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Abstract This paper aims to study the dynamical behavior of a prey–predator system where both prey

and predator populations are affected by disease with susceptible–infected. We also analysis the system

of the equilibrium point and stability analysis. We derive the boundedness. A system of four differential

equation susceptible–infected prey species and predator species has been proposed and analyzed. Com-

puter simulations are carried out to illustrate our analytical findings. In population ecology, in particular,

the predator–prey interaction in presence of an eco–epidemiological system of the biological implications

of analytical and numerical findings are discussed critically.
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1. Introduction

The study of prey–predator effect of dynamics with an susceptible–infected both prey
predator has a great important in ecological the prey–predator population[12]. An in-
fected place is one where germs or bacteria are causing a disease to spread among people
or animals. But this area has been neglected for a long time in theoretical ecology.
Recently a few researchers have cultured some prey–predator models for disease with
susceptible–infected [3]. Ecological populations suffer from various diseases. The effect
of disease in ecological system is an important area from mathematical model[5]. So, in
recent time ecologists and researchers are paying more and more affection to the devel-
opment of important tool along with experimental ecology.
The literature abounds with such evidences, in the last few decades, mathematical models
have become extremely important tools in understanding and analyzing this spread and
susceptible–infected control of infection diseases [7]. They established that ecological pop-
ulation suffer from various diseases [10], [9]. The importance of viruses for marine and
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especially phytoplankton ecology has been acknowledged in several recent publications
using predation may defeat spatial spread of infection [4]. A prey–predator model with
infection in both prey and predator for numerous models have been cultured by various
researchers [6]. The dynamics in a harvested prey–predator model with susceptible–
infected –susceptible epidemic diseases in the prey, both the theoretical ecology and the
epidemiology are developed research field and treated separately[2], [1]. An epidemic
model includes the property of population growth, the spread rules of infectious diseases
and the related ecological factors to construct mathematical model reflecting the dynamic
properties of infection for effects of additional food in a susceptible and infected prey–
predator model has been formulated [8], [11]. Before presenting the another extension
involves treating the system with stage structure which is compartmentalizing a species
class into mature and immature class. Many researchers study the prey and predator
models where there are stage structures in [15], [16]. The Leslie –Grower model with type
II functional response is represented by switching from simple to complex dynamics in
a predator–prey parasite model. For an interplay between infection rate and incubation
delay [13]. Eco–epidemiology is a branch in mathematical biology which considers both
the ecological and epidemiological issues simultaneously. It is well known that the prey–
predator harvesting as a disease control measure in an eco–epidemiological system[14].
Now we will present some examples of the role of environmental disturbance in an eco–
epidemiological model with disease from external source [4]. Viral, bacterial and parasitic
for in recent times, harvesting is an important issue in the predator–prey system where
both species are infected by some transmissible diseases [6]. A study of harvesting in a
predator–prey model with disease in both populations.

2. Method for selection of parameter values

The methodology to select parameter values for simulation experiments is based on the
dynamical representation of a given model. For example consider the 4D model system
given below, obtained by coupling the RM model with the Leslie–Gower model, which
is schematically. Most real–world problems are highly nonlinear and a large number of
them can be modeled in the form of a system of nonlinear ordinary differential equations
with computer simulations of such mathematical models are being used extensively to
solve such problems.
The process of mathematical modeling can be divided into three major steps as follows
(1) Obtain a clear idea of the various types of laws governing the problem.
(2) Idealize or simplify the problem by introducing certain assumptions and to convert
the problem into mathematical equations.
(3) Solve the mathematical equations and interpret the results, this requires analysis of
analytical, numerical and graphical tools.

We make the following assumptions to formulate the mathematical model assumption:
(i) We have considered ”eco–epidemiology” a prey–predator ecosystem where the total
prey–predator population densities are denoted by M and N respectively. It is assumed
that both the prey and the predator are susceptible to some transmissible disease like
viral disease.
(ii) We have considered an eco–epidemiology prey–predator populations are divided into
two classes (1) Susceptible prey (W) and infected prey (x) and (2) Susceptible predator
(y) and infected predator (z).
(iii) We have assumed that the prey species is a commutative species and susceptible
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prey (W) is capable of reproducing with logistic law having carrying capacity K1 and
intrinsic growth rate r1. Infected prey (x) is capable of reproducing with logistic law
having carrying capacity K2 and intrinsic growth rate r2.

dW

dt
= W

(
r1

(
1− W

K1

))
,
dx

dt
= x

(
r2

(
1− x

K2

))
Assumption of the model of the prey–predator for susceptible–infected species are

dW

dt
= W

(
r1

(
1− W

K1

)
− c1 y − a1z − αx

)
dx

dt
= x

(
r2

(
1− x

K2

)
− c2 y − a2z + αW

)
dy

dt
= y (c3W − β z + a3x− d1)

dz

dt
= z (c4W + β y + a4x− d2) (2.1)

Let r1, r2 are the intrinsic growth rate of the susceptible prey and infected prey, respec-
tively. Let c1, c2 are the capture rate of the susceptible prey and infected prey by the
susceptible predator, respectively. Let a1, a2 are the capture rate of the susceptible prey
and infected prey by the infected predator, respectively. Let c3, c4 are the conversion
factors for the susceptible predator and the infected predator, respectively, due to con-
sumption of the susceptible prey. Let a3, a4 are the conversion factors for the susceptible
predator and the infected predator, respectively, due to consumption of the infected prey.
Let d1, d2 are the over–crowding in the susceptible predator and infected predator respec-
tively. Let α is force of infection between the susceptible prey and the infected prey. Let
β is force of infection between the susceptible predator and the infected predator.

