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1. Introduction and Preliminaries

The famous Banach’s contraction principle states that every contraction selfmapping on
a complete metric space has a unique fixed point. This principle has been generalized and
extended in several ways. Let A and B be nonempty subsets of a metric space (X, d) and let
T : A → B be a non-selfmapping. The equation Tx = x may not have a solution, because
of the fact that a solution of the preceding equation demands the non-emptiness of A ∩ B.
Therefore, it is an interesting aspect to seek an approximate solution x that is optimal in the
sense that the distance d(x, Tx) is minimum, where d(A,B) := inf{d(x, y) : (x, y) ∈ A×B}.

A point x ∈ A is called best proximity point of T : A → B if d(x, Tx) = d(A,B). A
best proximity point becomes a fixed point if the underlying mapping is a selfmapping.
Therefore, it can be concluded that best proximity point theorems generalize fixed point
theorems in a natural way. The authors [6, 8, 9, 12] and reference therein obtained best
proximity point theorems under certain contraction conditions for non-selfmaps. For more
works on best proximity point we refer [1, 2, 5, 13] and references therein.
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Our purpose here is to establish best proximity point theorems in the partially ordered
metric spaces.

We recall the following notations and definitions. Let (X, d,⪯) be a partially ordered
metric space and let A and B be nonempty subsets of X.

A0 := {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},
B0 := {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

Definition 1.1. [7] A mapping T : A → B is said to be proximally increasing on A0 if for
all u1, u2, x1, x2 ∈ A0,

x1 ⪯ x2
d(u1, Tx1) = d(A,B)
d(u2, Tx2) = d(A,B)

 ⇒ u1 ⪯ u2.

Definition 1.2. [11] An altering distance function is a function ψ : [0,∞) → [0,∞) which
satisfies:

(i) ψ is continuous and non-decreasing and
(ii) ψ(t) = 0 if and only if t = 0.

We denote by Ψ the class of altering distance functions.

Definition 1.3. Let (X, d) be a metric space. A function ϕ : X → R is lower semi-continuous
if for any sequence tn ⊆ X with tn → t as n→ ∞, then ϕ(t) ≤ lim inf

n→∞
ϕ(tn).

Definition 1.4. [3] Let ϕ : [0,∞)× [0,∞) → [0,∞) be a function. We say that the function
ϕ has property (P ) if the following are satisfied:

(i) ϕ is lower semi-continuous and non-decreasing with respect to both of its components,
and

(ii) ϕ(s, t) = 0 if and only if s = t = 0.

We denote by Φ the class of all functions satisfying property (P).

In 2016, Azizi, Moosaei and Zarei [3] proved the existence and uniqueness of fixed
points for almost generalized C− contractive mappings in partially ordered metric spaces.

Definition 1.5. [3] Let (X,⪯, d) be an ordered metric space. We say that a mapping
f : X → X is an almost generalized C− contractive if there exist ξ ≥ 0 and (ψ, ϕ) ∈ Ψ× Φ
such that

ψ(d(fx, fy)) ≤ ψ(M(x, y))− ϕ
(
M ′(x, y),M ′′(x, y)

)
+ ξψ(N(x, y)) (1.1)

for all x, y ∈ X with x ⪯ y, where

M(x, y) = max {d(x, y), d(x, fx, ), d(y, fy), d(x, fy) + d(y, fx)

2
},

M ′(x, y) = max {d(x, y), d(x, fx), d(x, fy)},
M ′′(x, y) = max {d(x, y), d(y, fy), d(y, fx)} and

N(x, y) = min {d(x, fx), d(y, fx)}.

Theorem 1.6. [3] Let (X,⪯, d) be an ordered metric space. Assume that f : X → X is a
non-decreasing (with respect to ⪯), continuous and almost generalized C−contractive map.
If there exists x1 ∈ X such that x1 ⪯ fx1, then f has a fixed point. In particular, if F (f) is
totally ordered subset of X, where F (f) denotes the set of all fixed points of f , then f has
a unique fixed point.
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Definition 1.7. [10] Let A and B be two nonempty subsets of a metric space (X, d) and
T : A→ B be a mapping. We say that T has the RJ property if for any sequence {xn} ⊆ A,

lim
n→∞

d(xn+1, Txn) = d(A,B)

lim
n→∞

xn = x

}
=⇒ x ∈ A0.

Here we observe that any continuous mapping T : A → B has the RJ property provided
that A and B are nonempty closed subsets of a metric space (X, d).

Lemma 1.8. [4] Suppose that (X, d) is a metric space. Let {xn} be a sequence in X such that
d(xn, xn+1) → 0 as n→ ∞. If {xn} is not a Cauchy sequence, then there exists an ϵ > 0 and
sequences of positive integers {mk} and {nk} with mk > nk > k such that d(xmk

, xnk
) ≥ ϵ,

d(xmk−1, xnk
) < ϵ and

(i) lim
k→∞

d(xmk−1, xnk+1) = ϵ,

(ii) lim
k→∞

d(xmk
, xnk

) = ϵ,

(iii) lim
k→∞

d(xmk−1, xnk
) = ϵ.

Remark 1.9. By using the hypotheses of Lemma 1.8 and triangular inequality we can show
that lim

k→∞
d(xmk−1, xnk−1) = ϵ and lim

k→∞
d(xnk−1, xmk

) = ϵ.

In the following we define the notion of an almost generalized C−proximal weakly
contractive map.

Definition 1.10. Let (X, d,⪯) be a partially ordered metric space and A, B be nonempty
subsets of X. We say that f : A→ B is an almost generalized C−proximal weakly
contractive map if there exist ξ ≥ 0, ψ ∈ Ψ, ϕ ∈ Φ such that for all x, y, u, v ∈ A with
x ⪯ y

d(u, fx) = d(A,B)
d(v, fy) = d(A,B)

}
=⇒ ψ(d(u, v)) ≤ ψ(M(x, y, u, v) (1.2)

−ϕ(M1(x, y, u, v),M2(x, y, u, v)) + ξψ(N(x, y, u, v)),

where

M(x, y, u, v) = max {d(x, y), d(x, u), d(y, v), d(x, v) + d(y, u)

2
},

M1(x, y, u, v) = max {d(x, y), d(x, u), d(x, v)},
M2(x, y, u, v) = max {d(x, y), d(y, v), d(y, u)} and

N(x, y, u, v) = min {d(x, u), d(y, u)}.
Here we observe that if A = B = X in Definition 1.10, then f is an almost generalized
C−contractive map.

