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Abstract An ideal in a topological space is a collection of subsets of the space which is closed under

finite union and containing every subset of each set that it contains. An ideal topological space is a

topological space with an ideal. The concept of ideal topological spaces is studied by Vaidyanathaswamy,

Kuratowski, Noiri and many others. In this paper, we define a topology, called dual-ideal topology, on a

given ideal topological space and study its properties.
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1. Introduction

Ideals in topological spaces are introduced by Vaidyanathaswamy[13]. Further Noiri[4]
and many others[3, 5, 12] developed the concept of ideals in topological spaces. Several
ideals and the ideal topologies on the same topological space (X, T ) are considered in
[12]. Various types of open sets are defined and many topological properties were studied.
In 1990, D. Janković and T.R. Hamlett[5] introduced the notion of I-open sets in ideal
topological spaces and studied their properties. Julian Dontchev [3] introduced and dis-
cussed the concept of pre-I-open sets in 1999. Hatir and Noiri introduced[4] the notion
of α-I-open, semi-I-open and β-I-open in ideal topological spaces and further discussed
their properties. Some collection of such open sets, such as semi-I-open sets, do not form
a topology on X.

A collection of subsets of a topological space (X, T ) with certain properties is defined
as an ideal and a topology TI is developed on X so that the members of I become closed
sets in the topology TI . A collection G of subsets of a topological space (X, T ) with
certain properties is defined as a grill[2] and a topology TG is developed on X in [11].
From the construction, the topology TG induced by a grill G may seem to have some dual
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properties of the ideal topology TI . A. Kandil et al.[6] proved that the two topologies TI
and TG are same if I is defined as the collection of all subsets which are not in G. But in
this paper we define a new topology TD on X called the dual-ideal topology and study
its properties.

In Section 2 we recall some definitions and results from the literature; in Section 3 we
define a topology TD called dual-ideal topology and discuss some properties and results.
In Section 4, we discuss the subspace topologies, product topologies, dual-ideal topologies
and their compositions.

2. Preliminaries

Let us start with the definition of an ideal in a topological space.

Definition 2.1. [13] Let X be any set. A nonempty collection I of subsets of X satisfying
the following

i. If A,B ∈ I, then A ∪B ∈ I.
ii. If A ∈ I and B ⊆ A, then B ∈ I.

is called an ideal I on X. If I is an ideal on a topological space (X, T ), then the triplet
(X, T , I) is called an ideal topological space or ideal space.

The collection P(X) of all subsets ofX and the collection {∅} are some trivial examples
of ideals. We call {∅} as the empty ideal. We note that the empty ideal is not an empty
set; it is the collection containing only one element, namely the empty set.

A closure operator on a set X is a function on P(X) taking A to A satisfying the
following conditions:

i. ∅ = ∅
ii. For each A, A ⊆ A
iii. A = A
iv. For any A and B, A ∪B = A ∪B.

These four conditions are called Kuratowski closure axioms [7]. If “ ” is a closure op-
erator on a set X, F is the family of all subsets A of X for which A = A, and if T is
the family of complements of members of F , then T is a topology on X and A is the
T -closure of A for each subset A of X. This topology is called the topology generated by
the closure operator “ ”.

Throughout this paper X will denote a topological space, T will denote a topology on
X and I denote an ideal on X, unless otherwise specified. Members of T are called T -open
sets. If (X, T ) is a topological space and x ∈ X, T (x) denote the set {U ∈ T /x ∈ U},
the collection of all open sets containing x.

Definition 2.2. [8] Let A be a subset of (X, T ). Define

A∗
(I,T )

= {x ∈ X / U ∩A /∈ I for every U ∈ T (x)}.

Let A = A ∪A∗
(I,T )

. Then “ ” is a Kuratowski closure operator which gives a topology
on X called the topology generated by I and denoted by TI . Members of this topology is
called an TI-open sets.

This topology TI is usually finer than T . Now let us see the definition of a grill in a
topological space.
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Definition 2.3. [11] Let X be any set. A nonempty collection G of subsets of X satisfying
the following

i. ∅ /∈ G.
ii. If A ∈ G and A ⊆ B, then B ∈ G.

iii. If A ∪B ∈ G, then either A ∈ G or B ∈ G.

is called a grill on X.

