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Abstract This paper aims to study the dynamical behavior of a prey—predator system where both prey
and predator populations are affected by disease with susceptible-infected. We also analysis the system
of the equilibrium point and stability analysis. We derive the boundedness. A system of four differential
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the predator—prey interaction in presence of an eco—epidemiological system of the biological implications
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1. INTRODUCTION

The study of prey—predator effect of dynamics with an susceptible—-infected both prey
predator has a great important in ecological the prey—predator population[12]. An in-
fected place is one where germs or bacteria are causing a disease to spread among people
or animals. But this area has been neglected for a long time in theoretical ecology.
Recently a few researchers have cultured some prey—predator models for disease with
susceptible-infected [3]. Ecological populations suffer from various diseases. The effect
of disease in ecological system is an important area from mathematical model[5]. So, in
recent time ecologists and researchers are paying more and more affection to the devel-
opment of important tool along with experimental ecology.

The literature abounds with such evidences, in the last few decades, mathematical models
have become extremely important tools in understanding and analyzing this spread and
susceptible-infected control of infection diseases [7]. They established that ecological pop-
ulation suffer from various diseases [10], [9]. The importance of viruses for marine and
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especially phytoplankton ecology has been acknowledged in several recent publications
using predation may defeat spatial spread of infection [4]. A prey—predator model with
infection in both prey and predator for numerous models have been cultured by various
researchers [6]. The dynamics in a harvested prey—predator model with susceptible—
infected —susceptible epidemic diseases in the prey, both the theoretical ecology and the
epidemiology are developed research field and treated separately[2], [I]. An epidemic
model includes the property of population growth, the spread rules of infectious diseases
and the related ecological factors to construct mathematical model reflecting the dynamic
properties of infection for effects of additional food in a susceptible and infected prey—
predator model has been formulated [8], [I1]. Before presenting the another extension
involves treating the system with stage structure which is compartmentalizing a species
class into mature and immature class. Many researchers study the prey and predator
models where there are stage structures in [15], [L6]. The Leslie —~Grower model with type
11 functional response is represented by switching from simple to complex dynamics in
a predator—prey parasite model. For an interplay between infection rate and incubation
delay [13]. Eco—epidemiology is a branch in mathematical biology which considers both
the ecological and epidemiological issues simultaneously. It is well known that the prey—
predator harvesting as a disease control measure in an eco—epidemiological system|[14].
Now we will present some examples of the role of environmental disturbance in an eco—

epidemiological model with disease from external source [1]. Viral, bacterial and parasitic
for in recent times, harvesting is an important issue in the predator—prey system where
both species are infected by some transmissible diseases [6]. A study of harvesting in a

predator—prey model with disease in both populations.

2. METHOD FOR SELECTION OF PARAMETER VALUES

The methodology to select parameter values for simulation experiments is based on the
dynamical representation of a given model. For example consider the 4D model system
given below, obtained by coupling the RM model with the Leslie-Gower model, which
is schematically. Most real-world problems are highly nonlinear and a large number of
them can be modeled in the form of a system of nonlinear ordinary differential equations
with computer simulations of such mathematical models are being used extensively to
solve such problems.

The process of mathematical modeling can be divided into three major steps as follows
(1) Obtain a clear idea of the various types of laws governing the problem.

(2) Idealize or simplify the problem by introducing certain assumptions and to convert
the problem into mathematical equations.

(3) Solve the mathematical equations and interpret the results, this requires analysis of
analytical, numerical and graphical tools.

We make the following assumptions to formulate the mathematical model assumption:
(i) We have considered ”eco—epidemiology” a prey—predator ecosystem where the total
prey—predator population densities are denoted by M and N respectively. It is assumed
that both the prey and the predator are susceptible to some transmissible disease like
viral disease.

(ii) We have considered an eco—epidemiology prey-predator populations are divided into
two classes (1) Susceptible prey (W) and infected prey (x) and (2) Susceptible predator
(v) and infected predator (z).

(iii) We have assumed that the prey species is a commutative species and susceptible
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prey (W) is capable of reproducing with logistic law having carrying capacity K; and
intrinsic growth rate ry. Infected prey (x) is capable of reproducing with logistic law
having carrying capacity Ko and intrinsic growth rate ro.

