
Bangmod Int. J. Math. & Comp. Sci.
Vol. 3, No. 1-2; Pages 35 - 52

http://bangmod-jmcs.kmutt.ac.th/
ISSN : 2408-154X

Generalization of fixed Point results for (α∗, η∗, β )-

contractive mappings in fuzzy metric spaces

G.V.R. Babu1, K. K. M. Sarma2 and Yohannes Gebru Aemro3

1, 2, 3Department of Mathematics, Andhra University, Visakhapatnam-530 003, India.
1 e-mail: gvr−babu@hotmail.com, 2 e-mail: sarmakmkandala@yahoo.in, 3

e-mail:yohannnesgebru2005@gmail.com

2Corresponding author.

Abstract In this paper, we define generalized modified (α∗, η∗, β )- contractive mappings and prove the

existence of fixed points of such maps in a complete fuzzy metric spaces. Moreover, we present examples

in support of the obtained results.

MSC: 47H09

Keywords: Fixed points, fuzzy metric space, (α∗, η∗) admissible map, generalized modified (α∗, η∗, β)-

contractive mappings.

Submission date: 7 March 2017 / Acceptance date: 16 July 2017 /Available online: 1 August 2017

Copyright 2017 c©Theoretical and Computational Science 2017

1. Introduction

From 1975 up to now the theory of fuzzy metric space has been studied by many
mathematicians. The first mathematicians, who introduced fuzzy metric space, in 1975
are Kramosil and Michalek [9]. In 1994, George and Veeramani [3] modified the concept
of fuzzy metric space introduced by Kramosil and Michalek [9]. In 2002, Gregori and
Sapene [7] initiated fuzzy contraction mappings and proved an important fixed point
theorem for this class of mappings. In 2008, Mihet [11] introduced ψ contractive mappings
in non-Archimedean fuzzy metric spaces. For the last 41 years, the concept of fuzzy
metric space and fixed point theorems were studied, generalized and proved by different
mathematicians (see [5-13]). In 2012, Samet, Vitero and Vetro [21] introduced the concept
of admissible mapping for single valued map, and in the same year Asl, Rezapour and
Shahzad [1]extended the concept of admissible for single valued mappings to multi valued
mappings. In 2013 Salimi, Latif and Hussain [20] proved a fixed point theorem for α-
admissible mapping with respect to η on a metric space. Soon after, Hussain, Salimi
and Latif [8] proved fixed point theorem for single and set valued, ( α, η, ψ) contractive
mappings. Very recently Supak, Cho, Kumam [17] introduced a new contractive condition
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and proved fixed point theorems for modified (α∗, η∗) contractive mapping in fuzzy metric
space.

2. Preliminaries

We begin with some basic definitions and results which will be used in main part of
our paper.

Definition 2.1. [22] A binary operation ∗ : [0, 1]×[0, 1]→ [0, 1] is said to be a continuous
t-norm if it satisfies the following conditions :

(T1): ∗ is associative and commutative,
(T2): ∗ is continuous,
(T3): a ∗ 1 = a for all a ∈ [0, 1],
(T4): a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Remark 2.2. A t-norm ∗ is called positive, if a ∗ b > 0 for all a, b ∈ (0, 1).

Examples of continuous t-norms are Lukasievicz t-norm, i.e, a∗L b = max{a+b−1, 0},
product t-norm, i.e, a ∗ b = ab and minimum t-norm, i.e., a ∗M b = min{a, b}, for
a, b ∈ [0, 1].

The concept of fuzzy metric space is defined by George and Veeramani [3] as follows.

Definition 2.3. [3] Let X be a nonempty set, ∗ be a continuous t-norm. Assume that a
fuzzy set M : X×X×(0,∞)→ [0, 1] satisfies the following conditions; for each x, y, z ∈ X
and t, s > 0,

(M1): M(x, y, t) > 0,
(M2): M(x, y, t) = 1 if and only if x = y,
(M3): M(x, y, t) = M(y, x, t),
(M4): M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(M5): M(x, y, ·) : (0,∞)→ [0, 1] is continuous.

Then we call M a fuzzy metric on X, and we call the 3-tuple (X,M, ∗) a fuzzy metric
space.
Lemma 2.4. [4] Let (X,M, ∗) be a fuzzy metric space. For all x, y ∈ X, M(x, y, ·) is a
non-decreasing function.

Remark 2.5. We observe that 0 < M(x, y, t) < 1 provided x 6= y, for all t > 0 (see [15]).