Definition 2.4. [11] Let (X, T ) be a topological space and G be a grill on X. Let A ⊆ X.
Define

ΦG(A) = {x ∈ X / U ∩A ∈ G for every U ∈ T (x)}.
Let ψ(A) = A∪Φ(A). Then “ ψ” is a Kuratowski closure operator which gives a topology
on X called the topology induced by a grill G and denoted by TG. Members of this topology
is called an TG-open sets.

A lot of theory in ideal topological spaces is developed using grills (See for example
[1, 10]). But A. Kandil et al. proved that the two concepts coincide (See Theorems 2.1,
2.2, Corollary 2.3 and Remark 2.10 of [6]).

3. Dual-Ideal Topological Spaces

It is easy to prove that the collection {U − I /U ∈ T and I ∈ I} is a basis for the
topology TI . The basis elements are formed by removing members of I from members of
T . In this paper we are going to define a basis by adjoining members of I with members
of T and study the topology TD generated by this basis. Further the members of I are
closed in TI ; but in the topology TD members of I will be open. These are some of the
reasons to call the topology TD as dual-ideal topology.

Definition 3.1. Let (X, T , I) be an ideal topological space. The topology TD generated by
the basis T ∪I on X is called the dual-ideal topology with respect to the ideal I. Members
of this topology are called D-open sets with respect to the ideal I and their complements
are called D-closed sets with respect to the ideal I.

Remark 3.2. The collection B = {V ∪ I / V ∈ T , I ∈ I} of subsets of X is also a basis
for the same topology TD. When there is no ambiguity we simply write D-open instead of
writing D-open with respect to the ideal I.

The following properties can be proved easily.

• Members of I and members of T are D-open.
• If I is the empty ideal, then T = TD.
• The topology TD is strictly finer than T whenever I contains a non open set.
• The concept of D-openness and TI-openness are independent to each other as
seen below.

Let X = {1, 2, 3}, T = {∅, X, {1}, {1, 2}}, I = {∅, {1}, {3}, {1, 3}}. Then
TI = {∅, X, {1}, {2}, {1, 2}, {2, 3}} and the D-open sets with respect to I are
{∅, X, {1}, {3}, {1, 2}, {1, 3}}. It is clear that {2} is TI-open but not D-open and
also {3} is D-open but not TI-open.
• If I1 and I2 are ideals on (X, T ) such that I1 ⊆ I2, then TD1

⊆ TD2
.

Theorem 3.3. Let {I1} and {I2} be ideals on (X, T ). Let I = I1 ∩ I2. Then

TD = TD1
∩ TD2

.
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Proof. Considering the bases B = {V ∪ I / V ∈ T , I ∈ I}, B1 = {V ∪ I / V ∈ T , I ∈ I1}
and B2 = {V ∪ I / V ∈ T , I ∈ I2} for TD, TD1 and TD2 , as I ⊆ I1 and I ⊆ I2, we see
that TD ⊆ TD1

and TD ⊆ TD2
. Therefore TD ⊆ TD1

∩ TD2
.

On the other hand, let A ∈ TD1
∩ TD2

and let x ∈ A. Since B1 and B2 are the
bases of TD1

and TD2
respectively, there exist V1, V2 ∈ T , I1 ∈ I1 and I2 ∈ I2 such that

x ∈ V1 ∪ I1 ⊆ A and x ∈ V2 ∪ I2 ⊆ A. Let V = V1 ∪ V2 and I = I1 ∩ I2. Thus there exist
V ∈ T and I ∈ I such that x ∈ V ∪ I ⊆ A. Therefore A ∈ TD and hence TD = TD1 ∩TD2 .

Let {Iα} be a collection of ideals on a topological space (X, T ). In [12], it is proved that
the intersection of topologies generated by ideals is larger than the topology generated
by the intersection of ideals and an example is given to prove the occurrence of strict
inequality. This is not so in the case of dual-ideal topologies. In fact, in the dual-
ideal topological theory, the intersection of topologies generated by ideals is equal to the
topology generated by the intersection of ideals as seen in the following theorem.