T () E ()

Assumption of the model of the prey—predator for susceptible-infected species are

dW 1%
_— '/‘/ 1 _— — — —
dt (rl ( Fl) C1Yy —aiz Oz:(:)

dx T
dt:x(rz <1_K2) —CQy—agz—l—aW>

d

d—g::y(c;gW—ﬁz—I—agx—dl)

dz

pr =z (csW + By + asz — da) (2.1)

Let 71,72 are the intrinsic growth rate of the susceptible prey and infected prey, respec-
tively. Let c¢1,co are the capture rate of the susceptible prey and infected prey by the
susceptible predator, respectively. Let a1, as are the capture rate of the susceptible prey
and infected prey by the infected predator, respectively. Let c3,c4 are the conversion
factors for the susceptible predator and the infected predator, respectively, due to con-
sumption of the susceptible prey. Let as, a4 are the conversion factors for the susceptible
predator and the infected predator, respectively, due to consumption of the infected prey.
Let d1, dy are the over—crowding in the susceptible predator and infected predator respec-
tively. Let « is force of infection between the susceptible prey and the infected prey. Let
B is force of infection between the susceptible predator and the infected predator.

3. RANGE OF THE INTERVAL IN SUSCEPTIBLE AND INFECTED SPECIES

In this model, we consider biological phenomena parameters that are imprecise in
nature.

An interval number A is a closed interval [a;, a,] and is defined by
A={a:aqy<a<a,a€R}

where R is the set of real numbers and a;, a, are the left and right limits of the interval
number, respectively.

An interval-valued number @ on [0, 1] is a closed subinterval of [0,1] that is @ = [a;, a,,] such
that 0 < a; < a, < 1, where a; and a, are the lower and upper limits of @, respectively.
In this notation, 0 = [0,0] and 1 = [1,1]. For any two interval numbers @ = [a;, a,] and
b= [br, by] on [0, 1] we define

agB@algbl and a, < by,

a=b< a, =b and a, = b,

Before the work is interval valued function defined. present this work is very different
and not for the function define just use in the range of interval [0, 1] is a, 8 for force of
infection between the susceptible prey and infected prey, force of infection between the
susceptible predator and the infected predator respectively.
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4. BOUNDEDNESS RESULTS

In this section we have proof of the boundedness theorem.
Theorem 4.1 Both prey are always bounded above for r; > 0, K7 > 0.

Proof If W(0)=0, then the result is trivial, if W(0) > 0, Then W (¢) > 0 for all t on

adding equation (2.1) we obtain

AW W
2D W - —
g ST Kl)

d

a < rex(l— i), limsup W(t) < Ky, limsupz(t) < Ky
dt Ky oo t—so00
Theorem 4.2 Both predator are always bounded above

Proof If y(0) = 0 the result is obvious.

we obtain the equation (2.1) If y(0) > 0, then % <0if diy>1% <0if dyz>1
limsupy(t) < %, limsup z(t) < é
t t—sr o0

—r 00

Theorem 4.3 The trajectories of system (2.1) are bounded.
Proof Define the function | = W4z +y+ 2 and take its time derivative along the solution

of (2.1)
di. dW ~dx dy @ dz
dt — dt ' dt ' dt ' dt
now %+pl =rmW(l- %)4’7’21‘(17 1) —diy —doz+ pW + pr+ py+pz+ (p+r)W +
(p+72)a+ (p—d)y+ (p— dp)z — P~ — 32
where p is a positive constant for p > dy or p > da p(dy + da) given € > 0 there exists to
such that t on t > tg
G+l <m+em=min{(p+71), (p+12), (p— dr), (p — d2)}
Hence & (le?) < (m + €)e? I(t) < I(to)e?(—t0) 4 (D (1 — g=plt—to))
Letting ¢t — 0 then letting ¢ — 0

limsupl(t) <

m
t—s o0 P

On the initial conditions. Hence the system (2.1) are bounded.

5. ANALYTICAL SOLUTION OF CRITICAL POINT AND STABILITY ANALYSIS

The equilibrium point of the parametric model (2.1) is given by steady state equations
% = ‘é—f = % = % = 0. The system has 13 equilibrium points, and after algebraic
calculation we get the trivial, axial and non—trivial equilibrium points as follows.

(1) The trivial equilibrium point are
51 {W=0,2=0,y=0,2z=0}
(2) The infected prey—free and both predator—free equilibrium point are
= {W =K;,2=0,y=0,2=0}
(3) Susceptible prey—free and both predator—free equilibrium point are
E3{W =0,2 = Ks,y =0,z =0}
(4) Infected prey predator—free equilibrium point are
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=4 {W = ‘Ci—;w =0,y = %7"1 (L{}Efc}dl)?z = O}
nfected prey and susceptible predator—free equilibrium point are
(5) Infected prey and ptible pred f quilibrium point
Es {W = %,x =0,y=0,z= im (71(}??;4‘12)}
usceptible prey and infected predator—free equilibrium point are
6) S ptible prey and infected predator—fi quilibri point
=6 {W =0,z = i—;,y = é?"g (7&;;;3%)72 = 0}
(7) susceptible prey—predator free equilibrium point are
2 W =00=2,y=0:= L (fu-t)l
(8) Both prey free equilibrium point are
=g {W:(),x =0,y = %,z = —%1}
(9) Infected predator free equilibrium point are