3. Range of the interval in susceptible and infected species

In this model, we consider biological phenomena parameters that are imprecise in
nature.
An interval number A is a closed interval [al, ar] and is defined by

A = {α : al ≤ α ≤ ar, α ∈ R}

where R is the set of real numbers and al, ar are the left and right limits of the interval
number, respectively.
An interval–valued number â on [0, 1] is a closed subinterval of [0,1] that is â = [al, au] such
that 0 ≤ al ≤ au ≤ 1, where al and au are the lower and upper limits of â, respectively.
In this notation, 0̂ = [0, 0] and 1̂ = [1, 1]. For any two interval numbers â = [al, au] and

b̂ = [bl, bu] on [0, 1] we define

â ≤ b̂ ⇔ al ≤ bl and au ≤ bu

â = b̂ ⇔ al = bl and au = bu

Before the work is interval valued function defined. present this work is very different
and not for the function define just use in the range of interval [0, 1] is α, β for force of
infection between the susceptible prey and infected prey, force of infection between the
susceptible predator and the infected predator respectively.
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4. Boundedness results

In this section we have proof of the boundedness theorem.
Theorem 4.1 Both prey are always bounded above for r1 > 0,K1 > 0.

Proof If W(0)=0, then the result is trivial, if W (0) > 0, Then W (t) > 0 for all t on

adding equation (2.1) we obtain

dW

dt
≤ r1W (1− W

K1
)

dx

dt
≤ r2x(1−

x

K2
), lim sup

t−→∞
W (t) ≤ K1, lim sup

t−→∞
x(t) ≤ K2

Theorem 4.2 Both predator are always bounded above

Proof If y(0) = 0 the result is obvious.

we obtain the equation (2.1) If y(0) > 0, then dy
dt < 0 if d1y > 1 dz

dt < 0 if d2z > 1

lim sup
t−→∞

y(t) ≤ 1
d1
, lim sup

t−→∞
z(t) ≤ 1

d2

Theorem 4.3 The trajectories of system (2.1) are bounded.

Proof Define the function l = W+x+y+z and take its time derivative along the solution

of (2.1)
dl

dt
=

dW

dt
+

dx

dt
+

dy

dt
+

dz

dt

now dl
dt + ρl = r1W (1− W

k1
)+ r2x(1− x

k2
)− d1y− d2z+ ρW + ρx+ ρy+ ρz+(ρ+ r1)W +

(ρ+ r2)x+ (ρ− d1)y + (ρ− d2)z − r1W
2

k1
− r2x

2

k2

where ρ is a positive constant for ρ > d1 or ρ > d2 ρ(d1 + d2) given ϵ > 0 there exists to
such that t on t ≥ t0
dl
dt + ρl ≤ m+ ϵ,m = min{(ρ+ r1), (ρ+ r2), (ρ− d1), (ρ− d2)}
Hence d

dt (le
ρt) ≤ (m+ ϵ)eρt l(t) ≤ l(t0)e

−ρ(t−t0) + (m+t)
ρ (1− e−ρ(t−t0))

Letting t −→ 0 then letting ϵ −→ 0

lim sup
t−→∞

l(t) ≤ m

ρ

On the initial conditions. Hence the system (2.1) are bounded.

5. Analytical solution of critical point and stability analysis

The equilibrium point of the parametric model (2.1) is given by steady state equations
dW
dt = dx

dt = dy
dt = dz

dt = 0. The system has 13 equilibrium points, and after algebraic
calculation we get the trivial, axial and non–trivial equilibrium points as follows.
(1) The trivial equilibrium point are

Ξ1 {W = 0, x = 0, y = 0, z = 0}
(2) The infected prey–free and both predator–free equilibrium point are

Ξ2 {W = K1, x = 0, y = 0, z = 0}
(3) Susceptible prey–free and both predator–free equilibrium point are

Ξ3 {W = 0, x = K2, y = 0, z = 0}
(4) Infected prey predator–free equilibrium point are
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Ξ4

{
W = d1

c3
, x = 0, y = 1

c1
r1

(
K1c3−d1

K1c3

)
, z = 0

}
(5) Infected prey and susceptible predator–free equilibrium point are

Ξ5

{
W = d2

c4
, x = 0, y = 0, z = 1

a1
r1

(
K1c4−d2

K1c4

)}
(6) Susceptible prey and infected predator–free equilibrium point are

Ξ6

{
W = 0, x = d1

a3
, y = 1

c2
r2

(
K2a3−d1

K2a3

)
, z = 0

}
(7) susceptible prey–predator free equilibrium point are

Ξ7

{
W = 0, x = d2

a4
, y = 0, z = 1

a2
r2

(
K2a4−d2

K2a4

)}
(8) Both prey free equilibrium point are

Ξ8

{
W = 0, x = 0, y = d2

β , z = −d1

β

}
(9) Infected predator free equilibrium point are

Ξ9 {W = ϑ1, x = ϑ2, y = ϑ3, z = 0}
Where

ϑ1 = −−a3c2k1k2r1 + a3c1k1k2r2 + αc2d1k1k2 − c1d1k1r2
αa3c1k1k2 + a3c2k2r1 − αc2c3k1k2 + c1c3k1r2

,

ϑ2 = −−αc1d1k1k2 − c2d1k2r1 + c2c3k1k2r1 − c1c3k1k2r2
αa3c1k1k2 + a3c2k2r1 − αc2c3k1k2 + c1c3k1r2