Example 1.11. Let X = [0,∞)× [0,∞), with the Euclidean metric d. We define a partial
order ⪯ on X by
⪯:=

{(
(x1, x2), (y1, y2)

)
∈ X ×X|x1 = y1, x2 = y2

}
∪

{(
(0, 1516 ), (0,

1
2n )

)
,
(
(0, 1924 ), (0,

1
2n+1 )

)
,(

(0,
1

2n
), (0,

1

2m
)
)
,
(
(0,

1

2n
), (0, 0)

)
| n,m = 1, 2, ..., m > n

}
∪
{(

(0,
19

24
), (0, 0)

)
,
(
(0,

15

16
), (0, 0)

)}
,

where (x1, x2) ⪯ (y1, y2) ⇐⇒ x1 ≥ y1 and x2 ≥ y2,≥ is the usual order in R.
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Let A = {0} × [0, 1] = A0, B = {π} × [0, 1] = B0. We define f : A→ B by

f(0, x) =

 (π, x2 ) if x ∈ [0, 34 )

(π, 2x− 13
12 ) if x ∈ [ 34 , 1].

Clearly d(A,B) = π. To show that f is an almost generalized C−proximal weakly
contractive map, we define functions ψ : [0,∞) → [0,∞) and ϕ : [0,∞)× [0,∞) → [0,∞)
by

ψ(t) =


t
2 if t ∈ [0, 1]

t
1+t if t ≥ 1

and ϕ(s, t) =


s+t
16 for all s, t ∈ [0, 1]

1
4 otherwise .

Now, let (0, x), (0, y), (0, u) and (0, v) ∈ A such that

(0, x) ⪯ (0, y)
d((0, u), f(0, x)) = π
d((0, v), f(0, y)) = π.

 (1.3)

Case (i): (0, x) = (0, 1516 ), (0, y) = (0, 1
2n ) : n = 1, 2, 3, ... , (0, u) = (0, 1924 ), (0, v) = (0, 1

2n+1 ).
In this case, we have

ψ(d((0, u), (0, v))) = ψ(d((0,
19

24
), (0,

1

2n+1
))) =

19

48
− 1

2n+2

≤ 15

32
− 1

2n+1
−
(

15

128
− 3

2n+5

)
+

7

96

= ψ(M((0, x), (0, y), (0, u), (0, v)))

− ϕ
(
M1((0, x), (0, y), (0, u), (0, v)),M2((0, x), (0, y), (0, u), (0, v))

)
+ ξψ(N((0, x), (0, y), (0, u), (0, v))), where ξ = 1.

Case (ii): (0, x) = (0, 1924 ), (0, y) = (0, 1
2n+1 ) : n = 1, 2, 3, ... , (0, u) = (0, 1948 ),

(0, v) = (0, 1
2n+2 ). Now,

ψ(d((0, u), (0, v))) = ψ(d((0,
19

48
), (0,

1

2n+2
))) =

19

96
− 1

2n+3

≤ 19

48
− 1

2n+2
−
(

83

768
− 1

2n+6

)
+

19

96
− 1

2n+2

= ψ(M((0, x), (0, y), (0, u), (0, v)))

− ϕ
(
M1((0, x), (0, y), (0, u), (0, v)),M2((0, x), (0, y), (0, u), (0, v))

)
+ ξψ(N((0, x), (0, y), (0, u), (0, v))), where ξ = 1.

For the other possible cases, the inequality (1.2) holds trivially with ξ = 1.
Hence f is an almost generalized C−proximal weakly contractive map.

Remark 1.12. In fact the inequality (1.2) fails to hold when ξ = 0 in Example 1.11. For,
by choosing (0, x) = (0, 1516 ), (0, y) = (0, 12 ), (0, u) = (0, 1924 ), (0, v) = (0, 14 ), we have

ψ(d((0, u), (0, v))) = ψ(d((0,
19

24
), (0,

1

4
))) = ψ(

11

24
) ≰ ψ(

7

16
)− ϕ

(11
16
,
11

24

)
= ψ(M((0, x), (0, y), (0, u), (0, v)))

− ϕ
(
M1((0, x), (0, y), (0, u), (0, v)),M2((0, x), (0, y), (0, u), (0, v))

)
,
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for any ψ ∈ Ψ and ϕ ∈ Φ.

In Section 2 of this paper, we prove our main results. In Section 3, we draw some
corollaries from our results and give examples in support of our results.

2. MainResults

Theorem 2.1. Let (X, d,⪯) be a partially ordered complete metric space. Let A,B be
non-empty subsets of X. Let f : A→ B be a non-selfmapping such that the following
conditions hold:

(i) f is an almost generalized C−proximal weakly contractive map,
(ii) f is proximally increasing on A0 and f has the RJ property,
(iii) f(A0) ⊆ B0,
(iv) there exist elements x0, x1 ∈ A0 such that d(x1, fx0) = d(A,B) and x0 ⪯ x1,
(v) if {xn} is a nondecreasing sequence in X such that xn → x as n→ ∞, then xn ⪯ x

for all n ∈ N.

Then there exists x′ ∈ A0 such that d(x′, fx′) = d(A,B).