Eg{W =11,z =19,y =93,2 =0}

Where
—aszcokikary + ascikikors + acadikiks — c1dikirs
0y = —
Oéa,gclk‘lkg + a302k2r1 - O(CgCgk‘lk'Q + 0163k51T2
—Otcldlk‘lkig — nglk‘g?“l + 6203]{)1]{527‘1 — Clc3kj1k2’l“2
0y = —
aa301k1k2 + a302k2r1 — a6203k1k2 -+ 616316'17'2
9 —Clg()zklkg’/’l — CL3]€27"17‘2 + OéCg]ﬁkg’/’Q — Cgk‘l’/’ﬂ”g + 042d1/€1]€2 + d1T17"2
3=

O[a361k1]€2 + agcgkgrl — a0203k1k2 + Clcgle‘Q
(10) Infected prey free equilibrium point are
Epo{W =4,0 =0,y =95,z = Vs }
Where
9 —aydiky + cidoky — Bk
4=—

acsky — creaky + By

95 = _arcydiky — ayesdaky + Begkyry — Bdary
B (arcski — crcaky + Br) ’
_ —cicgdiky + eicgdaky — Beskiry 4 Bdiry

B (arcgky — cicaky + Bry)
(11) susceptible predator free equilibrium point are

E11 {W:ﬁ7733:198,y:0732199}

)

U =

Where

9 — oza2d2k1k2 — a1d2k1r2 — a2a4k1k27“1 + a1a4k’1k27'2
T _qagcakiks + arcakire + qaraskiks + azaskor

e — 0',204](71]4127’1 — CL164]€1]€27‘2 — Oéaldgk‘lkg — GQkoQTl
8~ —aascakiko + aicakire + aaragki ks + asaskory

9 —agoki1kory — agkorire + acqkikors — cakirire + Oé2d2]€1k2 + dory72
9= —

—aascakiks + arcakire + aaragki ks + asaskory
(12) Susceptible prey free equilibrium point are

Epp{W =0,z =110,y = V11,2 = Y12}

_ —agdiky + codaky — Bkary

—asCoka + azagks + fra
_ 7(12&4d1/€2 — agazdaky + a4 fkary — Bdary

B (—aacaks + azasks + Pra)

Y
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—ascadi ko + azcadoks — azBkars + Bdiro

B (—ascoks + azaszks + Pra2)
(13) Non-trivial equilibrium point

=13 {W:WJ::f,y:y,z:E}.
The system of the equation (2.1) is Jacobian matrix given by
mi1 —aW —WCl —a1W

1912:*

ax moo —XTC —asT
yes yas mass —By
zCy 2Q4 Bz Myq
Where mi1 =7 —2}—“/ —Cl1Y —a1Z — T, Moy :7“2—2% —coy —asz+aW,mss =

csW — Bz+azx —di,mys = c,W + By + agx — do

6. NATURE OF THE EQUILIBRIUM AND STABILITY ANALYSIS

In this section we shall discuss the stability properties of the critical point.
Theorem 6.1 Given the linearized system of equations (2.1) is trivial equilibrium point.

In which equilibrium point Z1(0,0,0,0) is saddle point.
Proof The variation of the Jacobian matrix are

ry 0 0 0

Jo =
0 0 —-di O
0 0 0 —do
The eigenvalues are Ay = 71, Aa = 19, A3 = —dq, Ay = —ds.

(1) An equilibrium point =4 (0,0, 0,0) is called a saddle point. If all eigenvalues of
matrix Jy have nonzero real parts is called a hyperbolic equilibrium point exists.
Then the eigenvalues of matrix Jy has at least of eigenvalues with a positive real
parts and at least one eigenvalues with a negative real part is called a saddle point.
Therefore the eigenvalues A\;y =11 > 0, o =13 > 0, \3 = —dy <0,y = —d2 <0
and that is r; > 0,75 > 0,d; < 0,d; < 0 is a saddle point.

Theorem 6.2 Given the linearized system of equations (2.1) is infected prey—free and
both predator—{ree equilibrium point. In which the equilibrium point E5(K7,0,0,0) are
source and saddle point.

Proof The variation of the Jacobian matrix are

-7 —O[Kl _chl —a1K1
0 T1 +04K1 O O
Ji =
0 0 K163 —dl 0
0 0 0 K104 —d2

The eigenvalues are Ay =11 + @K1, Ao = K14 — do, A3 = Kicg — di, Ay = —711.
(1) An equilibrium point Z5(K7,0,0,0) is called a sink. Since all of the eigenvalues
of matrix J; have negative real parts. Therefore the eigenvalues A\ = r1 + a K7 >
0, o = Kicqy —dy > 0,3 = Kics3 —dy > 0,\y = —r1 > 0 and that is Kicq >
dQ,chg > dl,Tl < 0 1is a sink.
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(2) An equilibrium point Z4(K7,0,0,0) is called a saddle point. If all eigenvalues of
matrix J; have nonzero real parts is called a hyperbolic equilibrium point exists.
Then the eigenvalues of matrix J; has at least of eigenvalues with a positive real
parts and at least one eigenvalues with a negative real part is called a saddle
point. Therefore the eigenvalues \;y = r1 + aK; > 0, Ay = Kycqg —dy > 0,3 =
Kics—di >0, 4 = —r1 < 0 and that is Ky¢cq > do, K13 > dq,71 > 0 is a saddle
point.

