

=y(ι+2 ) + y2 −
1

Γ(α)

∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1σ(ι)dϱ

+
1

ν

{
Ξ

Γ(α)

∫ η

a

ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1σ(ι)dϱ

+
1

Γ(α)

∫ T

a

ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1σ(ι)dϱ

}

=y1 + y2 +
1

Γ(α)

∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1σ(ι)dϱ

+
1

ν

{
Ξ

Γ(α)

∫ η

a

ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1σ(ι)dϱ

+
1

Γ(α)

∫ T

a

ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1σ(ι)dϱ

}
.

If ι ∈ (ιm, T ) then

x(ι) =

m∑
κ=1

ϑi +
1

Γ(α)

∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1σ(ι)dϱ

+
1

ν

{
Ξ

Γ(α)

∫ η

a

ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1σ(ι)dϱ

+
1

Γ(α)

∫ T

a

ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1σ(ι)dϱ

}
. (2.5)

On the other hand, suppose that x fulfills the impulsive fractional boundary condition of
equation (2.5).

Theorem 2.8. (Completely Continuous) The operator T is said to be completely con-
tinuous if it is continuous and maps any bounded subset of D into a relatively compact
subset of X.

Theorem 2.9. (Banach Contraction Mapping Principle) If T : X → X is a contraction
mapping on a complete metric space (x, d), then there is exactly one solution of T (x) = x
for x ∈ X.

Theorem 2.10. (Krasnoselkii’s fixed point theorem) Let K be a closed convex, bounded
and nonempty subset of a Banach space X. Let A1, A2 be two operators such that

(i) A1x+A2y ∈ K for any x, y ∈ K.
(ii) A1 is completely continuous operator.
(iii) A1 is contraction operator.

Then there exists at least one fixed point z1 ∈ K such that

z1 = A1z1 +A2z1.
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3. Main Results

Theorem 3.1. Suppose that the following assumption is hold.

(Al1): There is a positive constant L1, L2 and M such that

|f(ι, ω, y)− f(ι, ω, y)| ≤ L1 |ω − y|+ L2 |ω − y| , for ι ∈ [a, T ],

ω, y, ω, y ∈ R,
|k(ι, ϱ, ϑ)− k(ι, ϱ, ν)| ≤M |ϑ− ν| , for ϑ, ν ∈ R.

If

κ : (L1 + L2M)

{
(ψ(T )− ψ(ϱ))α

Γ(α+ 1)

+
1

ν

{
Ξ(ψ(η)− ψ(ϱ))α

Γ(α+ 1)
+

(ψ(T )− ψ(ϱ))α

Γ(α+ 1)

}}
< 1, (3.1)

then the boundary value problem (1.1)-(1.3) has a unique solution on [a, T ].

Proof. Define the operator G : PC(J,R) → PC(J,R) defined by

Gx(ι) =
m∑

κ=1

ϑi +
1

Γ(α)

∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1f (ϱ, x(ϱ), Bx(ϱ)) dϱ

+
1

ν

{
Ξ

Γ(α)

∫ η

a

ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1f (ϱ, x(ϱ), Bx(ϱ)) dϱ (3.2)

+
1

Γ(α)

∫ T

a

ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1f (ϱ, x(ϱ), Bx(ϱ)) dϱ

}
.

Use the Banach mapping principle to demonstrate that G is contraction.
Let x, y ∈ PC(J,R) and for ι ∈ J . Then, we have

|Gx(ι)− Gy(ι)|

≤ 1

Γ(α)

∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1 |f (ϱ, x(ϱ), Bx(ϱ))− f (ϱ, y(ϱ), By(ϱ))| dϱ

+
1

ν

{
Ξ

Γ(α)

∫ η

a

ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1 |f (ϱ, u(ϱ), Bx(ϱ))− f (ϱ, y(ϱ), By(ϱ))| dϱ

+
1

Γ(α)

∫ T

a

ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1 |f (ϱ, x(ϱ), Bx(ϱ))− f (ϱ, y(ϱ), By(ϱ))| dϱ

}
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≤(L1 + L2M)
1

Γ(α)

∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1 |x(ϱ)− y(ϱ)| dϱ

+ (L1 + L2M)
1

ν

{
Ξ

Γ(α)

∫ η

a

ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1 |x(ϱ)− y(ϱ)| dϱ

+ (L1 + L2M)
1

Γ(α)

∫ T

a

ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1 |x(ϱ)− y(ϱ)| dϱ

}
≤(L1 + L2M) ∥x− y∥{

(ψ(T )− ψ(ϱ))α

Γ(α+ 1)
+

1

ν

{
Ξ(ψ(η)− ψ(ϱ))α

Γ(α+ 1)
+

(ψ(T )− ψ(ϱ))α

Γ(α+ 1)

}}
≤κ ∥x− y∥ .