,

ϑ3 = −−a3αk1k2r1 − a3k2r1r2 + αc3k1k2r2 − c3k1r1r2 + α2d1k1k2 + d1r1r2
αa3c1k1k2 + a3c2k2r1 − αc2c3k1k2 + c1c3k1r2

(10) Infected prey free equilibrium point are

Ξ10 {W = ϑ4, x = 0, y = ϑ5, z = ϑ6}
Where

ϑ4 = −−a1d1k1 + c1d2k1 − βk1r1
a1c3k1 − c1c4k1 + βr1

,

ϑ5 = −a1c4d1k1 − a1c3d2k1 + βc4k1r1 − βd2r1
β (a1c3k1 − c1c4k1 + βr1)

,

ϑ6 = −−c1c4d1k1 + c1c3d2k1 − βc3k1r1 + βd1r1
β (a1c3k1 − c1c4k1 + βr1)

(11) susceptible predator free equilibrium point are

Ξ11 {W = ϑ7, x = ϑ8, y = 0, z = ϑ9}
Where

ϑ7 = −αa2d2k1k2 − a1d2k1r2 − a2a4k1k2r1 + a1a4k1k2r2
−αa2c4k1k2 + a1c4k1r2 + αa1a4k1k2 + a2a4k2r1

,

ϑ8 = −a2c4k1k2r1 − a1c4k1k2r2 − αa1d2k1k2 − a2d2k2r1
−αa2c4k1k2 + a1c4k1r2 + αa1a4k1k2 + a2a4k2r1

ϑ9 = −−a4αk1k2r1 − a4k2r1r2 + αc4k1k2r2 − c4k1r1r2 + α2d2k1k2 + d2r1r2
−αa2c4k1k2 + a1c4k1r2 + αa1a4k1k2 + a2a4k2r1

(12) Susceptible prey free equilibrium point are

Ξ12 {W = 0, x = ϑ10, y = ϑ11, z = ϑ12}
where

ϑ10 = −−a2d1k2 + c2d2k2 − βk2r2
−a4c2k2 + a2a3k2 + βr2

,

ϑ11 = −a2a4d1k2 − a2a3d2k2 + a4βk2r2 − βd2r2
β (−a4c2k2 + a2a3k2 + βr2)

,
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ϑ12 = −−a4c2d1k2 + a3c2d2k2 − a3βk2r2 + βd1r2
β (−a4c2k2 + a2a3k2 + βr2)

(13) Non–trivial equilibrium point

Ξ13

{
W = W,x = x, y = y, z = z

}
.

The system of the equation (2.1) is Jacobian matrix given by
m11 −αW −Wc1 −a1W

αx m22 −xc2 −a2x

yc3 ya3 m33 −β y

zc4 za4 β z m44


Where m11 = r1 − 2 r1 W

K1
− c1 y − a1z − αx,m22 = r2 − 2 r2 x

K2
− c2 y − a2z + αW,m33 =

c3W − β z + a3x− d1,m44 = c4W + β y + a4x− d2

6. Nature of the equilibrium and stability analysis

In this section we shall discuss the stability properties of the critical point.
Theorem 6.1 Given the linearized system of equations (2.1) is trivial equilibrium point.

In which equilibrium point Ξ1(0, 0, 0, 0) is saddle point.
Proof The variation of the Jacobian matrix are

J0 =


r1 0 0 0

0 r2 0 0

0 0 −d1 0

0 0 0 −d2


The eigenvalues are λ1 = r1, λ2 = r2, λ3 = −d1, λ4 = −d2.

(1) An equilibrium point Ξ1(0, 0, 0, 0) is called a saddle point. If all eigenvalues of
matrix J0 have nonzero real parts is called a hyperbolic equilibrium point exists.
Then the eigenvalues of matrix J0 has at least of eigenvalues with a positive real
parts and at least one eigenvalues with a negative real part is called a saddle point.
Therefore the eigenvalues λ1 = r1 > 0, λ2 = r2 > 0, λ3 = −d1 < 0, λ4 = −d2 < 0
and that is r1 > 0, r2 > 0, d1 < 0, d1 < 0 is a saddle point.

Theorem 6.2 Given the linearized system of equations (2.1) is infected prey–free and
both predator–free equilibrium point. In which the equilibrium point Ξ2(K1, 0, 0, 0) are
source and saddle point.
Proof The variation of the Jacobian matrix are

J1 =


−r1 −αK1 −K1c1 −a1K1

0 r1 + αK1 0 0

0 0 K1c3 − d1 0

0 0 0 K1c4 − d2


The eigenvalues are λ1 = r1 + αK1, λ2 = K1c4 − d2, λ3 = K1c3 − d1, λ4 = −r1.

(1) An equilibrium point Ξ2(K1, 0, 0, 0) is called a sink. Since all of the eigenvalues
of matrix J1 have negative real parts. Therefore the eigenvalues λ1 = r1+αK1 >
0, λ2 = K1c4 − d2 > 0, λ3 = K1c3 − d1 > 0, λ4 = −r1 > 0 and that is K1c4 >
d2,K1c3 > d1, r1 < 0 is a sink.
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(2) An equilibrium point Ξ2(K1, 0, 0, 0) is called a saddle point. If all eigenvalues of
matrix J1 have nonzero real parts is called a hyperbolic equilibrium point exists.
Then the eigenvalues of matrix J1 has at least of eigenvalues with a positive real
parts and at least one eigenvalues with a negative real part is called a saddle
point. Therefore the eigenvalues λ1 = r1 + αK1 > 0, λ2 = K1c4 − d2 > 0, λ3 =
K1c3 − d1 > 0, λ4 = −r1 < 0 and that is K1c4 > d2,K1c3 > d1, r1 > 0 is a saddle
point.