Theorem 6.3 Given the linearized system of equations (2.1) is susceptible prey—free
and both predator—free equilibrium point. Then the equilibrium point Z3(0, K5, 0,0) are
source and saddle point.

Proof The variation of the Jacobian matrix are

—a K9+ 1 0 0 0
Ty — a Ko —79 Koco —Ksas
0 0 Ksas—dy 0
0 0 0 Kray — do

The eigenvalues are Ay = —r9, Ay = Ksaq — da, A3 = Keag — d1, Ay = —a Ko 4+ 71.

(1) An equilibrium point Z5(0, K, 0, 0) is called a sink. Since all of the eigenvalues
of matrix Jy have negative real parts. Therefore the eigenvalues A\; = —rg >
0, o = Koag —dy > 0,A\3 = Kgaz —diy > 0,y = —a Ky +r; > 0 and that is
ro < 0, Ksay > do, Koag > di, 1 > o K5 is source.

(2) An equilibrium point Z3(0, K3, 0,0) is called a saddle point. If all eigenvalues of
matrix J; have nonzero real parts is called a hyperbolic equilibrium point exists.
Then the eigenvalues of matrix J, has at least of eigenvalues with a positive real
parts and at least one eigenvalues with a negative real part is called a saddle point.
Therefore the eigenvalues Ay = —ry > 0, Ay = Koaq — do > 0, A3 = Koaz — dy >
O,/\4 = —a Ko+ 11 <0 and that is ry < 0, Koay > d2,K2a3 > dl,’/‘l >akKsyis a
saddle point.

Theorem 6.4 Given the linearized system of equations (2.1) is infected prey predator—
free equilibrium point. Then the equilibrium point (W = ‘Z—;, =0,y = érl, z = 0) where
T = (Kllg%;dl) is locally asymptotically stable if the following conditions hold as follows:

CoT9T1C3 > Cl(Oédl -+ Cg’l”g)7 BT’lTng > Cq (ngg — C4d1).

Proof
0 ry— @nn e 0
J4 - T17T1C3 7171 a3 0 _m
c1 c1 c1
0 0 0 abiinn._g

The corresponding eigenvalues are
CoT1T1C3 — (X Cq d1 — T9C1C3

)\1 = - ’
C1C3
BriTics — c1 czda + ¢ cady
)\2 == )
C1C3
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-7 (Tlchg — Kic3 + le) +Vri A

A3 =1/2
3 / chg
Kics — Kics+2d Vi A
)\4 = —1/2 & (Tl 163 11(03 + 1) tvn Where A = —2 171 K12032—4 T1K12632d1+
163

7‘12K12632 +7ry K12032 +471ir1 Kicsdy —4ry Kicsdy+4r d12 Hence the equilibrium point
(4) is locally asymptotically stable if coromcs > ¢1(ady +c3ra), Brimics > c1(csde — cady).
Theorem 6.5 Given the linearized system of equations (2.1) is infected prey free and sus-

— d2
04’

ceptible predator free. In which the equilibrium point {W z=0,y=0,z= a—llrﬂg}

where 7, = ( £1c2=92 ) ig]ocally asymptotically stable if asromocs > ai(ada+racy), friTocs >
Kicy Yy asy y
al(dgag — d104).
Proof
o dar1 _ads __dacy _aids
™ 2 Kicy 172 Cq cy cy
p 0 rg — 20T 4 ady 0 0
57— 0 0 C3d2_57”1‘r2_d 0
Cq al 1
T1T2C4 T1T204 BriTe 0
aq aq aq
The corresponding eigenvalues are
\ AoT1 ToCy — va1dy — 1o A1Cy
1= -
aicy
Ay — Br1Tacy — dacgar + drarcy
9= —
a1C4
N = 1/2 —11 (Kicame — Kicy +2da) ++/—11 B
3=
K164
K —K 2dy)+v/—11 B
A =-—1/2 r1 (Kicars };14;2 24V B \Where B = 2 K12c4?r mo+4 K% e2domo— K1 2 42102 —

K12642T1 — 47‘1 K164d27'2 + 41"1 K164d2 — 47’1 d22

Hence the equilibrium point (5) is locally asymptotically stable if 75 = (%) is lo-
cally asymptotically stable if asromacy > aq(ads + rocy), BriTecy > a1(d2az — dicy).
Theorem 6.6 Given the linearized system of equations (2.1) is susceptible prey free and

infected predator free. In which the equilibrium point {W =0,x = g—;, Y= éTzTg), z= 0}

where 73 = ( K223=d1 ) ig locally asymptotically stable if ¢1ro13a3 > ca(reas—ady), Bramsas >
K2a3

02(a3d2 — a4d1).