Thus, ∥Gx− Gy∥ ≤ κ ∥x− y∥. Given κ < 1, G is a contraction mapping operator. There-
fore, we infer from the Banach contraction mapping principle that there is only one fixed
point for the operator G, which equates to a single solution for the problem in equation
(1.1)-(1.3) on J .

Theorem 3.2. Assume the following assumption is holds:

(Al2) There exist a non decreasing function υ(ι) > 0 such that for ι ∈ J ,

|f(ι, µ, η)| ≤ υ(ι), ∀(ι, µ, η) ∈ [0, 1]× R× R with υ ∈ PC([a, T ],R).

(Al3) There exists a constant M∗ > 0 such that
m∑
i=1

|υi| ≤M∗.

Then the problems (1.1)-(1.3) has at least one solution on [a, T ].

Proof. Consider the operator G : PC(J,R) → PC(J,R) defined by (3.2). Define the ball

Br0 := {u ∈ PC(J,R) : ∥u∥ ≤ r0} .

Now we subdivide the operator G into two operators G1 and G2 on Br0 defined by

G1x(ι) =
1

ν
{ Ξ

Γ(α)

∫ η

a

ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1f (ϱ, x(ϱ), Bx(ϱ)) dϱ

+
1

Γ(α)

∫ T

a

ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1f (ϱ, x(ϱ), Bx(ϱ)) dϱ}+
m∑

κ=1

ϑi (3.3)

and

G2x(ι) =
1

Γ(α)

∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1f (ϱ, x(ϱ), Bx(ϱ)) dϱ. (3.4)

Taking into account that G1 and G2 are defined on Br0 , and for any x ∈ PC(J,R),

Gu(ι) = G1x(ι) + G2x(ι), ι ∈ J.

Step 1: G1x1 + G2x2 ∈ Br0 .
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Now, for x1, x2 ∈ Br0 and ι ∈ J , we have

|G1x1(ι) + G2x2(ι)| ≤ |G1x1(ι)|+ |G2x2(ι)|

≤∥ 1

Γ(α)

∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1f (ϱ, x(ϱ), Bx(ϱ)) dϱ

+
1

ν

{
Ξ

Γ(α)

∫ η

a

ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1f (ϱ, x(ϱ), Bx(ϱ)) dϱ

+
1

Γ(α)

∫ T

a

ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1f (ϱ, x(ϱ), Bx(ϱ)) dϱ

}
+

m∑
κ=1

ϑi∥

≤ 1

Γ(α)

∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1 |f (ϱ, x(ϱ), Bx(ϱ))| dϱ

+
1

ν

{
Ξ

Γ(α)

∫ η

a

ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1 |f (ϱ, x(ϱ), Bx(ϱ))| dϱ

+
1

Γ(α)

∫ T

a

ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1 |f (ϱ, x(ϱ), Bx(ϱ))| dϱ

}
+

m∑
κ=1

ϑi

≤ 1

Γ(α)

∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1 |f (ϱ, x(ϱ), Bx(ϱ))| dϱ

+
1

ν

{
Ξ

Γ(α)

∫ η

a

ψ′(ϱ)(ψ(η)− ψ(ϱ))α−1 |f (ϱ, x(ϱ), Bx(ϱ))| dϱ

+
1

Γ(α)

∫ T

a

ψ′(ϱ)(ψ(T )− ψ(ϱ))α−1 |f (ϱ, x(ϱ), Bx(ϱ))| dϱ

}
+

m∑
κ=1

ϑi

≤υ(ι)
{
(ψ(T )− ψ(ϱ))α

Γ(α+ 1)
+

1

ν

{
Ξ(ψ(η)− ψ(ϱ))α

Γ(α+ 1)
+

(ψ(T )− ψ(ϱ))α

Γ(α+ 1)

}}
+M∗

≤r0.