Theorem 3.4. Let {Iα} be a collection of ideals on (X, T ). Let I = ∩Iα. Then the
dual-ideal topology TD with respect to I on X and the intersection of dual-ideal topologies
TDα with respect to Iα on X are the same. That is,

TD = ∩TDα .

Proof. Let B and Bα be bases for TD and TDα as described in Remark 3.2. Let A ∈ TD.
As I ⊆ Iα, we have TD ⊆ TDα for every α and hence A ∈ ∩TDα .

To prove the another inequality, let A ∈ ∩TDα and let x ∈ A. Then A ∈ TDα for every
α. Since Bα is the basis of TDα , there exist Uα ∈ T and Iα ∈ I such that x ∈ Uα∪Iα ⊆ A.
Let U = ∪Uα and I = ∩Iα. Thus there exist U ∈ T and I ∈ I such that x ∈ U ∪ I ⊆ A
and hence A ∈ TD. Therefore TD = ∩TDα .

The union of a chain of ideals is always an ideal, but the union of an arbitrary collection
of ideals need not be an ideal. If {Iα} is a collection of ideals on X, then the collection
P(X) of all subsets of X is an ideal containing all members of all the ideals Iα; so, the
family C of all ideals on X containing all members of all Iα’s is nonempty and hence
the intersection of all ideals in C is the smallest ideal containing all members of all these
ideals Iα. So, for any collection of ideals there exists a smallest ideal containing all these
ideals.

In [12] it is proved that, if {Iα} is a collection of ideals and if I is the smallest ideal
containing all Iα’s, then I is the collection of all sets formed by taking the union of finitely
many members from ∪Iα.

Theorem 3.5. Let {Iα} be a collection of ideals on (X, T ). Let I be the smallest ideal
containing all Iα’s. Let TDα be the dual-ideal topology with respect to Iα and TD be the
dual-ideal topology with respect to I. Let T0 be the smallest topology containing all TDα ’s.
Then TD = T0.

Proof. As {Iα} is a collection of ideals and I is the smallest ideal containing Iα’s, Iα ⊆ I
and hence TDα ⊆ TD for all α. As T0 is the smallest topology containing all TDα ’s,
T0 ⊆ TD.

On the other hand, let us assume that A ∈ TD and x ∈ A. As T ∪ I is a basis for the
topology TD, there exists B ∈ T ∪ I such that x ∈ B ⊆ A.
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If B ∈ T , then B ∈ TDα for all α. Thus we see that there is an open set B in TDα such
that x ∈ B ⊆ A and hence A ∈ TDα for all α. Therefore A ∈ T0.

If B /∈ T , then B ∈ I and hence B = K1∪K2∪· · ·∪Kn where Ki ∈ Iαi . As Ki ∈ Iαi ,
we have Ki is open in TDαi and hence Ki is open in T0. As Ki is open in T0, B ∈ T0. Thus
we see that there exists an open set B in T0 such that x ∈ B ⊆ A. Therefore A ∈ T0. In
both cases, we proved that TD = T0.

It is well known that the union of a collection of topologies need not be a topology.
Even if the collection of topologies is a chain, the union need not be a topology. However
if {TDα} is a chain of topologies, which are dual-ideal topologies generated by a chain of
ideals, then the union is a topology as seen in the following corollary.

Corollary 3.6. Let {Iα} be a chain of ideals. Let T0 = ∪TDα and I = ∪Iα. Then
TD = T0 and hence T0 is a topology.

4. Subspaces and Product Spaces

If I is an ideal on a set X and if Y ⊆ X, then IY = {A ∩ Y / A ∈ I} is an ideal
on Y . Let (X, T ) be a topological space. Let Y ⊆ X and I be an ideal on X. Then
(Y, TY ) is a subspace. From the ideal IY and the topology TY , we construct the dual-
ideal topology (TY )DY on Y . On the other hand, using the ideal I and T , we form the
dual-ideal topology TD on X; as Y is a subset of X, we have the subspace topology (TD)Y
on Y . In the following theorem we prove that these two topologies (TD)Y and (TY )DY on
Y are same.