Proof. By condition (iv), there exist x0, x1 ∈ A0 such that

d(x1, fx0) = d(A,B) and x0 ⪯ x1. (2.1)

Since f(A0) ⊆ B0, we have fx1 ∈ B0 and hence there exists an element x2 ∈ A such that

d(x2, fx1) = d(A,B). (2.2)

By definition of A0 and B0, it follows that x2 ∈ A0. Since f is proximally increasing on
A0, from (2.1) and (2.2), we have x1 ⪯ x2. On continuing this process, we get a sequence
{xn} in A0 such that

d(xn, fxn−1) = d(A,B)
d(xn+1, fxn) = d(A,B)

}
, n = 1, 2, 3, ... , (2.3)

satisfying

x1 ⪯ x2 ⪯ x3 ⪯ ... ⪯ xn ⪯ xn+1 ⪯ ... n = 1, 2, 3, ... . (2.4)

If xn0 = xn0+1 for some n0 ∈ N, then xn0 is the best proximity point of f and hence the
conclusion of the theorem follows.

Now, we assume that any consecutive elements of {xn} are distinct. Since f is an
almost generalized C− proximal weakly contractive map, from (2.3) and (2.4), we have

ψ(d(xn, xn+1)) ≤ ψ(M(xn−1, xn, xn, xn+1))

− ϕ(M1(xn−1, xn, xn, xn+1),M2(xn−1, xn, xn, xn+1))

+ξψ(N(xn−1, xn, xn, xn+1)), (2.5)
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where

M(xn−1, xn, xn, xn+1) = max {d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn+1) + d(xn, xn)

2
},

M1(xn−1, xn, xn, xn+1) = max {d(xn−1, xn), d(xn−1, xn), d(xn−1, xn+1)},
M2(xn−1, xn, xn, xn+1) = max {d(xn−1, xn), d(xn, xn+1), d(xn, xn)} and

N(xn−1, xn, xn, xn+1) = min {d(xn−1, xn), d(xn, xn))}.
Now, we have

M(xn−1, xn, xn, xn+1) = max {d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn+1) + d(xn, xn)

2
} = max{d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn+1)

2
}

≤ max{d(xn−1, xn), d(xn, xn+1),
d(xn−1, xn) + d(xn, xn+1)

2
}

= max{d(xn−1, xn), d(xn, xn+1)}, (2.6)

M2(xn−1, xn, xn, xn+1) = max {d(xn−1, xn), d(xn, xn+1)}, (2.7)

N(xn−1, xn, xn, xn+1) = min {d(xn−1, xn), d(xn, xn)} = 0. (2.8)

From (2.7) and by the non-decreasing property of ϕ, we obtain

ϕ
(
d(xn−1, xn),max{d(xn−1, xn), d(xn, xn+1)}

)
≤ ϕ

(
max{d(xn−1, xn+1), d(xn−1, xn)},max{d(xn−1, xn), d(xn, xn+1)}

)
. (2.9)

On combining (2.5), (2.6), (2.8) and (2.9), it follows that

ψ(d(xn, xn+1)) ≤ ψ
(
max{d(xn−1, xn), d(xn, xn+1)}

)
−ϕ

(
d(xn−1, xn),max{d(xn−1, xn), d(xn, xn+1)}

)
. (2.10)

If d(xn, xn+1) > d(xn−1, xn) in (2.10), we get ϕ(d(xn−1, xn), d(xn, xn+1)) = 0, which yields
that d(xn−1, xn) = d(xn, xn+1) = 0,
a contradiction. Therefore d(xn, xn+1) ≤ d(xn−1, xn) for all n ∈ N.
Hence {d(xn, xn+1)} is a decreasing sequence of nonnegative real numbers. Thus there
exists a real number r ≥ 0 such that

lim
n→∞

d(xn, xn+1) = r. (2.11)

Suppose r > 0. On taking the limit superior as n→ ∞ on both sides of (2.10) and by
using the properties of ψ and ϕ, we have

lim sup
n→∞

ψ(d(xn, xn+1)) ≤ lim sup
n→∞

ψ
(
{d(xn−1, xn)}

)
− lim inf

n→∞
ϕ
(
d(xn−1, xn), {d(xn−1, xn)}

)
and hence ψ(r) ≤ ψ(r)− ϕ(r, r). This implies that ϕ(r, r) = 0. i.e., r = 0.

We now show that the sequence {xn} is Cauchy. Suppose that the sequence {xn} is
not Cauchy. Then by Lemma 1.8, there exists an ϵ > 0 for which we can find sequences of
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positive integers {mk} and {nk} with mk > nk > k such that d(xmk
, xnk

) ≥ ϵ,
d(xmk−1, xnk

) < ϵ and the identities (i)-(iii) of Lemma 1.8 and Remark 1.9 are satisfied.
Now, from (2.3), we have

d(xnk
, fxnk−1) = d(A,B)

d(xmk
, fxmk−1) = d(A,B).

}
Since f is an almost generalized C−proximal weakly contractive map and xnk

⪯ xmk
, it

follows that

ψ(d(xmk
, xnk

)) ≤ ψ(M(xnk−1, xmk−1, xnk
, xmk

))

− ϕ(M1(xnk−1, xmk−1, xnk
, xmk

),M2(xnk−1, xmk−1, xnk
, xmk

))

+ ξψ(N(xnk−1, xmk−1, xnk
, xmk

))

= ψ
(
max{d(xnk−1, xmk−1), d(xnk−1, xnk

), d(xmk−1, xmk
),

d(xnk−1, xmk
) + d(xmk−1, xnk

)

2
}

− ϕ
(
max{d(xnk−1, xmk−1), d(xnk−1, xnk

), d(xnk−1, xmk
)},

max{d(xnk−1, xmk−1), d(xmk−1, xmk
), d(xmk−1, xnk

)}
)

+ξψ
(
min{d(xnk−1, xnk

), d(xmk−1, xnk
)}
)
. (2.12)

On taking limit superior as k → ∞ on both sides of (2.12), by using Lemma 1.8 and
Remark 1.9, we get

ψ(ϵ) ≤ ψ(max{ϵ, 0, 0, ϵ+ ϵ

2
})− lim inf

k→∞
ϕ
(
max{d(xnk−1, xmk−1), d(xnk−1, xnk

),

d(xnk−1, xmk
)},max{d(xnk−1, xmk−1), d(xmk−1, xmk

), d(xmk−1, xnk
)}
)