Theorem 6.3 Given the linearized system of equations (2.1) is susceptible prey–free
and both predator–free equilibrium point. Then the equilibrium point Ξ3(0,K2, 0, 0) are
source and saddle point.
Proof The variation of the Jacobian matrix are

J2 =


−αK2 + r1 0 0 0

αK2 −r2 K2c2 −K2a2

0 0 K2a3 − d1 0

0 0 0 K2a4 − d2


The eigenvalues are λ1 = −r2, λ2 = K2a4 − d2, λ3 = K2a3 − d1, λ4 = −αK2 + r1.

(1) An equilibrium point Ξ3(0,K2, 0, 0) is called a sink. Since all of the eigenvalues
of matrix J2 have negative real parts. Therefore the eigenvalues λ1 = −r2 >
0, λ2 = K2a4 − d2 > 0, λ3 = K2a3 − d1 > 0, λ4 = −αK2 + r1 > 0 and that is
r2 < 0,K2a4 > d2,K2a3 > d1, r1 > αK2 is source.

(2) An equilibrium point Ξ3(0,K2, 0, 0) is called a saddle point. If all eigenvalues of
matrix J2 have nonzero real parts is called a hyperbolic equilibrium point exists.
Then the eigenvalues of matrix J2 has at least of eigenvalues with a positive real
parts and at least one eigenvalues with a negative real part is called a saddle point.
Therefore the eigenvalues λ1 = −r2 > 0, λ2 = K2a4 − d2 > 0, λ3 = K2a3 − d1 >
0, λ4 = −αK2 + r1 < 0 and that is r2 < 0,K2a4 > d2,K2a3 > d1, r1 > αK2 is a
saddle point.

Theorem 6.4 Given the linearized system of equations (2.1) is infected prey predator–
free equilibrium point. Then the equilibrium point (W = d1

c3
, x = 0, y = 1

c1
r1, z = 0) where

τ1 =
(

K1c3−d1

K1c3

)
is locally asymptotically stable if the following conditions hold as follows:

c2r2τ1c3 > c1(αd1 + c3r2), βr1τ1c3 > c1(c3d2 − c4d1).
Proof

J4 =


r1 − 2 d1r1

K1c3
− τ1r1 −αd1

c3
−d1c1

c3
−a1d1

c3

0 r2 − c2 r1 τ1
c1

+ αd1

c3
0 0

τ1r1 c3
c1

τ1r1 a3

c1
0 −β r1 τ1

c1

0 0 0 c4d1

c3
+ β r1 τ1

c1
− d2


The corresponding eigenvalues are

λ1 = −c2 r1 τ1c3 − α c1 d1 − r2 c1 c3
c1 c3

,

λ2 =
β r1 τ1c3 − c1 c3d2 + c1 c4d1

c1 c3
,
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λ3 = 1/2
−r1 (τ1K1c3 −K1c3 + 2 d1) +

√
r1 A

K1c3

λ4 = −1/2
r1 (τ1K1c3 −K1c3 + 2 d1) +

√
r1 A

K1c3
WhereA = −2 τ1r1 K1

2c3
2−4 τ1K1

2c3
2d1+

τ1
2K1

2c3
2+r1 K1

2c3
2+4 τ1r1 K1c3d1−4 r1 K1c3d1+4 r1 d1

2 Hence the equilibrium point
(4) is locally asymptotically stable if c2r2τ1c3 > c1(αd1+c3r2), βr1τ1c3 > c1(c3d2−c4d1).
Theorem 6.5 Given the linearized system of equations (2.1) is infected prey free and sus-

ceptible predator free. In which the equilibrium point
{
W = d2

c4
, x = 0, y = 0, z = 1

a1
r1τ2

}
where τ2 =

(
K1c4−d2

K1c4

)
is locally asymptotically stable if a2r2τ2c4 > a1(αd2+r2c4), βr1τ2c4 >

a1(d2a3 − d1c4).
Proof

J5 =


r1 − 2 d2r1

K1c4
− r1 τ2 −αd2

c4
−d2c1

c4
−a1d2

c4

0 r2 − a2r1 τ2
a1

+ αd2

c4
0 0

0 0 c3d2

c4
− β r1 τ2

a1
− d1 0

r1 τ2c4
a1

r1 τ2a4

a1

β r1 τ2
a1

0


The corresponding eigenvalues are

λ1 = −a2r1 τ2c4 − αa1d2 − r2 a1c4
a1c4

λ2 = −β r1 τ2c4 − d2c3a1 + d1a1c4
a1c4

λ3 = 1/2
−r1 (K1c4τ2 −K1c4 + 2 d2) +

√
−r1 B

K1c4
λ4 = −1/2 r1 (K1c4τ2−K1c4+2 d2)+

√
−r1 B

K1c4
WhereB = 2K1

2c4
2r1 τ2+4K1

2c4
2d2τ2−K1

2c4
2τ2

2−
K1

2c4
2r1 − 4 r1 K1c4d2τ2 + 4 r1 K1c4d2 − 4 r1 d2

2

Hence the equilibrium point (5) is locally asymptotically stable if τ2 =
(

K1c4−d2

K1c4

)
is lo-

cally asymptotically stable if a2r2τ2c4 > a1(αd2 + r2c4), βr1τ2c4 > a1(d2a3 − d1c4).
Theorem 6.6 Given the linearized system of equations (2.1) is susceptible prey free and