Proof
ry — C1T27T3 _ & d1 O 0 0
1 C2 as
@ d1 _ T2 d1 _ _ dl C2 _ a2d1
Je = a3 T2 — 2 a3 K2 T273 as as
6 T2 T3C3 T2 T303 O _ﬁ’r‘z T3
C2 Cc2 c2
BraTs aady _

0 0 0 275 4 ey g

The corresponding eigenvalues are
c1m273a3 + adicy — 11 C2 a3

A =
C203
\ BraT3as — cp azds + cg asdy
2 p—
C2 a3

®
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—7T9 (K2a37'3 — Ksasz + 2d1) +/=rs C

A3 =1/2
3 / KQCLg
3 K —r9 Koas +2d —
M= —1)2 ro T3 Koas — 1o 2}6;3 +2dirg ++/—r2 C where C' = 27y Ky2a527s+4 Ky2as2dy ms—
2a3

K22a32732 —17y K22a32 —4ry Koaszdim3+41r9 Koaszdy —4ry d12 hence the equilibrium point
(6) is locally asymptotically stable if c;rom3as > co(reas—ady), fratsas > ca(asda—asdy).
Theorem 6.7 Given the linearized system of equations (2.1) is susceptible prey free and

susceptible predator free. Then the equilibrium point {W =0,z = Z—i, y=0,z= 17127"274}

where 74 = (%) is locally asymptotically stable if a1ram4a4 > a2(rias—ads), ro14fay >
ag(dgag, — a4d1).
Proof
r _aireT4a _ ads 0 0 0
1 a aaq
(0] d2 _ ) d2 _ _ dgcz _ azdg
J _ aq T2 2 a4K2 T2 7_4 a4 aq
6= 0 0 _ﬁT2T4_|_a3d2_d 0
as ag 1
T2 T4Cs T2 Taa4 BraTa 0
as ag a2

The corresponding eigenvalues are
a1To T4Qy + « dzag — 710204

AL =
aga4q
\, = _T274B as — daasaz + azasd;
2 a0y
)\3 — 1/2 —1ra (KQU.4T4—KI§(21.:;:-2 d2)+\/—T2 M
K - K 2d —ro M
M= —1)2 ro (Kaa4my 204 +2d3) +/—12 where M = 2 Ky2a,?ry 744 Ko ay2dyre—

K2a4

Ko2a42742 — Ko2ay2re — 4 re Koaydoy +4 79 Keayds — 475 ds? hence the equilibrium point
(7) is locally asymptotically stable if a1re7g4aq > as(r1as—ads), ro148as > as(d2az—asdy).
Theorem 6.8 Given the linearized system of equations (2.1) is both susceptible-infected

prey equilibrium point. Then the equilibrium point {W =0,2=0,y = %2, z= ,F} is

locally asymptotically stable if 8r1 > ¢1ds — a1dy, Bra > (cody — asdy).
Proof

rp— e ol 0 0 0
B 0 ry— B2y 0 0
Jr = dacs azdy 0 —d
B B 2
The corresponding eigenvalues are
—cd d —d d
N = Bnzadtad o fra—dietad 0 oy Lence

the equilibrium point (8) is locally asymptotically stable if 8rqy > c1da — aydy, Bra >
(02d2 — agdl).
Theorem 6.9 Given the linearized system of equations (2.1) is infected predator equilib-
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rium point. Then the equilibrium point {W = ¢1,2 = 92,y = ¥3, 2 = 0} is locally asymp-
totically stable.

Proof
mn —ady —the —aith
Js = avs ma2 —Uscy  —a2?¥2
Y3cg  VYzaz  mgz  —fU3
0 0 0 Maq
191 r2 92

where mi1 =711 — 2 ® 61193 — Ot192,m22 =T9 — 2 Ky 62’193 +a191,m33 = CL3192 +
c3¥1 — d1,mysB93 + ag¥2 + c4¥1 — do The characteristic function are Aj(\) = Ag\* +
AN 4 AN 4 Ash + Ay

Where A1 = (777144 — M33 — M2 — mll)

Ay = o195+ 1 c39193 4 ¢2 az¥als +mosmit +mazmay +masmas +masmos +magmas +
M44M33

Az = acy azd9295—a ez c3019203—a’mazd 92— amas¥192—c1 csmant193—cy c3masi95—
c2 azm11¥2U3 — cg azmya¥a¥3 — Mm11MaaMmss — M11Ma2Mag — M11M33Mag — 22133144,
Ay = mua(—acy agd19293 + a ¢ 3919293 + a?msz 92 + ¢1 csmaa1 U3 + co agmir 92093 +
m11m22m33)-

By Routh Hurwitzs criterion, all the eigenvalues of Jy¢ have negative real parts if (¢)4g >
0)

(1) A1 > 0,

(#i1)Az > 0,

(vi)A1 A Az > AZ + A2A,. We observe that the system (2.1) is locally asymptotically
stable around the positive equilibrium point (9) if the conditions stated in the theorem
holds.