≤ ψ(ϵ)− ϕ(ϵ, ϵ). This implies that ϕ(ϵ, ϵ) = 0. i.e., ϵ = 0,
a contradiction. Hence {xn} is Cauchy. Since {xn} is a subset of a complete metric space
(X, d), then there exists x′ ∈ X such that lim

n→∞
xn = x′. From RJ property of f , it follows

that x′ ∈ A0. Since f(A0) ⊆ B0, there exists z ∈ A0 such that d(z, fx′) = d(A,B).
Now we prove that z = x′. If possible suppose z ̸= x′. Since {xn} is a decreasing

sequence and xn → x′ as n→ ∞, by condition (v), we have xn ⪯ x′ for all n ∈ N. For any
n ∈ N, we have d(xn+1, fxn) = d(A,B) and d(z, fx′) = d(A,B). By using the fact that f
is an almost generalized C−proximal weakly contractive map, for any n ∈ N, it follows that
ψ(d(xn+1, z)) ≤ ψ(M(xn, x

′, xn+1, z))− ϕ(M1(xn, x
′, xn+1, z),

M2(xn, x
′, xn+1, z)) + ξψ(N(xn, x

′, xn+1, z))

= ψ
(
max{d(xn, x′), d(xn, xn+1), d(x

′, z),
d(xn, z) + d(x′, xn+1)

2
}

− ϕ
(
max{d(xn, x′), d(xn, xn+1), d(xn, z)},max{d(xn, x′), d(x′, z)}

)
+ξψ

(
min{d(xn, xn+1), d(x

′, xn+1), d(x
′, z)}

)
. (2.13)

On taking the limit superior as n→ ∞ on both sides of (2.13), we obtain

ψ(d(x′, z)) ≤ ψ(d(x′, z))− ϕ(d(x′, z), d(x′, z)),

which implies that
ϕ(d(x′, z), d(x′, z)) = 0 and hence d(x′, z) = 0. i.e., x′ = z.
Hence x′ is the best proximity point of f .
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Theorem 2.2. Let (X, d,⪯) be a partially ordered complete metric space. Let A,B be a
non-empty subsets of X. Let f : A→ B be a non-selfmapping such that the following
conditions hold:

(i) there exist ξ ≥ 0, ψ ∈ Ψ, ϕ ∈ Φ such that for all x, y, u, v ∈ A with x ⪯ y

d(u, fx) = d(A,B)
d(v, fy) = d(A,B)

}
=⇒ ψ(d(u, v)) ≤ ψ(M ′(x, y, u, v))

−ϕ(M1(x, y, u, v),M2(x, y, u, v)) + ξψ(N ′(x, y, u, v)), (2.14)

where

M ′(x, y, u, v) = max {d(x, y), d(x, u) + d(y, v)

2
,
d(x, v) + d(y, u)

2
},

M1(x, y, u, v) = max {d(x, y), d(x, u), d(x, v)},
M2(x, y, u, v) = max {d(x, y), d(y, v), d(y, u)} and

N ′(x, y, u, v) = min {d(x, u), d(y, u), d(y, v)},

(ii) f is proximally increasing on A0 and f has the RJ property,
(iii) f(A0) ⊆ B0,
(iv) there exist elements x0, x1 ∈ A such that d(x1, fx0) = d(A,B) and x0 ⪯ x1,
(v) if {xn} is a nondecreasing sequence in X such that xn → x as n→ ∞, then xn ⪯ x

for all n ∈ N.
Then there exists x′ ∈ A0 such that d(x′, fx′) = d(A,B).

Proof. Since the inequality (2.14) implies the inequality (1.2) the conclusion of this
theorem follows from Theorem 2.1.

Lemma 2.3. In addition to the hypotheses of Theorem 2.2, if x is a best proximity point of
f , and x is comparable to some u ∈ A0, then there exists a sequence {un} ⊆ A0 such that
d(un, fun−1) = d(A,B), un is comparable to x for n = 1, 2, 3, ... , and un → x as n→ ∞.

Proof. Let x be the best proximity point of f . i.e.,

d(x, fx) = d(A,B). (2.15)

Let u ∈ A0 such that x is comparable to u. Now, we set u0 = u. Suppose that either

u0 ⪯ x or x ⪯ u0.

We assume, without loss of generality, that

u0 ⪯ x with u0 ̸= x. (2.16)

Since f(A0) ⊆ B0 and u = u0 ∈ A0, we have fu0 ∈ B0. Hence there exists u1 ∈ A0 such
that

d(u1, fu0) = d(A,B). (2.17)

Since f is proximally increasing on A0, from (2.15), (2.16) and (2.17), we have u1 ⪯ x.
On continuing this process we can construct a sequence {un} in A0 such that

d(un, fun−1) = d(A,B), (2.18)

satisfying

un ⪯ x, n = 1, 2, 3, ... . (2.19)
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Since un ⪯ x, by combining (2.15), (2.18) and by the inequality (2.14), we have

ψ(d(un, x)) ≤ ψ(M ′(un−1, x, un, x))− ϕ(M1((un−1, x, un, x), M2((un−1, x, un, x))

+ ξψ(N ′((un−1, x, un, x)) = ψ(max{d(un−1, x),

d(un−1, un) + d(x, x)

2
,
d(un−1, x) + d(x, un)

2
})

− ϕ(max{d(un−1, x), d(un−1, un), d(un−1, x)},max{d(un−1, x), d(x, x),

d(x, un)}) + ξϕ(min{d(un−1, un), d(x, un), d(x, x)})

≤ ψ(max{d(un−1, x),
d(un−1, x) + d(x, un)

2
,
d(un−1, x) + d(x, un)

2
})

−ϕ(max{d(un−1, x), d(un−1, un)},max{d(un−1, x), d(x, un)}). (2.20)

If d(un, x) > d(un−1, x), from (2.20), we get

ψ(d(un, x)) ≤ ψ(d(un, x))− ϕ(d(un−1, x), d(un, x)),

this implies that ϕ(d(un−1, x), d(un, x)) = 0. i.e., d(un−1, x) = d(un, x) = 0,
a contradiction and hence d(un−1, x) is the maximum. Therefore, from (2.20), we obtain

ψ(d(un, x)) ≤ ψ(d(un−1, x))− ϕ(d(un−1, x), d(un−1, x)) < ψ(d(un−1, x)). (2.21)

By nondecreasing property of ψ, from (2.21), it follows that
d(un, x) ≤ d(un−1, x) and hence {d(un, x)} is a decreasing sequence of nonnegative real
numbers. Then there exists s ≥ 0 such that

lim
n→∞

d(un, x) = s. (2.22)

If possible suppose s > 0. On letting n→ ∞ in (2.21), we get ψ(s) ≤ ψ(s)− ϕ(s, s) this
implies that ϕ(s, s) = 0. i.e., s = 0,
a contradiction. Hence un → x as n→ ∞.