infected predator free. In which the equilibrium point
{
W = 0, x = d1

a3
, y = 1

c2
r2τ3, z = 0

}
where τ3 =

(
K2a3−d1

K2a3

)
is locally asymptotically stable if c1r2τ3a3 > c2(r2a3−αd1), βr2τ3a3 >

c2(a3d2 − a4d1).
Proof

J6 =


r1 − c1 r2 τ3

c2
− αd1

a3
0 0 0

αd1

a3
r2 − 2 r2 d1

a3K2
− r2 τ3 −d1c2

a3
−a2d1

a3

r2 τ3c3
c2

r2 τ3a3

c2
0 −β r2 τ3

c2

0 0 0 β r2 τ3
c2

+ a4d1

a3
− d2


The corresponding eigenvalues are

λ1 = −c1 r2 τ3a3 + αd1c2 − r1 c2 a3
c2 a3

λ2 =
β r2 τ3a3 − c2 a3d2 + c2 a4d1

c2 a3
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λ3 = 1/2
−r2 (K2a3τ3 −K2a3 + 2 d1) +

√
−r2 C

K2a3

λ4 = −1/2
r2 τ3K2a3 − r2 K2a3 + 2 d1r2 +

√
−r2 C

K2a3
where C = 2 r2 K2

2a3
2τ3+4K2

2a3
2d1τ3−

K2
2a3

2τ3
2−r2 K2

2a3
2−4 r2 K2a3d1τ3+4 r2 K2a3d1−4 r2 d1

2 hence the equilibrium point
(6) is locally asymptotically stable if c1r2τ3a3 > c2(r2a3−αd1), βr2τ3a3 > c2(a3d2−a4d1).
Theorem 6.7 Given the linearized system of equations (2.1) is susceptible prey free and

susceptible predator free. Then the equilibrium point
{
W = 0, x = d2

a4
, y = 0, z = 1

a2
r2τ4

}
where τ4 =

(
K2a4−d2

K2a4

)
is locally asymptotically stable if a1r2τ4a4 > a2(r1a4−αd2), r2τ4βa4 >

a2(d2a3 − a4d1).
Proof

J6 =


r1 − a1r2 τ4

a2
− αd2

a4
0 0 0

αd2

a4
r2 − 2 r2 d2

a4K2
− r2 τ4 −d2c2

a4
−a2d2

a4

0 0 −β r2 τ4
a2

+ a3d2

a4
− d1 0

r2 τ4c4
a2

r2 τ4a4

a2

β r2 τ4
a2

0


The corresponding eigenvalues are

λ1 = −a1r2 τ4a4 + αd2a2 − r1 a2a4
a2a4

λ2 = −r2 τ4β a4 − d2a3a2 + a2a4d1
a2a4

λ3 = 1/2 −r2 (K2a4τ4−K2a4+2 d2)+
√
−r2 M

K2a4

λ4 = −1/2
r2 (K2a4τ4 −K2a4 + 2 d2) +

√
−r2 M

K2a4
whereM = 2K2

2a4
2r2 τ4+4K2

2a4
2d2τ4−

K2
2a4

2τ4
2−K2

2a4
2r2−4 r2 K2a4d2τ4+4 r2 K2a4d2−4 r2 d2

2 hence the equilibrium point
(7) is locally asymptotically stable if a1r2τ4a4 > a2(r1a4−αd2), r2τ4βa4 > a2(d2a3−a4d1).
Theorem 6.8 Given the linearized system of equations (2.1) is both susceptible–infected

prey equilibrium point. Then the equilibrium point
{
W = 0, x = 0, y = d2

β , z = −d1

β

}
is

locally asymptotically stable if βr1 > c1d2 − a1d1, βr2 > (c2d2 − a2d1).
Proof

J7 =


r1 − c1 d2

β + a1d1

β 0 0 0

0 r2 − d2c2
β + a2d1

β 0 0

d2c3
β

a3d2

β 0 −d2

−d1c4
β −d1a4

β −d1 0


The corresponding eigenvalues are

λ1 =
β r1 − c1 d2 + a1d1

β
λ2 =

β r2 − d2c2 + a2d1
β

λ3 =
√
d2d1 λ4 = −

√
d2d1 hence

the equilibrium point (8) is locally asymptotically stable if βr1 > c1d2 − a1d1, βr2 >
(c2d2 − a2d1).
Theorem 6.9 Given the linearized system of equations (2.1) is infected predator equilib-
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rium point. Then the equilibrium point {W = ϑ1, x = ϑ2, y = ϑ3, z = 0} is locally asymp-
totically stable.
Proof

J8 =


m11 −αϑ1 −ϑ1c1 −a1ϑ1

αϑ2 m22 −ϑ2c2 −a2ϑ2

ϑ3c3 ϑ3a3 m33 −β ϑ3

0 0 0 m44


where m11 = r1 − 2 r1 ϑ1

K1
− c1 ϑ3 − αϑ2,m22 = r2 − 2 r2 ϑ2

K2
− c2 ϑ3 + αϑ1,m33 = a3ϑ2 +

c3ϑ1 − d1,m44β ϑ3 + a4ϑ2 + c4ϑ1 − d2 The characteristic function are Λ1(λ) = A0λ
4 +

A1λ
3 +A2λ

2 +A3λ+A4

Where A1 = (−m44 −m33 −m22 −m11)
A2 = α2ϑ1ϑ2+c1 c3ϑ1ϑ3+c2 a3ϑ2ϑ3+m22m11+m33m11+m44m11+m33m22+m44m22+
m44m33

