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1. INTRODUCTION

A Ricci soliton (g, V, A) is a natural generalization of an Einstein metric and is defined
on a Riemannian manifold (M, g) by

(Lyvg+2S+2\g)(X,Y) =0, (L.1)

where S is the Ricci tensor of M, Ly denote the Lie derivative operator along the vector
field V and A is a real scalar. The Ricci soliton is said to be shrinking, steady or expanding
according as \ is negative, zero and positive respectively.

Ricci soliton is a special solution of the Ricci flow introduced by Hamilton [12] in the
year 1982. In [19], R. Sharma studied Ricci solitons in contact geometry. Thereafter Ricci
solitons in contact metric manifolds have been studied by various authors such as M. M.
Tripathi [20], A. Ghosh and R. Sharma [11], U.C. De and et. al. [10], H.G. Nagaraja
and et. al. [16], C.S. Bagewadi and et. al. [4, 5], A. A. Shaikh and et. al. [3], S. K. Hui
et. al. [13, 15] and many others.

The nature of a Riemannian manifold mostly depends on the curvature tensor R of the
manifold and further it is known that the sectional curvature of a manifold determines
curvature tensor completely. A Riemannian manifold with constant sectional curvature ¢
is known as real space form and its curvature tensor is given by

R(X,Y)Z = elg(¥, 2)X — g(X, 2)Y}. (1.2)
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A Sasakian manifold with constant ¢-sectional curvature is called Sasakian space form
and the curvature tensor of such manifold is given by

R Y)Z = 20 20X = (X, )Y} + S {g(X,02)0Y — oY, 62)0X

+ 29(X,9Y)9Z} + ; ! XOn(2)Y —n(Y)n(Z)X + g(X, Z)n(Y )¢
g(Y, Z)n(X)E} (1.3)

In 2004, P. Alegre, D. E. Blair and A. Carriazo [1] introduced the concept of generalized
Sasakian space forms. The generalized Sasakian space form is defined as follows:

A generalized Sasakian space form in an almost contact metric manifold (M, ¢,£,n, g)
whose curvature tensor is given by

c

RX\)Y)Z = fi{g(Y,2)X —g(X,2)Y} + fo{9(X,0Z)pY — g(Y,92)pX
+ 29(X,9Y)0Z} + f3{n(X)n(2)Y —n(Y)n(2)X + g(X, Z)n(Y)§
- g(Y, Z)n(X)EY, (1.4)

where f1, fo, f3 are differentiable functions on M and X, Y, Z are vector fields on M. This
type of manifold appears as a natural generalization of the well known Sasakian space
form M(c), which can be obtained as a particular case of generalized Sasakian space
form by taking f; = Cf’, fa= ‘311 and f3 = CZI, where ¢ denotes constant ¢-sectional
curvature.

The generalized Sasakian space forms have been studied by several authors such as P.
Alegre and A. Carriazo [2, 3], M. Belkhelfa, R. Deszcz and L. Verstraelen [6], U.C. De
and et. al. [9], A. A. Shaikh and et. al. [17] and many others.

Motivated by the above work, in this paper we study Ricci solitons in generalized
Sasakian space forms.

2. PRELIMINARIES

A differentiable manifold M is said to be an almost contact metric manifold if there
exist a (1,1) tensor field ¢, a vector field £, a 1-form 7 and Riemannian metric g, which
satisfy

¢’X = —X+nX)E nE) =1, ¢-£=0, n(¢X)=0, (2.1)
9(¢X,0Y) = g(X,Y)=n(X)n(Y), g¢(X, &) =n(X), (2:2)

for all vector fields X,Y on M. An almost contact metric manifold M (¢, &, 1, g) is said to
be a Sasakian manifold [7] if

(Vx9)Y = g(X,Y)§ —n(Y)X. (2.4)
From (2.4), it follows that
Vxé = —0X, (2.5)

for any vector field X on M, where V is the covariant derivative of M.
By virtue of (2.2) in (1.4), we have

RX, V)¢ = (fi— fo){n(Y)X —n(X)Y}. (2.6)
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Again from (1.4) and by taking an account of S(X,Y) = Zl(iqﬂ) g(R(ei, X)Y, e;), we get

S(X,Y) = [2nfi+3fa— fslg(X,Y) +[=3f2 = 2n — 1) fs]n(X)n(Y).  (2.7)

From (2.7), we have
QX = [2nfi+3f2— fs]X +[-3f2 — (2n — 1) f3]n(X)¢E, (2.8)
r = 2n(2n+1)f1 +6nfy —4nfs, (2.9)

where @ is the Ricci operator and r is the scalar curvature of M. Putting Y = ¢ in (2.7),
we get