Theorem 2.4. In addition to the hypotheses of Theorem 2.2, assume the following.
Condition (H): for every x, y ∈ A0, there exists u ∈ A0 such that u is comparable to x and
y. Then f has a unique best proximity point in A0.

Proof. In view of the proof of Theorem 2.2, the set of best proximity points of f is
non-empty. Suppose that x, y ∈ A0 are two distinct best proximity points of f . That is,

d(x, fx) = d(A,B) and d(y, fy) = d(A,B). (2.23)

Case (i): x is comparable to y. i.e., either x ⪯ y or y ⪯ x.

We assume, without loss of generality, that x ⪯ y. By using the inequality (2.14), we
have

ψ(d(x, y)) ≤ ψ(M(x, y, x, y))− ϕ(M1(x, y, x, y),M2(x, y, x, y)) + ξψ(N(x, y, x, y))

= ψ(max{d(x, y), d(x, x), d(y, y)
2

,
d(x, y) + d(y, x)

2
})

− ϕ(max{d(x, y), d(x, x), d(x, y)},max{d(x, y), d(y, y), d(y, x)})
+ ξϕ(min{d(x, x), d(y, x), d(y, y)}) = ψ(d(x, y))− ϕ(d(x, y), d(x, y)).

The above inequality implies that ϕ(d(x, y), d(x, y)) = 0. i.e., d(x, y) = 0 and hence x = y.
Case (ii): x is not comparable to y.
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By condition (H), there exists u ∈ A0 such that u is comparable to both x and y.
We assume, without loss of generality, that u ⪯ x and u ⪯ y. By Lemma 2.3, it follows
that un → x and un → y as n→ ∞.

Hence by the uniqueness of limit, we have x = y.

3. Corollaries and Examples

If ψ is the the identity map on [0,∞) in Theorem 2.1, we have the following.

Corollary 3.1. Let (X, d,⪯) be a partially ordered complete metric space. Let A,B be a
non-empty subsets of X. Let f : A→ B be non-selfmapping satisfying the following
condition:

there exist ξ ≥ 0, ϕ ∈ Φ such that for all x, y, u, v ∈ A with x ⪯ y

d(u, fx) = d(A,B)
d(v, fy) = d(A,B)

}
=⇒ d(u, v) ≤M(x, y, u, v)

−ϕ(M1(x, y, u, v),M2(x, y, u, v)) + ξN(x, y, u, v), (3.1)

where M(x, y, u, v), M1(x, y, u, v), M2(x, y, u, v) and N(x, y, u, v) are as in Definition
1.10. If conditions (ii)-(v) of Theorem 2.1 hold, then there exists x′ ∈ A0 such that
d(x′, fx′) = d(A,B).

Corollary 3.2. Let (X, d,⪯) be a partially ordered complete metric space. Let A,B be a
non-empty subsets of X. Let f : A→ B be a non-selfmapping satisfying the following
condition:

there exist ξ ≥ 0, ϕ ∈ Φ such that for all x, y, u, v ∈ A with x ⪯ y

d(u, fx) = d(A,B)
d(v, fy) = d(A,B)

}
=⇒ d(u, v) ≤M ′(x, y, u, v)

−ϕ(M1(x, y, u, v),M2(x, y, u, v)) + ξN ′(x, y, u, v), (3.2)

where M ′(x, y, u, v), M1(x, y, u, v), M2(x, y, u, v) and N
′(x, y, u, v) are as in Theorem

2.2. If conditions (ii)-(v) of Theorem 2.2 hold, then there exists x′ ∈ A0 such that
d(x′, fx′) = d(A,B).

Proof. Since the inequality (3.2) implies the inequality (3.1), the conclusion of this
corollary follows from Corollary 3.2.

If ψ is the the identity map on [0,∞) and ξ = 0 in Theorem 2.1, we have the
following.

Corollary 3.3. Let (X, d,⪯) be a partially ordered complete metric space. Let A,B be a
non-empty subsets of X. Let f : A→ B be a non-selfmapping satisfying the following
condition:

there exists ϕ ∈ Φ such that for all x, y, u, v ∈ A with x ⪯ y

d(u, fx) = d(A,B)
d(v, fy) = d(A,B)

}
=⇒ d(u, v) ≤M(x, y, u, v)

−ϕ(M1(x, y, u, v),M2(x, y, u, v)), (3.3)

where M(x, y, u, v), M1(x, y, u, v) and M2(x, y, u, v) are as in Definition 1.10. If
conditions (ii)-(v) of Theorem 2.1 hold, then there exists x′ ∈ A0 such that
d(x′, fx′) = d(A,B).
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Corollary 3.4. Let (X, d,⪯) be a partially ordered complete metric space. Let A,B be a
nonempty subsets of X. Let f : A→ B be a non-selfmapping satisfying the following
condition:

there exists ϕ ∈ Φ such that for all x, y, u, v ∈ A with x ⪯ y

d(u, fx) = d(A,B)
d(v, fy) = d(A,B)

}
=⇒ d(u, v) ≤M ′(x, y, u, v)

−ϕ(M1(x, y, u, v),M2(x, y, u, v)) (3.4)

where M ′(x, y, u, v), M1(x, y, u, v) and M2(x, y, u, v) are as in Theorem 2.2. If
conditions (ii)-(v) of Theorem 2.2 are satisfied, then there exists x′ ∈ A0 such that
d(x′, fx′) = d(A,B).