A3 = α c1 a3ϑ1ϑ2ϑ3−α c2 c3ϑ1ϑ2ϑ3−α2m33ϑ1ϑ2−α2m44ϑ1ϑ2−c1 c3m22ϑ1ϑ3−c1 c3m44ϑ1ϑ3−
c2 a3m11ϑ2ϑ3 − c2 a3m44ϑ2ϑ3 −m11m22m33 −m11m22m44 −m11m33m44 −m22m33m44,
A4 = m44(−α c1 a3ϑ1ϑ2ϑ3+α c2 c3ϑ1ϑ2ϑ3+α2m33ϑ1ϑ2+c1 c3m22ϑ1ϑ3+c2 a3m11ϑ2ϑ3+
m11m22m33).
By Routh Hurwitzs criterion, all the eigenvalues of J10 have negative real parts if (i)A0 >
0,
(ii)A1 > 0,
(iii)A3 > 0,
(vi)A1A2A3 > A2

3 + A2
1A4. We observe that the system (2.1) is locally asymptotically

stable around the positive equilibrium point (9) if the conditions stated in the theorem
holds.
Theorem 6.10 Given the linearized system of equations (2.1) is infected prey equilibrium

point. Then the equilibrium point {W = ϑ4, x = 0, y = ϑ5, z = ϑ6} is locally asymptoti-
cally stable.
Proof

J9 =


m11 −αϑ4 −ϑ4c1 −a1ϑ4

0 m22 0 0

ϑ5c3 ϑ5a3 m33 −β ϑ5

ϑ6c4 ϑ6a4 β ϑ6 m44


m11 = r1 − 2 r1 ϑ4

K1
− c1 ϑ5 − a1ϑ6,m22 = αϑ4 − c2 ϑ5 − a2ϑ6 + r2,m33 = −β ϑ6 + c3ϑ4 −

d1,m44 = β ϑ5+c4ϑ4−d2. The characteristic function are Λ2(λ) = B0λ
4+B1λ

3+B2λ
2+

B3λ+B4

Where
B0 = 1,
B1 = (−m44 −m33 −m22 −m11) ,
B2 = β2ϑ5ϑ6+c1 c3ϑ4ϑ5+a1c4ϑ4ϑ6+m22m11+m33m11+m44m11+m33m22+m44m22+
m44m33,
B3 = −β c1 c4ϑ4ϑ5ϑ6+β a1c3ϑ4ϑ5ϑ6−β2m11ϑ5ϑ6−β2m22ϑ5ϑ6−c1 c3m22ϑ4ϑ5−c1 c3m44ϑ4ϑ5−
a1c4m22ϑ4ϑ6 − a1c4m33ϑ4ϑ6 −m11m22m33 −m11m22m44 −m11m33m44 −m22m33m44,
B4 = β c1 c4m22ϑ4ϑ5ϑ6−β a1c3m22ϑ4ϑ5ϑ6+β2m11m22ϑ5ϑ6+c1 c3m22m44ϑ4ϑ5+a1c4m22m33ϑ4ϑ6+
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m11m22m33m44.
By Routh Hurwitzs criterion, all the eigenvalues of J9 have negative real parts if (i)B0 > 0,
(ii)B1 > 0,
(iii)B3 > 0,
(vi)B1B2B3 > B2

3 + B2
1B4. we observe that the system (2.1) is locally asymptotically

stable around the positive equilibrium point (10) if the conditions stated in the theorem
holds.
Theorem 6.11 Given the linearized system of equations (2.1) is susceptible predator free

equilibrium point. Then the equilibrium point {W = ϑ7, x = ϑ8, y = 0, z = ϑ9} is locally
asymptotically stable.
Proof

J10 =


m11 −αϑ7 −ϑ7c1 −a1ϑ7

αϑ8 m22 −ϑ8c2 −a2ϑ8

0 0 m33 0

ϑ9c4 ϑ9a4 β ϑ9 m44


Where
m11 = r1 − 2 r1 ϑ7

K1
− a1ϑ9 − αϑ8,m22 = r2 − 2 r2 ϑ8

K2
− a2ϑ9 + αϑ7,m33 = −β ϑ9 +

a3ϑ8 + c3ϑ7 − d1,m44 = a4ϑ8 + c4ϑ7 − d2. The characteristic function are Λ3(λ) =
C0λ

4 + C1λ
3 + C2λ

2 + C3λ+ C4

Where
C0 = 1,
C1 = (−m44 −m33 −m22 −m11) ,
C2 = α2ϑ7ϑ8+a1c4ϑ7ϑ9+a2a4ϑ8ϑ9+m22m11+m33m11+m44m11+m33m22+m44m22+
m44m33

C3 = αa1a4ϑ7ϑ8ϑ9−αa2c4ϑ7ϑ8ϑ9−α2m33ϑ7ϑ8−α2m44ϑ7ϑ8−a1c4m22ϑ7ϑ9−a1c4m33ϑ7ϑ9−
a2a4m11ϑ8ϑ9 − a2a4m33ϑ8ϑ9 −m11m22m33 −m11m22m44 −m11m33m44 −m22m33m44,
C4 = −αa1a4m33ϑ7ϑ8ϑ9 + αa2c4m33ϑ7ϑ8ϑ9 + α2m33m44ϑ7ϑ8 + a1c4m22m33ϑ7ϑ9 +
a2a4m11m33ϑ8ϑ9 + m11m22m33m44. By Routh Hurwitzs criterion, all the eigenvalues
of J10 have negative real parts if (i)C0 > 0,
(ii)C1 > 0,
(iii)C3 > 0,
(vi)C1C2C3 > C2