Theorem 4.1. Let (X, T , I) be an ideal topological space, Y ⊆ X. Then the subspace
topology (TD)Y of the dual-ideal topology TD on Y and the dual-ideal topology (TY )DY of
the subspace topology on Y are the same. That is, (TD)Y = (TY )DY .

Proof. Let T ∪I and TY ∪IY be bases for TD and (TY )DY as described in Definition 3.1.
Let A ∈ (TD)Y and let x ∈ A. Then A = U ∩ Y for some U ∈ TD in X. As x ∈ A, we
have x ∈ U ∩ Y . Since x ∈ U and U ∈ TD, there exist B ∈ T ∪ I such that x ∈ B ⊆ U .

If B ∈ T , then let V = B ∩ Y . Thus there exists V ∈ TY ∪ IY such that x ∈ V ⊆ A.
Therefore A ∈ (TY )DY .

If B /∈ T , then B ∈ I. Let J = B ∩Y . Clearly J ∈ IY . Thus there exists J ∈ TY ∪IY
such that x ∈ J ⊆ A. Therefore A ∈ (TY )DY . In both cases, A ∈ (TY )DY .

To prove the other inequality, let A ∈ (TY )DY and let x ∈ A. Then there exists
B ∈ TY ∪ IY such that x ∈ B ⊆ A.

If B ∈ TY , there exists Vx ∈ T such that B = Vx ∩ Y . Let W = ∪
x
Vx. Clearly

A = W ∩ Y for an open set W in TD in X. Hence A ∈ (TD)Y .
If B /∈ TY , then B ∈ IY . Thus there exists I ∈ I such that B = I ∩ Y . Clearly I is

open in TD. Thus there exists B ∈ (TD)Y such that x ∈ B ⊆ A and hence A ∈ (TD)Y . In
both cases A ∈ (TD)Y . Therefore (TD)Y = (TY )DY .

If A and B are collections of subsets of sets X and Y , then the collection A ×B =
{A× B / A ∈ A , B ∈ B} is called the product of A and B. If I1 and I2 are ideals on
X1 and X2, then I1 × I2 need not be an ideal on X1 × X2. However we can associate
an ideal I1 ⊗ I2 on X × Y in a natural way. The ideal I1 ⊗ I2 is defined as the smallest
ideal containing I1×I2 which can be obtained as the intersection of all ideals containing
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I1×I2. If {Cα} is a collection of subsets of X, then the collection of all ideals containing
{Cα} is nonempty as P(X) is one such ideal, and the intersection of all such ideals is the
smallest ideal containing {Cα}. We can construct the ideal using the following lemma.

Lemma 4.2. Let C be a collection of subsets of X and let D be the collection of all
subsets of all members of C . If J is the collection of all subsets of X formed by taking
the union of finitely many members from D , then J is an ideal.

As the proof is routine we skip the proof.
Let (X1, T1) and (X2, T2) be topological spaces and let I1 and I2 be ideals on X1 and

X2. Using the ideals I1 and I2, one can construct the dual-ideal topologies T1D1
on X1

and T2D2
on X2. Let T1D1

× T2D2
be the product topology on X1 ×X2 obtained in the

classical sense. Now T1×T2 is the product topology on X1×X2. Using the ideal I1⊗I2,
one can construct the dual-ideal topology (T1 × T2)D1×D2

on X1 ×X2. In the following
theorem we prove that (T1 × T2)D1×D2

is contained in T1D1
× T2D2

.

Theorem 4.3. Let (X1, T1, I1) and (X2, T2, I2) be two ideal topological spaces. Then the
dual-ideal topology (T1 × T2)D1×D2

of the product topology on X × Y is contained in the
product topology T1D1

×T2D2
of the dual-ideal topology on X×Y . That is, (T1×T2)D1×D2

⊆
T1D1

× T2D2
.

Proof. Let BX×Y be the basis for (T1 × T2)D1×D2 as described in Remark 3.2. That is,
BX×Y consists of the sets of the form U ∪ I such that U ∈ T1 × T2 and I ∈ I1 ⊗ I2. Let
A ∈ (T1 × T2)D1×D2

and let (x, y) ∈ A. Then there exist U ∈ T1 × T2 and I ∈ I1 ⊗ I2
such that (x, y) ∈ U ∪ I ⊆ A. Since I ∈ I1 ⊗ I2, we have I = K1 ∪K2 ∪ · · · ∪Kn where
Ki ⊆ Ai ×Bi and Ai ∈ I1, Bi ∈ I2.