Let (X,M, ∗) be a fuzzy metric space. For t > 0, the open ball B(x, r, t) with a center
x ∈ X and radius 0 < r < 1 is defined by B(x, r, t) = {y ∈ X : M(x, y, t) > 1 − r}. A
subset A ⊂ X is called open if for each x ∈ A, there exist t > 0 and 0 < r < 1 such that
B(x, r, t) ⊂ A. Let τ denote the family of all open subsets of X. Then τ is a topology
on X, called the topology induced by the fuzzy metric M . This topology is metrizable
(see [6]).
Example 2.6. [3]. Let (X, d) be a metric space. We define a∗b = ab (or a∗b = min{a, b})
for all a, b ∈ [0, 1], and M : X ×X × (0,∞)→ [0, 1] as

M(x, y, t) = t
t+d(x,y) for all x, y ∈ X and t > 0.

Then (X,M, ∗) is a fuzzy metric space. We call this fuzzy metric M as the fuzzy metric
induced by the metric d, and this M is known as the standard fuzzy metric.
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Now we give some examples of fuzzy metric spaces due to Gregori, Morillas and
Sapena [5].
Example 2.7. [5] Let (X, d) be a metric space and g : R+ → [0,∞), R+ = [0,∞) be
an increasing continuous function. Define M : X × X × (0,∞) → [0, 1] as M(x, y, t) =

e(
−d(x,y)

g(t)
) for all x, y ∈ X and t > 0. Then (X,M, ∗) is a fuzzy metric space on X where

∗ is the product t-norm.
Example 2.8. [5]. Let (X, d) be a bounded metric space with d(x, y) < k for all
x, y ∈ X, where k is fixed constant in (0,∞) and g : R+ → (k,∞), R+ = [0,∞) be
an increasing continuous function. Define a function M : X × X × (0,∞) → [0, 1] as

M(x, y, t) = 1− d(x,y)
g(t) for all x, y ∈ X and t > 0. Then (X,M, ∗) is a fuzzy metric space,

where ∗ is a Lukasievicz t-norm.
Definition 2.9. [3] Let (X,M, ∗) be a fuzzy metric space.

(1) A sequence{xn} inX is said to be convergent to a point x ∈ X if lim
n→∞

M(xn, x, t) =

1 for all t > 0.
(2) A sequence{xn} in X is called a Cauchy sequence if, for each 0 < ε < 1 and
t > 0, there exits n0 ∈ N such that M(xn, xm, t) > 1− ε for each n,m ≥ n0.

(3) A fuzzy metric space in which every Cauchy sequence is convergent is said to
be complete.

(4) A fuzzy metric space in which every sequence has a convergent subsequence is
said to be compact.

Remark 2.10. In a fuzzy metric space the limit of a convergent sequence is unique.

Definition 2.11. [17] Let (X,M, ∗) be a fuzzy metric space. Then the mapping M is
said to be continuous on X ×X × (0,∞) if

lim
n→∞

M(xn, yn, tn) = M(x, y, t)

when {(xn, yn, tn)} is a sequence in X ×X × (0,∞) which converges to a point
(x, y, t) ∈ X ×X × (0,∞), i.e.,

lim
n→∞

M(xn, x, t) = lim
n→∞

M(yn, y, t) = 1 and lim
n→∞

M(x, y, tn) = M(x, y, t).

Lemma 2.12. [18] If (X,M, ∗) is a fuzzy metric space, then M is a continuous function
on X ×X × (0,∞).

The concept of α-admissible mapping was introduced by Samet,Vetro and Vetro [21]
as follows.

Definition 2.13. [21] Let X be a nonempty set, T : X → X and α : X ×X → [0,∞)
be maps. We say that T is an α-admissible mapping if for all x, y ∈ X, we have α(x, y) ≥
1⇒ α(Tx, Ty) ≥ 1.

In 2013, Salimi, Latif and Hussain [20] modified the concept of α− admissible mapping
as follows.

Definition 2.14. [20]. Let X be a nonempty set, T : X → X and α, η : X×X → [0,∞).
We say that T is an α-admissible mapping with respect to η if for all x, y ∈ X, we have
α(x, y) ≥ η(x, y)⇒ α(Tx, Ty) ≥ η(Tx, Ty).

If we take η(x, y) = 1 for all x, y ∈ X, then T is an α-admissible mapping. If we take
α(x, y) = 1, then we say that T is an η-subadmissible mapping.
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In 2016, Supak, Cho and Kumam[17] introduced the α∗− admissible mappings in fuzzy
metric spaces.

Definition 2.15. [17] Let (X,M, ∗) be a fuzzy metric space. A mapping T : X → X
and let α∗ : X ×X × (0,∞) → [0,∞) be a function. We say that T is an α∗-admissible
mapping if, for all x, y ∈ X and t > 0, α∗(x, y, t) ≥ 1⇒ α∗(Tx, Ty, t) ≥ 1.