S(X,€) = 2n(fr — fa)n(X). (2.10)
On Riemannian manifold (M, g), we have
(Lvg)(X,Y) =g(VxV.Y) +9(X,VyV), (2.11)

where V denotes the Levi-Civita connection of M. If (M, g) is a Ricci soliton with potential
vector field V, then by using (2.11) in (1.1), we obtain

g(VxV)Y) +g(X,VyV)+25(X,Y) +2)\g(X,Y) = 0. (2.12)
By taking X =Y = ¢;, where {e; : i =1,2,...,2n + 1} is an orthonormal basis, we get
divV +7r+ (2n+ 1A =0. (2.13)
By taking volume integral in (2.13), we obtain
/deug /rug / (2n + 1)Apug = 0. (2.14)
We know by Green’s theorem [ divVu, = 0, we have
/wg — (20 + D)ol (M). (2.15)

Hence, we state the following theorem:
Theorem 2.1. Let (M,g) be a Ricci soliton with respect to potential vector field V on
M. Then
o [rpg=—(2n+ 1) vol(M).
o divV =0 if and only if either r < —(2n+ 1)A orr > —(2n+ 1)\ on M, then
=—2n+ 1A

3. PARALLEL SYMMETRIC SECOND ORDER TENSORS AND RICCI SOLITONS
IN GENERALIZED SASAKIAN SPACE FORM

Fix h a symmetric tensor field of (0, 2)-type which is parallel with respect to Levi-Civita
connection V that is Vh = 0. Applying the Ricci identity [18]

ViWX,Y;Z,W) - V2h(X,Y; W, Z) =0, (3.1)

we obtain the relation
MR(X,Y)Z, W)+ h(Z,R(X,Y)W) =0. (3.2)
Replacing Z =W = £ in (3.2) and by virtue of (2.6) and by the symmetry of h, we have
2(f1 = fs)In(Y)h(X, §) — n(X)h(Y,&)] = 0. (3.3)
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Putting X = £ in (3.3), we get

2(f1 = f3)[n(Y)h(&, &) — h(Y,§)] = 0. (34)
And supposing f; — f3 # 0, it results
h(Y, &) = n(Y)h(§, ). (3.5)

We call a regular generalized Sasakian space form with f; — f3 # 0.
Differentiating (3.5) covariantly with respect to X, we have

Vx (h(Y,€)) = Vx(9(Y,§n(&,€)), (3.6)
on expanding the above equation and by virtue of (3.5), Vi = 0, n(Vx&) = 0, we get
hY, ¢X) = g(Y, pX)h(,§). (3.7)
Replace X = ¢X in (3.7), we get
X, Y) = g(X,Y)h(&,€). (3.8)

This implies that h(,€) is a constant, via (3.5). Hence we state the following theorem:

Theorem 3.1. A symmetric parallel second order covariant tensor in a regular general-
1zed Sasakian space form is a constant multiple of the metric tensor.

Suppose that the (0, 2)-type symmetric tensor field Ly g+ 25 is parallel for any vector
field V' on a generalized Sasakian space form. Then Theorem (3.1) yields Ly g + 2S5 is a
constant multiple of the metric tensor g, i.e. (Lyg)(X,Y)+25(X,Y) = —2Ag(X,Y) for
all XY on M, where )\ is a constant. Hence the relation (1.1) holds. This implies that
(g,V, A) yields a Ricci soliton. Hence we can state the following:

Theorem 3.2. If the tensor field Ly g + 25 on a generalized Sasakian space form is
parallel for any vector field V, then (g,V,\) is a Ricci soliton.

Again for a (0, 2)-type symmetric parallel tensor field h in a generalized Sasakian space
form such that

hMX,Y) = (Leg)(X,Y)+25(X,Y). (3.9)
Putting X =Y = £ in (3.9) and by virtue of (2.7), we obtain
h(&,€) = 4n(f1 — f3). (3.10)
If (g, V, A) is a Ricci soliton on a generalized Sasakian space form, then from (1.1) we have
hMX,Y) =-2)\g(X,Y). (3.11)
Putting X =Y = ¢ in (3.11), we get
h(€,&) = —2A. (3.12)

From (3.10) and (3.12) we get A = —2n(f; — f3) and consequently the Ricci soliton (g, &, A)
is shrinking if f; > f3 or expanding if f; < f3. Thus we can state the following:

Theorem 3.3. If the tensor field Ly g + 2S5 on a generalized Sasakian space form is
parallel, then the Ricci soliton (g,&,\) is shrinking or expanding.
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4. RICCI SOLITONS IN GENERALIZED SASAKIAN SPACE FORM
In this section, we study Ricci solitons in generalized Sasakian space form:

Theorem 4.1. If a metric g in a generalized Sasakian space form is a Ricci soliton with
V =&, then it is Finstein.