Theorem 6.10 Given the linearized system of equations (2.1) is infected prey equilibrium

point. Then the equilibrium point {W = ¥4, = 0,y = ¥5,2 = ¥} is locally asymptoti-
cally stable.

Proof

my1 —ady =401 —a194

0 ™moo 0 0
Jg =

¥sc3  vsaz  m3zz —fUs

’19664 196Cl4 ,8'196 Mgy
my =1 — 2595 — ¢ 05 — ards, mas = s — o U5 — agds + 12, maz = —F 96 + calla —
di,myq = B95+cyg¥4 —do. The characteristic function are Ay (\) = BoA* + B1A3 + Bo A\ +
B3\ + By
Where
By =1,

By = (—muyq —m3z —maa —my1),

By = %9596 + c1 c39405 + a1 ca¥s¥6 + mosmat +mazmar +maamar +mazmas +magmas +

MyqaMm33,

Bs = =B ¢1 ca¥40596+ 8 a1 c3049596— 32ma1 9596 — B2masds g —c1 csmaodads—cy cmaadads—
a1¢4m2406 — aycamazz¥ade — mi1maamas — M11MoaMyy — M11M331M4q — M22MM33M44,

By = Be1 camants¥596— B a1 c3masa¥sPs+B2miimasdsds+cr csmoomasdads+arcamosmasdade+
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M111M22M33M44.

By Routh Hurwitzs criterion, all the eigenvalues of Jy have negative real parts if (i) By > 0,
(ii)Bl > 0,

(iii)Bs > 0,

(vi)B1BaBs > B3 + B}B,. we observe that the system (2.1) is locally asymptotically
stable around the positive equilibrium point (10) if the conditions stated in the theorem
holds.

Theorem 6.11 Given the linearized system of equations (2.1) is susceptible predator free

equilibrium point. Then the equilibrium point {W = 7,z = ¥s,y = 0,z = Y9} is locally
asymptotically stable.

Proof

my1 —avy =t —avy

avs  mar  —Usca —agis

Jio =
0 0 mss 0

docy  Voay By o
Where
mi1 = T1 — 2%57 —a1¥9 — adg,may = 19 — 277'%28 — a9 + av7,m3z = —Bv9 +

az¥s + c3¥7 — di,myy = ag9s + ca¥7 — da. The characteristic function are Az(\) =
C’()/\4 + C’l/\3 + 02)\2 + 03)\ + C4

Where

CO = ]-7

C1 = (—mag — M3z — Moz — Mm11),

Cy = &?V709s +arca¥709 + azag¥s¥9 + mogmay +mazmay +maamay +mazman +magmas +
mM44M33

C3 = aayas¥79509— o azcq¥79s99 —a?mss 798 —a® mas 9795 — a1 camos 9799 —ay camszdrdg—
aga4m19g0y — azaymazigdy — M11MoaMas — M11MaaMyy — M1 M33M44 — M2 M33M44,
Cy = —aajagmszdr¥sdy + aazcamssIzdsly + a’mazmaszds + aicamaosmszdzdy +
asagmiimsstigdly + miimaoamasmys. By Routh Hurwitzs criterion, all the eigenvalues
of Jip have negative real parts if (¢)Cy > 0,

(Zl)cl > 0,

(i7)C5 > 0,

(vi)C1C2C3 > C2 + C?Cy. we observe that the system (2.1) is locally asymptotically
stable around the positive equilibrium point (11) if the conditions stated in the theorem
holds.

Theorem 6.12 Given the linearized system of equations (2.1) is susceptible prey free

equilibrium point. Then the equilibrium point {W =0,z = Y19,y = V11,2 = ¥12} is lo-
cally asymptotically stable.

Proof
mi1 0 0 0
; avdyy  mar  —Uipc2 —a2vio
1=
Yi1cs Yriaz msz —BYn
Yi2cs V1204 57912 Mgy
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where mi; = —adig — c1 V11 — a1z + 11, M2 = 19 — 2 % — c2 V11 — a2, M3z —
B912 + az¥10 — d1,mag = BI911 + ag¥10 — do. The characteristic function are Ay(A) =
Do)\4 + D1>\3 + l)z/\2 + D3\ + Dy.