If (x, y) /∈ I, then (x, y) ∈ U . Since U ∈ T1 × T2 and (x, y) ∈ U , there exist V1 ∈ T1
and V2 ∈ T2 such that (x, y) ∈ V1× V2 ⊆ U . Then we have V1 ∈ T1D1

and V2 ∈ T2D2
such

that (x, y) ∈ V1 × V2 ⊆ A. Therefore A ∈ T1D1
× T2D2

.

If (x, y) ∈ I, then (x, y) ∈ K1∪K2∪· · ·∪Kn where Ki ⊆ Ai×Bi and Ai ∈ I1, Bi ∈ I2.
Without loss of generality we assume that (x, y) ∈ K1. Then x ∈ A1 and y ∈ B1. Let
us take W1 = {x} and W2 = {y}. As W1 and W2 are in I1 and I2, we have W1 and
W2 are open in T1D1

and T2D2
. Thus there exist W1 and W2 in T1D1

and T2D2
such that

(x, y) ∈ W1 ×W2 ⊆ A and hence A ∈ T1D1
× T2D2

. In both cases, A ∈ T1D1
× T2D2

.

Therefore, (T1 × T2)D1×D2 ⊆ T1D1
× T2D2

.

The following example shows that strict inequality may hold in the above theorem.

Example 4.4. Let X1 = {1, 2}, X2 = {1, 3}; let T1 = {∅, X1, {2}}, T2 = {∅, X2} be
topologies on X1 and X2. Let I1 = {∅, {1}}, I2 = {∅}. Then I1 and I2 are ideals on X1

and X2. Then

T1D1
= {∅, X1, {1}, {2}}

T2D2
= {∅, X2}

(T1 × T2)D1×D2
= {∅, X1 ×X2, {(2, 1), (2, 3)}}

T1D1
× T2D2

= {∅, X1 ×X2, {(1, 1), (1, 3)}, {(2, 1), (2, 3)}}.

Thus (T1 × T2)D1×D2 ( T1D1
× T2D2

.
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Now we have three ways to form new topologies, namely, finding subspace topology,
product of topologies and dual-ideal topologies. We denote these operations by the sym-
bols S, P and D. If (X, T ) is a topological space and Y ⊆ X, then by S(X, T , Y ) we
mean the subspace topological space (Y, TY ) induced by Y on (X, T ). If (X1, T1) and
(X2, T2) are topological spaces, then by P ((X1, T1), (X2, T2)) we mean the product topo-
logical space (X1 ×X2, T1 ×T2). If (X, T ) is a topological space and I be an ideal on X,
then by D(X, T , I) we mean the topological space (X, TD).

Let (X1, T1) and (X2, T2) be topological spaces and let I1 and I2 be ideals on them.
Then T1×T2 is the product topology on X1×X2 and I1⊗I2 is an ideal on X1×X2. Using
this ideal we form the dual-ideal topology (T1 × T2)D1×D2

on X1 × X2; we denote this
space as DP ignoring the arguments. On the other hand, we can compute the product
topology (T1)D1 × (T2)D2 on X1×X2; we denote this space as PD. Similarly we can give
meanings to SP, SD, SPD,DPS, . . . . With this notation Theorems 4.1 and 4.3 can be
stated as DP ⊆ PD and SD = DS. The classical theory of topology it is proved that
SP = PS (See Theorem 16.3 in [9]).

We have six different permutations, SPD,SDP,DPS,DSP, PSD,PDS, of the three
operators S, P,D, and thirty different two permutations of these six triplets giving the
relationship between them like SPD ⊆ PDS,PDS ⊆ SPD,SDP ⊆ SPD and so on.
Now we see all the thirty relations one by one.