Proof. Since the inequality (3.4) implies the inequality (3.3), the conclusion of this
corollary follows from Corollary 3.3.

The following example is in support of Theorem 2.1.

Example 3.5. Let X = [0,∞)× [0,∞) with the Euclidean metric d. We define a partial
order ⪯ on X by

⪯:=
{(

(x1, x2), (y1, y2)
)
∈ X ×X|x1 = y1, x2 = y2

}
∪

{(
(0,

7

8
), (0,

1

2n
)
)
,
(
(0,

3

4
), (0,

1

2n+1
)
)
,(

(0,
1

2n
), (0,

1

2m
)
)
,
(
(0,

1

2n
), (0, 0)

)
| n,m = 1, 2, 3, ..., m > n

}
∪
{(

(0,
3

4
), (0, 0)

)
,
(
(0,

7

8
), (0, 0)

)}
, where

(x1, x2) ⪯ (y1, y2) ⇐⇒ x1 ≥ y1 and x2 ≥ y2 in the usual sense.

Let A = {0} × [0, 1] = A0, B = {2} × [0, 1] = B0. We define f : A→ B by

f(0, x) =

 (2, x2 ) if x ∈ [0, 34 )

(2, 2x− 1) if x ∈ [ 34 , 1].

Clearly d(A,B) = 2 and f(A0) ⊆ B0. Now, we choose
x0 = (0, 12 ), x1 = (0, 14 ), then d(x1, fx0) = d(A,B) and x0 ⪯ x1.

Now, we show that f is proximally increasing on A0. In this regard, let
(0, x), (0, y), (0, u) and (0, v) ∈ A0 such that

(0, x) ⪯ (0, y)
d((0, u), f(0, x)) = 2
d((0, v), f(0, y)) = 2.

 (3.5)

Case (i): (0, x) = (0, 78 ) ⪯ (0, 1
2n ) = (0, y) : n = 1, 2, 3, ... .

Since d((0, u), f(0, x)) = d((0, u), f(0, 78 )) = d((0, u), (2, 34 )) = 2, we have

u =
3

4
. (3.6)

From d((0, v), f(0, y)) = d((0, v), f(0, 1
2n )) = d((0, v), (2, 1

2n+1 )) = 2, we obtain

v =
1

2n+1
. (3.7)

From (3.6) and (3.7), it follows that (0, u) = (0, 34 ) ⪯ (0, 1
2n+1 ) = (0, v).
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Case (ii): (0, x) = (0, 34 ) ⪯ (0, 1
2n+1 ) = (0, y) : n = 1, 2, 3, ... .

Since d((0, u), f(0, x)) = d((0, u), f(0, 34 )) = d((0, u), (2, 12 )) = 2, we have

u =
1

2
. (3.8)

From d((0, v), f(0, y)) = d((0, v), f(0, 1
2n )) = d((0, v), (2, 1

2n+1 )) = 2, we obtain

v =
1

2n+2
. (3.9)

From (3.8) and (3.9), it follows that (0, u) = (0, 12 ) ⪯ (0, 1
2n+2 ) = (0, v).

Case (iii): (0, x) = (0, 1
2n ) ⪯ (0, 1

2m ) = (0, y) : n,m = 1, 2, 3, ... ,with m > n.

Since d((0, u), f(0, x)) = d((0, u), f(0, 1
2n )) = d((0, u), (2, 1

2n+1 )) = 2, we have

u =
1

2n+1
. (3.10)

Similarly, we get

v =
1

2m+1
. (3.11)

From (3.10) and (3.11), it follows that (0, u) = (0, 1
2n+1 ) ⪯ (0, 1

2m+1 ) = (0, v).

Case (iv): (0, x) = (0, 1
2n ) ⪯ (0, 0) = (0, y) : n = 1, 2, 3, ... .

Since d((0, u), f(0, x)) = d((0, u), f(0, 1
2n )) = d((0, u), (2, 1

2n+1 )) = 2, we have

u =
1

2n+1
. (3.12)

From d((0, v), f(0, y)) = d((0, v), f(0, 0)) = d((0, v), (2, 0)) = 2, we obtain

v = 0. (3.13)

From (3.12) and (3.13), it follows that (0, u) = (0, 1
2n+1 ) ⪯ (0, 0) = (0, v).

Case (v): (0, x) = (0, 34 ) ⪯ (0, 0) = (0, y).

Since d((0, u), f(0, x)) = d((0, u), f(0, 34 )) = d((0, u), (2, 12 )) = 2, we have

u =
1

2
. (3.14)

Similarly, from d((0, v), f(0, y)) = 2, we get

v = 0. (3.15)

From (3.14) and (3.15), it follows that (0, u) = (0, 12 ) ⪯ (0, 0) = (0, v).

Case (vi): (0, x) = (0, 78 ) ⪯ (0, 0) = (0, y).

Since d((0, u), f(0, x)) = d((0, u), f(0, 78 )) = d((0, u), (2, 34 )) = 2, we have

u =
3

4
. (3.16)

Similarly, from d((0, v), f(0, y)) = 2, we get

v = 0. (3.17)

From (3.16) and (3.17), it follows that (0, u) = (0, 34 ) ⪯ (0, 0) = (0, v).
Hence f is proximally increasing on A0.
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We now show that f satisfies the RJ property. For this purpose, let {(0, xn)} be any
sequence in A such that

lim
n→∞

(0, xn) = (0, x) and lim
n→∞

d((0, xn), f(0, xn)) = d(A,B).

Case (i): (0, xn) ∈ [0, 34 ) for n = 1, 2, ... .

2 = d(A,B) = lim
n→∞

d((0, xn+1), f(0, xn)) = lim
n→∞

d((0, xn+1), (2,
1

2
xn))

= d((0, x), (2,
1

2
x)).