Where

DO = ]-7

Dy = (—myq — m33 — Moz — m1y)

Dy = 2911912 + c2 azPioV11 + azasV19V12 + mosmin + mazmar + magmiy + mazmas +
M44M22 + MggaMm3s,

D3 = —fcy agV10911912+8 (1203191019111912*527”1119111912*[327712219111912*02 azmi11910011—
¢z az3myg¥19V11 —a2a3m11910012—a2a4m330 100 12 —1M11M22M33 — 1M1 1M22M44 — 1M1 1 M33M44—
M22M33M4q

Dy = B ez agmi1910911912— B asazmii 910911912+ 82 miimasi1912+c2 agmyimaadiodin+
azasmi1ma3tioVia + mi1moomasmy

By Routh Hurwitzs criterion, all the eigenvalues of J1; have negative real parts if (i)Dg >
0,

(ZZ)D1 >0,

(iii) D3 > 0,

(vi)D1 D3 D3 > D3 + D?D,. we observe that the system (2.1) is locally asymptotically
stable around the positive equilibrium point (12) if the conditions stated in the theorem
holds.

Theorem 6.13 Given the linearized system of equations (2.1) is nontrivial equilibrium

point. Then the equilibrium point {W =W,z =T,y=7,2= E} is locally asymptoti-
cally stable.
Proof

mi1 —OéW —Wcl —CL1W

azxT Mmoo —XCo —aoT
J12 = _ _ —
yes yas mss3 -8By
Zey Zay BZ o
7"2 x

Where mi1 =r1 — 2 ’"}{YV

1Y —a1Z — T, Moy =712 — 2 7% —CQy—aQE—l—on,mgg, =
Wes — BZ + Tag — di,maq = Weq + BY + Tag — do. The characteristic function are
Ay(N) = EgM\* + E4N3 + Eo\? + Es)A + By

where

Ey=1

Ei = (—myq — m3z —maz —mq1)

E2 = Zeaar W + ZagasT + B2ZY 4+ maama1 + MaaMaos + Magmas + JazTes + yc;;Wcl +
@®TW + maoomay + mazmiy + mazmas

Es = —ZTZasasmi1 — T2aoasmsz — W Za1 caMos — W Za1 camizs —YZCa a3Maa — YW c1 CaMas —
Yo azmi—YW ey csmoo+TW Za ayas+522 0 asas+yWzB aics+yazWa ci az— y:UWoz Co C3—
YWZB 1 cqa — TWZaascy — YTZB co ag — Y2B2ma — §2B2mas — TWalmay — TW almas —
M11M22M33 — M111M221044 — T11710331T044 — TN22711337144

E, = gWZB c1 camos+TW Za ascamss+TTZ0 co aamii —TW Za a1 aamss —JTEB asazmil —
TWZB a1csmas—TEW o €1 azMaa +TTW a ¢o c3mas+A+TTW Zeq asaacs+JTW Zca arasca+
ZeaGZW o B ea — ZeaGiWer asas — ZagaWa fer — ZagzWes aics + BzyzWoaaias —
BzyzWa agc;),—i-yzﬁimllmgg—i—xWa 2mgsmas+yTWza? B2 +TZasasmi1mas+WZay camasmsz+
YTcg azmiimag + YWer c3masmay + mi1Mmaams33may
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By Routh Hurwitzs criterion, all the eigenvalues of J;2 have negative real parts if (i) Ey >
0,

(ii)El > 0,

(#ii)E5 > 0,

(vi)E1EqE3 > E2 + E?E,. We observe that the system (2.1) is locally asymptotically
stable around the positive equilibrium point (13) if the conditions stated in the theorem
holds.

7. NUMERICAL SOLUTION

Numerical solution are equally important beside the analytical findings to verify them.
In this section we present computer simulation of different solutions of the system (2.1)
using maple 18 programming.

(1) First we take the parameters of the system as p1 = (o = 10,8 = 10,¢; =
0.01702 = 0.06,’/‘1 = 1,’/‘2 = 1,K1 = I,KQ = 1,&1 = .OOI,CLQ = 0.001,a3 =
5,a0 = 2,¢3 =2,¢4 = 6,d; = 0.1,ds = 0.1). Then the initial conditions satisfied
W (0) = 0,z(0) = 0,y(0) = 0,2z(0) = 11 is infected predator population (see
Figure 1).

(2) If we take the parameters of the system as p;. Then the initial conditions
satisfied W (0) = 0,2 (0) = 1,3 (0) = 0,2 (0) = 0 is infected prey population (see
Figure 2).