Furthermore, the contraction mapping G1 is clear. The operator (G2x)(ι) is continuous
based on the continuity of X, as f is continuous. Additionally, we see that

∥G2x∥ ≤ 1

Γ(α)

∫ ι

a

ψ′(ϱ)(ψ(ι)− ψ(ϱ))α−1f (ϱ, x(ϱ), Bx(ϱ)) dϱ

≤ υ(ι)

Γ(α+ 1)
(ψ(ι)− ψ(ϱ))α.

This proves that G2 is uniformly bounded on Br0 .
Finally, we prove that G2 maps bounded sets into equicontinuous sets of PC(J,R), i.e.,
(GBr0) is equicontinuous.

sup
(ι,x,y)∈[0,1]×Br

|f (ϱ, x(ϱ), Bx(ϱ))| = C0 <∞,
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we will get

|G2u (ι1)− G2u (ι2)| =
∣∣∣ 1

Γ(α)

∫ ι1

a

ψ′(ϱ)(ψ(ι1)− ψ(ϱ))α−1f (ϱ, x(ϱ), Bx(ϱ)) dϱ

− 1

Γ(α)

∫ ι2

a

ψ′(ϱ)(ψ(ι2)− ψ(ϱ))α−1f (ϱ, x(ϱ), Bx(ϱ)) dϱ
∣∣∣

≤ 1

Γ(α)

∫ ι1

a

[
ψ′(ϱ)(ψ(ι1)− ψ(ϱ))α−1 − (ψ′(ϱ)(ψ(ι2)− ψ(ϱ))α−1)

]
+

∫ ι2

ι1

(ψ′(ϱ)(ψ(ι2)− ψ(ϱ))α−1 |f(ϱ, x(ϱ), Bx(ϱ))| dϱ,

which is independent of x and approaches to zero as ι2 → ι1. Thus, G2(Br0) is relatively
compact. This shows that G2 is equicontinuous in Br0 . Assuming the above causes, the
Arzel-Ascoli theorem applies, implying that G2 is compact on Br0 . Thus, the Krasnoselskii
fixed point theorem propose is fulfilled, leading to the conclusion that there is at least
one solution on J .

4. Example

Consider the following problem of implicit FDEs involving ψ-Caputo type:

cD
5
2 ,Ψx(ι) =

1

5eι+2(1 + |x(ι)|
+

∫ ι

0

e−(ϱ−ι)

10
x(ϱ)dϱ, (4.1)

x(ι+k ) = x(ι−k ) +
1

6
, (4.2)

x(T ) = Ξx(η). (4.3)

Set:

f(ι, u, v) =
1

5eι+2(1 + |x(ι)|
+Bx(ι), ι ∈ [0, 1], u, v ∈ R+,

Bx(ι) =

∫ ι

0

e−(ϱ−ι)

10
x(ϱ)dϱ.

Hence, the condition (Al1) is satisfied, where α = 1
4 , Ξ = 3

4 , η = 1
2 , a = 0, T = 1,

ψ(ι) = ι, L1 = L2 = 1
5e3 , M = 1

10 .

(L1+L2M)

{
(ψ(T )− ψ(ϱ))α

Γ(α+ 1)
+

1

ν

{
Ξ(ψ(η)− ψ(ϱ))α

Γ(α+ 1)
+

(ψ(T )− ψ(ϱ))α

Γ(α+ 1)

}}
< 1 ∼= 0.03368

Clearly, the hypothesis of Theorem 3.1 are fulfilled and hence its conclusion implies the
existence of a unique solution of the problem in Equation (4.1)-(4.3) on [0, 1].

5. Conclusion

In this paper, we examined the ψ-Caputo fractional differential operator in determin-
ing the uniqueness and existence of solutions to FDEs. We applied the Krasnoselskii’s
fixed point theorem and Banach contraction principle with some inequality technique to
demonstrate the main results. Finally, examples have been provided to demonstrate the
validity of our conclusions. In future works, one can extend the uniqueness and existence
of solutions using Burton-Kirk fixed-point theorem and Banach contraction principle given
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fractional boundary-value problem to more fractional derivatives, such as the Hilfer and
Caputo-Fabrizio fractional derivatives.
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