In the following theorems we omit the arguments which can be easily understood. For
example, we write SPD = PDS instead of writing,

Let I1 and I2 be ideals on (X1, T1) and (X2, T2). Let Y1 and Y2 be subsets
of X1 and X2. Then the topologies (T1D1

×T2D2
)Y1×Y2

and (T1Y1
)D1Y1

×
(T2Y2

)D2Y2
on Y1 × Y2 are same.

The theorems which we are going to prove now, with the notations explained above,
can be consolidated as

PDS = SPD = PSD ⊇ SDP = DPS = DSP

Theorem 4.5. PDS = SPD.

Proof. We have to prove that

(T1Y1
)D1Y1

× (T2Y2
)D2Y2

= (T1D1
× T2D2

)Y1×Y2 .

Let T1 ∪ I1, T2 ∪ I2, T1Y1 ∪ I1Y1 and T2Y2 ∪ I2Y2 be bases for T1D1
, T2D2

, (T1Y1
)D1Y1

and

(T2Y2
)D2Y2

respectively as described in Definition 3.1. Let W ∈ (T1Y1
)D1Y1

× (T2Y2
)D2Y2

and let (x, y) ∈W . Then there exist open sets U and V are in (T1Y1
)D1Y1

and (T2Y2
)D2Y2

such that

(x, y) ∈ U × V ⊆W.
Since x ∈ U and U ∈ (T1Y1

)D1Y1
, there exists B1 ∈ T1Y1

∪ I1Y1 such that x ∈ B1 ⊆ U .

Similarly, there exists B2 ∈ T2Y2
∪ I2Y2 such that y ∈ B2 ⊆ V .

If B1 ∈ T1Y1
and B2 ∈ T2Y2

, then there exist open sets G1 ∈ T1 and G2 ∈ T2 such that
B1 = G1 ∩ Y1 and B2 = G2 ∩ Y2. Clearly G1 and G2 are open in T1D1

and T2D2
. Let

O = (G1 ×G2) ∩ (Y1 × Y2). Thus there exists an open set O in (T1D1
× T2D2

)Y1×Y2
such

that (x, y) ∈ O ⊆W and hence W ∈ (T1D1
× T2D2

)Y1×Y2
.

If B1 ∈ I1Y1 and B2 ∈ I2Y2
, there exist I1 ∈ I1 and I2 ∈ I2 such that B1 = I1∩Y1 and

B2 = I2 ∩ Y2. Then I1 and I2 are open in T1D1
and T2D2

. Let O = (I1 × I2) ∩ (Y1 × Y2).
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Then there exists an open set O in (T1D1
× T2D2

)Y1×Y2 such that (x, y) ∈ O ⊆ W and

hence W ∈ (T1D1
× T2D2

)Y1×Y2 .
If B1 ∈ T1Y1 and B2 ∈ I2Y2

, there exist V1 ∈ T1 and I2 ∈ I2 such that B1 = V1∩Y1 and

B2 = I2 ∩ Y2. Then V1 and I2 are open in T1D1
and T2D2

. Let O = (V1 × I2) ∩ (Y1 × Y2).

Then there exists an open set O in (T1D1
× T2D2

)Y1×Y2 such that (x, y) ∈ O ⊆ W and

hence W ∈ (T1D1
× T2D2

)Y1×Y2
.

If B1 ∈ I1Y1 and B2 ∈ T2Y2
, then an argument similar to the above case holds. In all

cases, we proved that

(T1Y1
)D1Y1

× (T2Y2
)D2Y2

⊆ (T1D1
× T2D2

)Y1×Y2
.

To prove the other inequality, let us assume that W ∈ (T1D1
× T2D2

)Y1×Y2 and let

(x, y) ∈ W . Then there exists W1 ∈ T1D1
× T2D2

such that W = W1 ∩ (Y1 × Y2). Since

(x, y) ∈ W , we have (x, y) ∈ W1. Thus there exist Ux ∈ T1D1
and Vy ∈ T2D2

such that

(x, y) ∈ Ux × Vy ⊆W1. Since x ∈ Ux and Ux ∈ T1D1
, there exists B1 ∈ T1 ∪ I1 such that

x ∈ B1 ⊆ Ux. Similarly, there exists B2 ∈ T2 ∪ I2 such that y ∈ B2 ⊆ Vy.
If B1 ∈ T1 and B2 ∈ T2, then let G1 = B1 ∩ Y1, G2 = B2 ∩ Y2. Therefore G1

and G2 are open in T1Y1 and T2Y2 and hence G1 and G2 are open in (T1Y1 )D1Y1
and

(T2Y2 )D2Y2
. Thus there exist two open sets G1 and G2 in (T1Y1 )D1Y1

and (T2Y2 )D2Y2
such

that (x, y) ∈ G1 ×G2 ⊆W and hence W ∈ (T1Y1 )D1Y1
× (T2Y2 )D2Y2

.