3 + C2
1C4. we observe that the system (2.1) is locally asymptotically

stable around the positive equilibrium point (11) if the conditions stated in the theorem
holds.
Theorem 6.12 Given the linearized system of equations (2.1) is susceptible prey free

equilibrium point. Then the equilibrium point {W = 0, x = ϑ10, y = ϑ11, z = ϑ12} is lo-
cally asymptotically stable.
Proof

J11 =


m11 0 0 0

αϑ10 m22 −ϑ10c2 −a2ϑ10

ϑ11c3 ϑ11a3 m33 −β ϑ11

ϑ12c4 ϑ12a4 β ϑ12 m44


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where m11 = −αϑ10 − c1 ϑ11 − a1ϑ12 + r1,m22 = r2 − 2 r2 ϑ10

K2
− c2 ϑ11 − a2ϑ12,m33 −

β ϑ12 + a3ϑ10 − d1,m44 = β ϑ11 + a4ϑ10 − d2. The characteristic function are Λ4(λ) =
D0λ

4 +D1λ
3 +D2λ

2 +D3λ+D4.
Where
D0 = 1,
D1 = (−m44 −m33 −m22 −m11)
D2 = β2ϑ11ϑ12 + c2 a3ϑ10ϑ11 + a2a4ϑ10ϑ12 +m22m11 +m33m11 +m44m11 +m33m22 +
m44m22 +m44m33,
D3 = −β c2 a4ϑ10ϑ11ϑ12+β a2a3ϑ10ϑ11ϑ12−β2m11ϑ11ϑ12−β2m22ϑ11ϑ12−c2 a3m11ϑ10ϑ11−
c2 a3m44ϑ10ϑ11−a2a4m11ϑ10ϑ12−a2a4m33ϑ10ϑ12−m11m22m33−m11m22m44−m11m33m44−
m22m33m44

D4 = β c2 a4m11ϑ10ϑ11ϑ12−β a2a3m11ϑ10ϑ11ϑ12+β2m11m22ϑ11ϑ12+c2 a3m11m44ϑ10ϑ11+
a2a4m11m33ϑ10ϑ12 +m11m22m33m44

By Routh Hurwitzs criterion, all the eigenvalues of J11 have negative real parts if (i)D0 >
0,
(ii)D1 > 0,
(iii)D3 > 0,
(vi)D1D2D3 > D2

3 + D2
1D4. we observe that the system (2.1) is locally asymptotically

stable around the positive equilibrium point (12) if the conditions stated in the theorem
holds.
Theorem 6.13 Given the linearized system of equations (2.1) is nontrivial equilibrium

point. Then the equilibrium point
{
W = W,x = x, y = y, z = z

}
is locally asymptoti-

cally stable.
Proof

J12 =


m11 −αW −Wc1 −a1W

αx m22 −xc2 −a2x

yc3 ya3 m33 −β y

zc4 za4 β z m44


Where m11 = r1 − 2 r1 W

K1
− c1 y − a1z − αx,m22 = r2 − 2 r2 x

K2
− c2 y − a2z + αW,m33 =

Wc3 − β z + xa3 − d1,m44 = Wc4 + β y + xa4 − d2. The characteristic function are
Λ4(λ) = E0λ

4 + E1λ
3 + E2λ

2 + E3λ+ E4

where
E0 = 1
E1 = (−m44 −m33 −m22 −m11)
E2 = zc4a1W + za4a2x + β2zy + m44m11 + m44m22 + m44m33 + ya3xc2 + yc3Wc1 +
α2xW +m22m11 +m33m11 +m33m22

E3 = −xza2a4m11−xza2a4m33−Wza1c4m22−Wza1c4m33−yxc2 a3m44−yWc1 c3m44−
yxc2 a3m11−yWc1 c3m22+xWzαa1a4+yxzβ a2a3+yWzβ a1c3+yxWα c1 a3−yxWα c2 c3−
yWzβ c1 c4 − xWzαa2c4 − yxzβ c2 a4 − yzβ2m11 − yzβ2m22 − xWα2m44 − xWα2m33 −
m11m22m33 −m11m22m44 −m11m33m44 −m22m33m44

E4 = yWzβ c1 c4m22+xWzαa2c4m33+yxzβ c2 a4m11−xWzαa1a4m33−yxzβ a2a3m11−
yWzβ a1c3m22−yxWα c1 a3m44+yxWα c2 c3m44+λ+yxWzc1 a2a4c3+yxWzc2 a1a3c4+
zc4yxWαβ c2 − zc4yxWc1 a2a3 − za4yxWαβ c1 − za4yxWc2 a1c3 + β zyxWαa1a3 −
β zyxWαa2c3+yzβ2m11m22+xWα2m33m44+yxWzα2β2+xza2a4m11m33+Wza1c4m22m33+
yxc2 a3m11m44 + yWc1 c3m22m44 +m11m22m33m44
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By Routh Hurwitzs criterion, all the eigenvalues of J12 have negative real parts if (i)E0 >
0,
(ii)E1 > 0,
(iii)E3 > 0,
(vi)E1E2E3 > E2

3 + E2
1E4. We observe that the system (2.1) is locally asymptotically

stable around the positive equilibrium point (13) if the conditions stated in the theorem
holds.

7. Numerical solution

Numerical solution are equally important beside the analytical findings to verify them.
In this section we present computer simulation of different solutions of the system (2.1)
using maple 18 programming.