Proof. Putting V = ¢ in (1.1), then we have

(Leg)(X,Y)+25(X,Y) +2)g(X,Y) =0. (4.1)

where
(Leg)(X,Y) = g(Vx&,Y) +9(X, VyE) = 0. (4.2)
Substituting (4.2) in (4.1), then we get the result. |

Proposition 4.2. Ricci soliton in generalized Sasakian space form with V point-wise
collinear with &, then V' is a constant multiple of £ and the manifold is Finstein.

Proof. Putting V = b€ in (4.1), we get

g(Vx(68),Y) 4+ g(X,Vy (b)) +25(X,Y) +2Xg(X,Y) =0. (4.3)
The above equation (4.3) can be written in the form
(Xb)n(Y) + (Y)n(X) + 2S(X,Y) + 2\g(X,Y) = 0. (4.4)
Putting Y = ¢ in (4.4), we have
(Xb) + (Eb)n(X) +4n(f1 — f3)n(X) +2Ag(X,Y) = 0. (4.5)
Again putting X = £ in (4.5), we obtain
(€b) = —[2n(f1 — f3) + Al. (4.6)
Substituting (4.6) in (4.5), we get
(Xb) = —[2n(f1 — f3) + AIn(X). (4.7)
which implies
db = —[2n(f1 — f3) + Aln. (4.8)
Applying d on both sides,
d*b = —[2n(f1 — f3) + Ndn. (4.9)

Equation (4.9) implies that d?b = 0, but dn is nowhere vanishing. Therefore, —2n(f; —
f3) — A = 0 which implies db = 0; that is, b is constant. As ¢ is Killing, we conclude that
the manifold is Einstein which completes the proof. [ |

Theorem 4.3. A generalized Sasakian space form admitting a Ricci soliton (g, V'), where
the potential vector field V is orthogonal to £ is shrinking if f1 > fs, expanding if f1 < f3
or steady if f1 = f3.

Proof. Suppose that a generalized Sasakian space form admits a Ricci soliton (g, V'), then
from (2.11) in (1.1), we have

g(VxVY)+g(X,VyV)+25(X,Y) +2)g(X,Y) =0. (4.10)
Putting X =Y = ¢ in (4.10), we get
29(VeV,£) +25(€,€) +209(£,€) = 0. (411)
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For a vector field V' orthogonal to & and by virtue of (2.10), we obtain

A= =2n(f1 — f3). (4.12)

According as f1 > f3, f1 < f3, f1 = f3, then A < 0, A > 0, A\ = 0 that is, generalized
Sasakian space form admitting a Ricci soliton is shrinking, expanding or steady. This
completes the proof of the theorem. [ |

Theorem 4.4. A Ricci soliton in generalized Sasakian space form with Killing vector field
& is shrinking if 2n[(2n+1) f1 + 3 fo —2f3] > 0, expanding if 2n[(2n+1) f1 +3f2—2f5] <0
or steady if 2n[(2n + 1) f1 + 3f2 — 2f3] = 0.

Proof. By using (2.11) and (2.7) in (1.1) with V' = £, we have
9(Vx&Y) +9(X, Vy&) + 2{[2nf1 +3f2 — f3]9(X,Y)

+[=3f2 = (2n = 1) f3]n(X)n(Y)} + 2Ag(X,Y) = 0. (4.13)
Putting X =Y = ¢e;, where {e; : i = 1,2,...,(2n+1)} is an orthonormal basis, we obtain
div€ +2n[(2n+ 1) f1 +3f2 — 2f3] + 2n+ A =0, (4.14)

the above equation implies that

' 2n[(2 1 -2
A= — dZ’Uf . TL[( n+ )f1+3f2 f3] (415)
(2n+1) (2n+1)
If £ is a Killing vector field then divé = 0, the above equation reduces to
_2n[(2n+ 1) f1 4+ 3f> — 2f3]
(2n+1) '

That is Ricci soliton in generalized Sasakian space form with Killing vector field £ is
shrinking, expanding or steady as A < 0, A > 0 or A = 0. This completes the proof. [ |

A= (4.16)

Definition 4.5. A vector field V is said to be conformal Killing vector field if it satisfies
Lyvg=2pg. (4.17)
for some scalar function p.

Theorem 4.6. Let (g,V) be a Ricci soliton in a generalized Sasakian space form. If V
s conformal Killing vector field then the followings are equivalent:

(1) Einstein

(2) locally Ricci symmetric

(8) Ricci semisymmetric; that is, R-S = 0.

Proof. Suppose that V' is a conformal Killing vector field and from (1.1), we have

209(X,Y) + 2S(X,Y) + 2)g(X,Y) = 0. (4.18)
Equation (4.18) can be written in the form
S(X,Y) = —(p+ Ng(X, V). (4.19)

This shows that the Ricci soliton in a generalized Sasakian space form under consideration
is Einstein, that is (1) holds.