If B1 ∈ I1 and B2 ∈ I2, then let J1 = B1 ∩ Y1, J2 = B2 ∩ Y2. Therefore J1 and J2 are
in I1Y1 and I2Y2 and hence J1 and J2 are open in (T1Y1 )D1Y1

and (T2Y2 )D2Y2
. Thus there

exist two open sets J1 and J2 in (T1Y1 )D1Y1
and (T2Y2 )D2Y2

such that (x, y) ∈ J1×J2 ⊆W
and hence W ∈ (T1Y1 )D1Y1

× (T2Y2 )D2Y2
.

If B1 ∈ T1 and B2 ∈ I2, then let G1 = B1∩Y1, J2 = B2∩Y2. Therefore G1 ∈ T1Y1 and

J2 ∈ I2Y2 and hence G1 and J2 are open in (T1Y1 )D1Y1
and (T2Y2 )D2Y2

. Thus there exist

two open sets G1 and J2 in (T1Y1 )D1Y1
and (T2Y2 )D2Y2

such that (x, y) ∈ G1 × J2 ⊆ W

and hence W ∈ (T1Y1 )D1Y1
× (T2Y2 )D2Y2

.

If B1 ∈ I1 and B2 ∈ T2, then an argument similar to the above case holds. In all cases,
we proved that

W ∈ (T1Y1 )D1Y1
× (T2Y2 )D2Y2

.

Therefore
(T1Y1

)D1Y1
× (T2Y2

)D2Y2
= (T1D1

× T2D2
)Y1×Y2 .

Theorem 4.6. SPD = PSD.

Proof. We have to prove that

(T1D1
× T2D2

)Y1×Y2
= (T1D1

)Y1
× (T2D2

)Y2
.

Let W ∈ (T1D1
× T2D2

)Y1×Y2
and let (x, y) ∈ W . Then, there exists W1 ∈ T1D1

× T2D2

such that W = W1 ∩ (Y1 × Y2). Since (x, y) ∈ W1, there exist Ux ∈ T1D1
and Vy ∈ T2D2

such that (x, y) ∈ Ux × Vy ⊆ W1. Let G1 = Ux ∩ Y1 and G2 = Vy ∩ Y2. Thus there exist
open sets G1 and G2 in (T1D1

)Y1
and (T2D2

)Y2
such that (x, y) ∈ G1×G2 ⊆W and hence

W ∈ (T1D1
)Y1
× (T2D2

)Y2
.

On the other hand, let us assume that W ∈ (T1D1
)Y1
× (T2D2

)Y2
and let (x, y) ∈ W .

Then there exist Ux ∈ (T1D1
)Y1 and Vy ∈ (T2D2

)Y2 such that (x, y) ∈ Ux × Vy ⊆ W .
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Since Ux ∈ (T1D1
)Y1 and Vy ∈ (T2D2

)Y2 , there exist Gx ∈ T1D1
and Hy ∈ T2D2

such that
Ux = Gx ∩ Y1 and Vy = Hy ∩ Y2. Let G = ∪Gx and H = ∪Hy. Clearly G and H are
in T1D1

and T2D2
. Let O = (G × H) ∩ (Y1 × Y2). Since G × H is open in T1D1

× T2D2
,

O ∈ (T1D1
×T2D2

)Y1×Y2
. Thus there exists an open set O ∈ (T1D1

×T2D2
)Y1×Y2

such that

(x, y) ∈ O ⊆W and hence W ∈ (T1D1
× T2D2

)Y1×Y2 . Therefore

(T1D1
× T2D2

)Y1×Y2 = (T1D1
)Y1 × (T2D2

)Y2 .