(3) If we take the parameters of the system as p;. Then the initial conditions sat-
isfied W (0) = 0,2 (0) = 0,y (0) = 2,2 (0) = 0 is susceptible predator population
(see Figure 3)

(4) If we take the parameters of the system as p;. Then the initial conditions
satisfied W (0) = 1,2 (0) = 0,3 (0) = 0,2 (0) = 0 is susceptible prey population
(see Figure 4).

(5) Now we take the parameters of the system as p;. Then the initial conditions
satisfied W (0) = 0,2 (0) = 0,y (0) = 0.5,z (0) = 0.1 is both susceptible-infected
predator population (see Figure 5). That is a periodic solution.

(6) Now we take the parameters of the system as p;. Then the initial conditions
satisfied W (0) = 5,2 (0) = 0,y (0) = 0, 2 (0) = 5 is susceptible prey and infected
predator population (see Figure 6).

(7) Now we take the parameters of the system as p;. Then the initial conditions
satisfied W (0) = 0,2 (0) = 90,y (0) = 90,z (0) = 0 is susceptible predator and
infected prey population (see Figure 7).

(8) Now we take the parameters of the system as p;. Then the initial conditions
satisfied W (0) = 10,2 (0) = 10,y (0) = 0,2 (0) = 0 is both susceptible-infected
prey population (see Figure 8). That is a periodic solution.

(9) If we take the parameters of the system as p;. Then the initial conditions satis-
fied W (0) = 0.100, z (0) = 0.100,y (0) = 0.100, z (0) = 0.100 is both susceptible—
infected prey—predator population (see Figure 9).

(10) If we take the parameters of the system as ps = (o = 0.02,8 = 0.04,¢; =
10,62 = 6,7’1 = 2077"2 = 31,K1 = 1,K2 = 1,a1 = 10,&2 = ].0,(13 = 15,(14 =
21,¢3 = 28,¢4 = 16,d; = 0.1,dy = 0.1). Then the initial conditions satisfied
W (0) = 400,z (0) = 400,y (0) = 400,z (0) = 400 is both interaction of the
susceptible-infected prey—predator population (see Figure 10).
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(11) If we take the parameters of the system as py. Then the initial conditions
satisfied W(0) = 80,x(0) = 80,y(0) = 80, 2(0) = 80 for interaction of the both
interaction of the susceptible-infected prey—predator population is locally asymp-
totically stable (see Figure 11).

(12) If we take the parameters of the system as ps. Then the initial conditions
satisfied W(0) = 40,2(0) = 40,y(0) = 40, 2(0) = 40 for interaction of the both
interaction of the susceptible—infected prey—predator population is locally asymp-
totically stable (see Figure 12).

(13) If we take the parameters of the system as p. Then the initial conditions sat-
isfied W(0) =4, 2(0) = 4,y(0) = 4, 2(0) = 4 is interaction of the both interaction
of the susceptible-infected prey—predator population (see Figure 13).

(14) If we take the parameters of the system as ps. Then the initial conditions
satisfied W (0) = .40, 2(0) = .40,y(0) = .40, z(0) = .40 is interaction of the both
interaction of the susceptible-infected prey—predator population (see Figure 14).

(15) If we take the parameters of the system as ps. Then the initial conditions
satisfied W (0) = 0.040,z (0) = 0.040,y (0) = 0.040, z (0) = 0.040 is interaction
of the both interaction of the susceptible-infected prey—predator population (see
Figure 15).

8. CONCLUSION

In this paper, we have studied aim eco-epidemiological model with the assumption that
both prey species diseases with susceptible—infection and both predator species diseases
susceptible—infection. The present investigation carried out to observe the stability and
equilibrium point, boundedness. Moreover, our numerical simulation suggests that in the
presence of the environmental fluctuation, the stability analysis is locally asymptotically
stable with different equilibrium point.
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FIGURE 1. The infected predator population.
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FIGURE 2. The infected prey population.
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Figure

F1cURE 3. The susceptible predator population.

10 20 30 10 50

Susceptible predator |

Figure

Susceptible prey

FIGURE 4. The susceptible prey population.
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Figure
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FI1GURE 5. The susceptible prey population.
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FIGURE 6. Interaction of the susceptible prey and infected predator population.
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F1GURE 7. Interaction of the susceptible predator and infected prey population.
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FIGURE 8. Interaction of the susceptible prey and infected prey population.
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F1GURE 9. Interaction of the both prey predator population.
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FI1GURE 10. Interaction of the both prey predator population.
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FIGURE 11. Interaction of the both prey predator population.
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FIGURE 12. Interaction of the both prey predator population.
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F1GURE 13. Interaction of the both prey predator population.
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FIGURE 14. Interaction of the both prey predator population.
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F1GURE 15. Interaction of the both prey predator population.
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FIGURE 16. Interaction of the both prey predator population.
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F1GURE 17. Interaction of the both prey predator population.
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FIGURE 18. Interaction of the both prey predator population.
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