The implication (1) — (2) — (3) is trivial. Now, we prove the implication (3) — (1).
Now,

(R(X,Y) - S)(U,V) = —S(R(X,Y)U,V) — S(U, R(X,Y)V). (4.20)
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Using (4.19) in (4.20), we obtain
(R(X,Y) - S)(U,V) = (p+ Ng(R(X, Y)U,V) + g(U, R, Y)V) =0, (4.21)

which implies that the Ricci soliton in a generalized Sasakian space form is Ricci semisym-
metric.
Consider R(X,Y) - S =0 and putting X = ¢ in (4.20) and by virtue of (2.7), we get

(f1 = )V, U)S(E, V) =n(U)S(Y, V) + g(Y,V)SU, &) —n(V)S(U,Y)] = 0. (4.22)
If fl 7& f3, then

gV, U)S(& V) =n(U)S(Y, V) +g(Y,V)SU, &) —n(V)S(U,Y) = 0. (4.23)

Putting U = £ in (4.23) and by using (2.10), we obtain
S(Y,V)=2n(f1 — f3)g(Y,V) or S =2n(f1 — f3)g. (4.24)
Generalized Sasakian space form with f; # f3 is Einstein, that is (3) — (1). |

From (4.18) and (4.24), we get

A=—[p+2n(fi — f3)]. (4.25)
This leads the following:
Theorem 4.7. A Ricci soliton in a generalized Sasakian space form with conformal

Killing vector field V' is shrinking if [p+2n(f1— f3)] > 0, expanding if [p+2n(f1— f3)] <0
or steady if [p+ 2n(f1 — f3)] =0

5. RICCI SOLITONS IN SUBMANIFOLDS OF GENERALIZED SASAKIAN SPACE
FORM
Let M be a submanifold of a generalized Sasakian space form M (c) then the Gauss
and Weingarten formula [22] is given by
VxY =VxY +B(X,Y), VxV=-AyX+DxV, (5.1)
for tangent vector fields X and Y, where B is the second fundamental form, A is the
shape operator and g(B(X,Y),V) =g(AvX,Y).
By virtue of Gauss and Weingarten formula, we have
— 9(Y,02)9(6X, W) + 29(X, ¢Y)g(¢Z, W)] + fs[ (X)n(Z)g( Y, W)
— n(Y)n(2)g(X, W) + g(X, Z)n(Y)n(W) — g(Y, Z)n(X)n(W)]
and
(VxB)(Y, Z) = (Vy B)(X, Z). (5.3)
Putting X =W =e; in (5.2), where {e; : i =1,2,...,(2n 4 1)} is an orthonormal basis,
we obtain

S(Y,Z)

2nfi+3f2 — f3lg(Y, Z) + [-3f2 — (2n — 1) f3]n(Y)n(Z)
+ Z(tTAei)g(Aein Z) - Z 9(Ae,Y, Ae, Z). (5.4)

€i €
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Theorem 5.1. Ricci soliton in submanifold of generalized Sasakian space form with
Killing vector field & is

o shrinking if [2n[(2n + 1) f1 + 3f2 — 2f3] + 2, (trA,)? — X, (trA2)] > 0
o expanding if [2n[(2n 4+ 1)f1 + 3fo — 2f3] + Zei (trA.,)? — Zei (trAi)] <0
o steady if 2n[(2n + 1) f1 +3fa — 2fa] + X, (trA.,)* = >, (trAZ)] = 0.
Proof. By using (2.12) and (5.4) in (1.1), we have
g(VxV.Y) +g(X,VyV) +2[2nf1 +3f2 — f3]9(X,Y) + [-3f2 — (2n — 1) f3]n(X)n(Y)
+D (trAc)g(Ae, X,Y) =Y g(Ae, X, AeY)] +20g(X,Y) = 0. (5.5)
Putting X =Y =¢; in (5.5), where {e; : i = 1,2,...,(2n + 1)} is an orthonormal basis,
we get
divV +2n[(2n + 1) f1 + 3f — 2fs] + > _(trAc,)> = > (trAZ) + (2n+ 1)A=0. (5.6)
The above equation (5.6) can be written in the form
divV  2n[@n+1)f1+3f2 — 2f3] + 32, (trA,)? — 3. (trAgi)] 57

A== (2n+1) (2n+1)

If V = ¢ is a Killing vector field then div€ = 0, then the above equation reduces in the
form

N [2n[(2n +1)fi+3f = 2fs|+ 35, (trAe,)® = 3, (trAZ) 58)

(2n+1)

That is Ricci soliton in submanifold of generalized Sasakian space form with Killing vector
field £ is shrinking, expanding or steady as A < 0, A > 0 or A = 0. |
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