(1) First we take the parameters of the system as ρ1 = (α = 10, β = 10, c1 =
0.01, c2 = 0.06, r1 = 1, r2 = 1,K1 = 1,K2 = 1, a1 = .001, a2 = 0.001, a3 =
5, a4 = 2, c3 = 2, c4 = 6, d1 = 0.1, d2 = 0.1). Then the initial conditions satisfied
W (0) = 0, x (0) = 0, y (0) = 0, z (0) = 11 is infected predator population (see
Figure 1).

(2) If we take the parameters of the system as ρ1. Then the initial conditions
satisfied W (0) = 0, x (0) = 1, y (0) = 0, z (0) = 0 is infected prey population (see
Figure 2).

(3) If we take the parameters of the system as ρ1. Then the initial conditions sat-
isfied W (0) = 0, x (0) = 0, y (0) = 2, z (0) = 0 is susceptible predator population
(see Figure 3)

(4) If we take the parameters of the system as ρ1. Then the initial conditions
satisfied W (0) = 1, x (0) = 0, y (0) = 0, z (0) = 0 is susceptible prey population
(see Figure 4).

(5) Now we take the parameters of the system as ρ1. Then the initial conditions
satisfied W (0) = 0, x (0) = 0, y (0) = 0.5, z (0) = 0.1 is both susceptible–infected
predator population (see Figure 5). That is a periodic solution.

(6) Now we take the parameters of the system as ρ1. Then the initial conditions
satisfied W (0) = 5, x (0) = 0, y (0) = 0, z (0) = 5 is susceptible prey and infected
predator population (see Figure 6).

(7) Now we take the parameters of the system as ρ1. Then the initial conditions
satisfied W (0) = 0, x (0) = 90, y (0) = 90, z (0) = 0 is susceptible predator and
infected prey population (see Figure 7).

(8) Now we take the parameters of the system as ρ1. Then the initial conditions
satisfied W (0) = 10, x (0) = 10, y (0) = 0, z (0) = 0 is both susceptible–infected
prey population (see Figure 8). That is a periodic solution.

(9) If we take the parameters of the system as ρ1. Then the initial conditions satis-
fied W (0) = 0.100, x (0) = 0.100, y (0) = 0.100, z (0) = 0.100 is both susceptible–
infected prey–predator population (see Figure 9).

(10) If we take the parameters of the system as ρ2 = (α = 0.02, β = 0.04, c1 =
10, c2 = 6, r1 = 20, r2 = 31,K1 = 1,K2 = 1, a1 = 10, a2 = 10, a3 = 15, a4 =
21, c3 = 28, c4 = 16, d1 = 0.1, d2 = 0.1). Then the initial conditions satisfied
W (0) = 400, x (0) = 400, y (0) = 400, z (0) = 400 is both interaction of the
susceptible–infected prey–predator population (see Figure 10).
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(11) If we take the parameters of the system as ρ2. Then the initial conditions
satisfied W (0) = 80, x(0) = 80, y(0) = 80, z(0) = 80 for interaction of the both
interaction of the susceptible–infected prey–predator population is locally asymp-
totically stable (see Figure 11).

(12) If we take the parameters of the system as ρ2. Then the initial conditions
satisfied W (0) = 40, x(0) = 40, y(0) = 40, z(0) = 40 for interaction of the both
interaction of the susceptible–infected prey–predator population is locally asymp-
totically stable (see Figure 12).

(13) If we take the parameters of the system as ρ2. Then the initial conditions sat-
isfied W (0) = 4, x(0) = 4, y(0) = 4, z(0) = 4 is interaction of the both interaction
of the susceptible–infected prey–predator population (see Figure 13).

(14) If we take the parameters of the system as ρ2. Then the initial conditions
satisfied W (0) = .40, x(0) = .40, y(0) = .40, z(0) = .40 is interaction of the both
interaction of the susceptible–infected prey–predator population (see Figure 14).

(15) If we take the parameters of the system as ρ2. Then the initial conditions
satisfied W (0) = 0.040, x (0) = 0.040, y (0) = 0.040, z (0) = 0.040 is interaction
of the both interaction of the susceptible–infected prey–predator population (see
Figure 15).

8. Conclusion

In this paper, we have studied aim eco-epidemiological model with the assumption that
both prey species diseases with susceptible–infection and both predator species diseases
susceptible–infection. The present investigation carried out to observe the stability and
equilibrium point, boundedness. Moreover, our numerical simulation suggests that in the
presence of the environmental fluctuation, the stability analysis is locally asymptotically
stable with different equilibrium point.
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Figure 1. The infected predator population.

Figure 2. The infected prey population.
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Figure 3. The susceptible predator population.

Figure 4. The susceptible prey population.
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Figure 5. The susceptible prey population.

Figure 6. Interaction of the susceptible prey and infected predator population.
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Figure 7. Interaction of the susceptible predator and infected prey population.

Figure 8. Interaction of the susceptible prey and infected prey population.
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Figure 9. Interaction of the both prey predator population.

Figure 10. Interaction of the both prey predator population.
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Figure 11. Interaction of the both prey predator population.

Figure 12. Interaction of the both prey predator population.
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Figure 13. Interaction of the both prey predator population.

Figure 14. Interaction of the both prey predator population.
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Figure 15. Interaction of the both prey predator population.

Figure 16. Interaction of the both prey predator population.
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Figure 17. Interaction of the both prey predator population.

Figure 18. Interaction of the both prey predator population.
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