This implies that x = 0. i.e., (0, 0) ∈ A0.
Case (ii): (0, xn) ∈ [ 34 , 1] for n = 1, 2, ... .

2 = d(A,B) = lim
n→∞

d((0, xn+1), f(0, xn)) = lim
n→∞

d((0, xn+1), (2, 2xn − 1))

= d((0, x), (2, 2x− 1)).

This implies that x = 1. i.e., (0, 1) ∈ A0.
Hence in any case (0, x) ∈ A0 so that f satisfies the RJ property.

Next, we show that f is an almost generalized C−proximal weakly contractive map.
We define functions ψ : [0,∞) → [0,∞) and ϕ : [0,∞)× [0,∞) → [0,∞) by

ψ(t) =


t
2 if t ∈ [0, 1]

t
1+t if t ≥ 1

and ϕ(s, t) =


s+t
8 for all s, t ∈ [0, 1]

1
2 otherwise .

Let (0, x), (0, y), (0, u) and (0, v) ∈ A such that

(0, x) ⪯ (0, y)
d((0, u), f(0, x)) = 2
d((0, v), f(0, y)) = 2.


Case (i): (0, x) = (0, 78 ), (0, y) = (0, 1

2n ), (0, u) = (0, 34 ), (0, v) = (0, 1
2n+1 ) : n = 1, 2, 3, ... .

In this case,

ψ(d((0, u), (0, v))) = ψ(d((0,
3

4
), (0,

1

2n+1
))) = ψ(

3

4
− 1

2n+1
) =

3

8
− 1

2n+2

≤ 13

32
− 5

2n+4
= ψ(

7

8
− 1

2n
)− ϕ(

7

8
− 1

2n+1
,
7

8
− 1

2n
) + 3× ψ(

1

8
)

= ψ
(
M

(
(0, x), (0, y), (0, u), (0, v)

))
− ϕ

(
M1

(
(0, x), (0, y), (0, u), (0, v)

)
,

M2

(
(0, x), (0, y), (0, u), (0, v)

))
+ ξψ(N

(
(0, x), (0, y), (0, u), (0, v)

))
.

Case (ii):(0, x) = (0, 34 ), (0, y) = (0, 1
2n+1 ), (0, u) = (0, 12 ), (0, v) = (0, 1

2n+2 ) : n = 1, 2, 3, ... .
In this case,

ψ(d((0, u), (0, v))) = ψ(d((0,
1

2
), (0,

1

2n+2
))) = ψ(

1

2
− 1

2n+2
) =

1

4
− 1

2n+3

≤ 15

16
− 29

2n+5
= ψ(

3

4
− 1

2n+1
)

− ϕ(
3

4
− 1

2n+2
,
3

4
− 1

2n+1
) + 3× ψ(

1

2
− 1

2n+2
)

= ψ
(
M

(
(0, x), (0, y), (0, u), (0, v)

))
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− ϕ
(
M1

(
(0, x), (0, y), (0, u), (0, v)

)
,M2

(
(0, x), (0, y), (0, u), (0, v)

))
+ ξψ(N

(
(0, x), (0, y), (0, u), (0, v)

))
.

The following are the other possible cases.
Case (iii): (0, x) = (0, 1

2n ), (0, y) = (0, 1
2m ), (0, u) = (0, 1

2n+1 ),

(0, v) = (0, 1
2m+1 ) : n,m = 1, 2, 3, ... with m > n.

Case (iv): (0, x) = (0, 1
2n ), (0, y) = (0, 0), (0, u) = (0, 1

2n+1 ), (0, v) = (0, 0) :
n = 1, 2, 3, ... .
Case (v): (0, x) = (0, 78 ), (0, y) = (0, 0), (0, u) = (0, 34 ), (0, v) = (0, 0).

Case (vi): (0, x) = (0, 34 ), (0, y) = (0, 0), (0, u) = (0, 12 ), (0, v) = (0, 0).

By considering all the above possible cases, it is trivial to show that the inequality (1.2)
holds with ξ = 3.

Hence f, ψ and ϕ satisfy all the conditions of Theorem 2.1, and (0, 0) and (0, 1) are
two best proximity points of f in A0.

Remark 3.6. The inequality (1.2) fails to hold when ξ = 0 for any ψ ∈ Ψ and ϕ ∈ Φ. For
this purpose, we choose x = (0, 78 ), y = (0, 12 ), u = (0, 34 ), v = (0, 14 ).

ψ(d((0, u), (0, v))) = ψ(d((0,
3

4
), (0,

1

4
))) = ψ(

3

4
− 1

4
) = ψ(

1

2
)

≰ ψ(
3

8
)− ϕ(

5

8
,
3

8
) = ψ(

7

8
− 1

2
)− ϕ(

7

8
− 1

4
,
7

8
− 1

2
)

= ψ
(
M

(
(0, x), (0, y), (0, u), (0, v)

))
− ϕ

(
M1

(
(0, x), (0, y), (0, u), (0, v)

)
,M2

(
(0, x), (0, y), (0, u), (0, v)

))
.

The following example is in support of Theorem 2.4.

Example 3.7. Let X = {(2, 1
2n ), (1,

1
2n ) : n = 1, 2, 3, ..., .}

∪{(2, 0), (2, 1), (2, 34 ), (1, 0), (1,
3
4 ), (1, 1)}, with the Euclidean metric d. We define a partial

order ⪯ on X by

⪯ :=
{(

(x1, x2), (y1, y2)
)
∈ X ×X|x1 = y1, x2 = y2

}
∪

{(
(2, 1), (2,

1

2n
)
)
,
(
(2,

3

4
), (2,

1

2n+1
)
)
,(

(2,
1

2n
), (2,

1

2m
)
)
,
(
(2,

1

2n
), (2, 0)

)
| n,m = 1, 2, 3, ...,with m > n

}
∪
{(

(2, 1), (2, 0)
)
,(

(2,
3

4
), (2, 0)

)}
,where (x1, x2) ⪯ (y1, y2) ⇐⇒ x1 ≥ y1, x2 ≥ y2 and ≥ is the usual order.