Theorem 4.7. SDP ⊆ PSD.

Proof. We have to prove that

((T1 × T2)D1×D2)Y1×Y2 = (T1D1
)Y1 × (T2D2

)Y2 .

LetW ∈ ((T1×T2)D1×D2)Y1×Y2 and let (x, y) ∈W . Then there existsW1 ∈ (T1×T2)D1×D2

such that W = W1 ∩ (Y1 × Y2). Since W1 ∈ (T1 × T2)D1×D2 and by Theorem 4.3, we
have W1 ∈ T1D1

× T2D2
. Since (x, y) ∈ W1, there exist U1 ∈ T1D1

and V1 ∈ T2D2
such

that (x, y) ∈ U1 × V1 ⊆ W1. Let U = U1 ∩ Y1 and V = V1 ∩ Y2. Then U ∈ (T1D1
)Y1 and

V ∈ (T2D2
)Y2 . Since U1×V1 ⊆W1, we have (U1∩Y1)× (V1∩Y2) = U ×V ⊆W . Thus we

get open sets U ∈ (T1D1
)Y1 and V ∈ (T2D2

)Y2 such that (x, y) ∈ U × V ⊆ W and hence

W ∈ (T1D1
)Y1
× (T2D2

)Y2
. Therefore

((T1 × T2)D1×D2)Y1×Y2 ⊆ (T1D1
)Y1 × (T2D2

)Y2 .

The following example shows that strict inequality may hold in the above theorem.

Example 4.8. Let X1 = {1, 2, 3}, X2 = {1, 2, 4}, Y1 = {1, 3} and Y2 = {1, 2}; let
T1 = {∅, X1, {1}, {1, 2}}, T2 = {∅, X2, {1}} be topologies on X1 and X2. Let I1 = {∅, {3}},
I2 = {∅, {4}}; then I1 and I2 are ideals on X1 and X2. Then

((T1 × T2)D1×D2
)Y1×Y2

=

{
∅, Y1 × Y2, {(1, 1), (1, 2), (3, 1)}

{(1, 1), (3, 1)}, {(1, 1), (1, 2)}, {(1, 1)}

}

(T1D1
)Y1
× (T2D2

)Y2
=


∅, Y1 × Y2, {(1, 1), (1, 2), (3, 1), (3, 2)},
{(1, 1), (1, 2), (3, 1)}, {(1, 1), (3, 1), (3, 2)},
{(1, 1), (3, 1)}, {(1, 1), (1, 2)}, {(3, 1), (3, 2)},
{(1, 1)}, {(3, 1)}.


Thus ((T1 × T2)D1×D2)Y1×Y2 ( (T1D1

)Y1 × (T2D2
)Y2 .

Theorem 4.9. SDP = DSP.

Proof. From Theorem 4.1, it follows that

((T1 × T2)D1×D2
)Y1×Y2

= ((T1 × T2)Y1×Y2
)D1Y1

×D2Y2
.

Theorem 4.10. DSP = DPS.
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Proof. In the classical theory of topology it is proved that SP = PS (See Theorem 16.3
in [9]). That is

(T1 × T2)Y1×Y2 = T1Y1 × T2Y2 (4.1)

From this it follows that

((T1 × T2)Y1×Y2
)D1Y1

×D2Y2
= (T1Y1 × T2Y2 )D1Y1

×D2Y2
.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments The work of the first author is financially supported by the
Department of Science and Technology, India as an Inspire Fellowship.

References

[1] A. Al-omari and T. Noiri, Decompositions of continuity via Grills, Jordan Journal of
Mathematics and Statistics, 4(1) (2011) 33-46.

[2] G. Choquet, Sur les notions de filtre et grille, Comptes Rendus Acad. Sci. Paris, 224
(1947) 171-173.

[3] J. Dontchev, On Pre-I-open Sets and a Decomposition of I-continuity, Banyan Math.
J., 2 (1996).

[4] E. Hatir and T. Noiri, On decompositions of continuity via idealization,
Acta.Math.Hungar., 96(4) (2002) 341-349.
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