Let A = {(2, 1
2n ) : n = 1, 2, 3, ...} ∪ {(2, 0), (2, 34 ), (2, 1)} = A0,

B = {(1, 1
2n ) : n = 1, 2, 3, ...} ∪ {(1, 0), (1, 34 ), (1, 1)} = B0.

We define f : A→ B by

f(2, x) =

 (1, x2 ) if x ∈ { 1
2n : n = 1, 2, 3, ... } ∪ {0}

(1, x− 1
4 ) if x ∈ { 3

4 , 1}.
Clearly d(A,B) = 1 and f(A0) ⊆ B0. Now, we choose

x0 = (2, 12 ), x1 = (2, 14 ), then d(x1, fx0) = d(A,B) and x0 ⪯ x1.
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Now, we show that f is proximally increasing on A0. In this case, let
(2, x), (2, y), (2, u) and (2, v) ∈ A0 such that

(2, x) ⪯ (2, y)
d((2, u), f(2, x)) = 1
d((2, v), f(2, y)) = 1.

 (3.18)

Case (i): (2, x) = (2, 1) ⪯ (2, 1
2n ) = (2, y) : n = 1, 2, 3, ...

Since d((2, u), f(2, x)) = d((2, u), f(2, 1)) = d((2, u), (1, 34 )) = 1, we have

u =
3

4
. (3.19)

From d((2, v), f(2, y)) = d((2, v), f(2, 1
2n )) = d((2, v), (1, 1

2n+1 )) = 1, we obtain

v =
1

2n+1
. (3.20)

From (3.19) and (3.20), it follows that (2, u) = (2, 34 ) ⪯ (2, 1
2n+1 ) = (2, v).

Case (ii): (2, x) = (2, 34 ) ⪯ (2, 1
2n+1 ) = (2, y) : n = 1, 2, 3, ...

Since d((2, u), f(2, x)) = d((2, u), f(2, 34 )) = d((2, u), (1, 12 )) = 1, we have

u =
1

2
. (3.21)

From d((2, v), f(2, y)) = d((2, v), f(2, 1
2n+1 )) = d((2, v), (1, 1

2n+2 )) = 1, we obtain

v =
1

2n+2
. (3.22)

From (3.21) and (3.22), it follows that (2, u) = (2, 12 ) ⪯ (2, 1
2n+2 ) = (2, v).

Case (iii): (2, x) = (2, 1
2n ) ⪯ (2, 1

2n ) = (2, y) : n,m = 1, 2, 3, ... with m > n.

Case (iv): (2, x) = (2, 1
2n ) ⪯ (2, 0) = (2, y) : n = 1, 2, 3, ...

Case (v): (2, x) = (2, 1) ⪯ (2, 0) = (2, y).

Case (vi): (2, x) = (2, 34 ) ⪯ (2, 0) = (2, y).
By considering all the above possible cases, it is easy to verify that f is proximally

increasing on A0.
We now show that f satisfies the RJ property. Since A and B are non-empty closed

subsets of X and f is continuous, then trivially f satisfies the RJ property.
We now show that the inequality (2.14) holds. We define functions

ψ : [0,∞) → [0,∞) and ϕ : [0,∞)× [0,∞) → [0,∞) by

ψ(t) =


t
2 if t ∈ [0, 1]

t− 1
2 if t ≥ 1

and ϕ(s, t) =


s+t
16 for all s, t ∈ [0, 1]

1
4 otherwise .

Let (2, x), (2, y), (2, u) and (2, v) ∈ A such that

(2, x) ⪯ (2, y)
d((2, u), f(2, x)) = 2
d((2, v), f(2, y)) = 2.

 (3.23)

Case (i): (2, x) = (2, 1), (2, y) = (2, 1
2n ), (2, u) = (2, 34 ), (2, v) = (2, 1

2n+1 ) : n = 1, 2, 3, ... .
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In this case,

ψ(d((2, u), (2, v))) = ψ(d((2,
3

4
), (2,

1

2n+1
))) = ψ(

3

4
− 1

2n+1
) =

3

8
− 1

2n+2

≤ 3

8
− 7

2n+5
= ψ(1− 1

2n
)− ϕ(1− 1

2n+1
, 1− 1

2n
) + 1× ψ(

1

2n+1
)

= ψ
(
M

(
(2, x), (2, y), (2, u), (2, v)

))
− ϕ

(
M1

(
(2, x), (2, y), (2, u), (2, v)

)
,M2

(
(2, x), (2, y), (2, u), (2, v)

))
+ ξψ(N

(
(2, x), (2, y), (2, u), (2, v)

))
.

By considering all elements of A satisfying (3.23), we can easily show that the inequality
(2.14) is satisfied with ξ = 1.
Hence f satisfies all the conditions of Theorem 2.4, and (2, 0) is unique best proximity
point of f in A0.

Here we observe that (2, 1) and (2, 34 ) are not comparable. But there exists (2, 0)

which is comparable to both (2, 1) and (2, 34 ) so that condition H of Theorem 2.4 holds.

Remark 3.8. The inequality (2.14) fails to hold when ξ = 0 for any ψ ∈ Ψ and ϕ ∈ Φ. For,
let x = (2, 1), y = (2, 12 ), u = (2, 34 ), v = (2, 14 ).

ψ(d((2, u), (2, v))) = ψ(d((2,
3

4
), (2,

1

4
))) = ψ(

3

4
− 1

4
) = ψ(

1

2
)

≰ ψ(
1

2
)− ϕ(

3

4
,
1

2
) = ψ(1− 1

2
)− ϕ(1− 1

4
, 1− 1

2
)

= ψ
(
M

(
(2, x), (2, y), (2, u), (2, v)

))
− ϕ

(
M1

(
(2, x), (2, y), (2, u), (2, v)

)
,M2

(
(2, x), (2, y), (2, u), (2, v)

))
.

Open Problem: Can we prove the uniqueness of best proximity point of Theorem 2.1
under the assumption ’condition (H)’ of Theorem 2.4?
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