In 2016, Supak, Cho and Kumam[17] introduced the (α∗, η∗)- admissible mappings in
fuzzy metric spaces.
Definition 2.16. [17] Let(X,M, ∗) be a fuzzy metric space. A mapping T : X →
X and let α∗, η∗ : X × X × (0,∞) → [0,∞) be two functions. We say that T is an
(α∗, η∗)- admissible mapping if, for all x, y ∈ X and t > 0, α∗(x, y, t) ≥ η∗(x, y, t) ⇒
α∗(Tx, Ty, t) ≥ η∗(Tx, Ty, t).

Note that, if η∗(x, y, t) = 1 then it is clear that T is an α∗ admissible mapping. if we
take α∗(x, y, t) = 1, then we say that T is an η∗-subadmissible mapping.

We denote

S = {β = [0, 1]→ [1,∞], | for any sequence{tn} ⊂ [0, 1], β(tn)→ 1⇒ tn → 1}.
Note that S 6= ∅, In fact the map β(t) = 2

1+t ∈ S.

Remark 2.17. For any β ∈ S and a ∈ [0, 1], we have β(a) = 1 implies that a = 1.

Theorem 2.18. [17] Let (X,M, ∗) be a complete fuzzy metric space. A mapping T :
X → X be (α∗, η∗)-admissible map. Assume that there exists a function β ∈ S such that

α∗(x, Tx, t)α∗(y, Ty, t) ≥ η∗(x, Tx, t)η∗(y, Ty, t)⇒M(Tx, Ty, t) ≥ β(M(x, y, t))N(x, y, t)

where
N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}

for all x, y ∈ X and t > 0. Suppose that the following conditions hold

(a): there exists x0 ∈ X such that α∗(x0, Tx0, t) ≥ η∗(x0, Tx0, t) for all t > 0.
(b): For any sequence {xn} ⊂ X such that α∗(xn, xn+1, t) ≥ η∗(xn, xn+1, t),

for all n ∈ N, t > 0 and xn → x as n→∞, then α∗(x, Tx, t) ≥ η∗(x, Tx, t) for all
t > 0.

Then T has a fixed point.

Now we introduce the following definition.

Definition 2.19. Let (X,M, ∗) be a fuzzy metric space. Let T : X → X and let
α∗, η∗ : X ×X × (0,∞)→ [0,∞) be two functions. if there exists a function β ∈ S such
that,

α∗(x, Tx, t)α∗(y, Ty, t) ≥ η∗(x, Tx, t)η∗(y, Ty, t)⇒M(Tx, Ty, t) ≥
β(M(x, y, t))N(x, y, t)K(x, y, t),

(2.1)

where
N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}.

and

K(x, y, t) = max{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)}.
Then we say that T is a generalized modified (α∗, η∗, β) contractive mapping.
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Example 2.20. Let X = [0, 23 ] ∪ [1,∞) and M(x, y, t) = ( t
t+1 )d(x,y), where d(x, y) =

|x− y|, ∗ be product continuous t-norm. Here (X,M, ∗) is complete fuzzy metric space.
Let T : X → X be a map defined by

Tx =

{
x
2 , if x ∈ [0, 23 ]
0, if x ∈ [1,∞)

Let α∗, η∗ : X ×X × (0,∞)→ [0,∞) defined by

α∗(x, y, t) =

{
2, if x, y ∈ [0, 23 ] ∪ {1}
0, otherwise

and

η∗(x, y, t) =

{
1, if x, y ∈ [0, 23 ] ∪ {1}
2, otherwise

is a generalized modified (α∗, η∗, β) contractive mapping.

In Section 3, we prove the existence of fixed points for generalized modified (α∗, η∗, β)-
mappings in a complete fuzzy metric spaces. we provide some examples to show the
validity of our results. Our result generalized the results of ([17]).

3. Main Results

The following propositions are needed to establish the main result

Proposition 3.1. Suppose (X,M, ∗) is fuzzy metric space. Let {xn} be a sequence in X
such that
M(xn, xn+1, t) → 1 as n → ∞,∀t > 0 . If {xn} is not a Cauchy sequence then there
exist 0 < ε < 1, t0 > 0 and sequences of positive integers {m(k)} and {n(k)} with
m(k) > n(k) ≥ k for each k ∈ N such that M(xm(k), xn(k), t0) ≤ 1− ε and

(i) lim
k→∞

M(xm(k), xn(k), t0) = 1− ε,

(iii) lim
k→∞

M(xm(k), xn(k),
t0
4

) = 1− ε,

(v) lim
k→∞

M(xm(k)−1, xn(k),
t0
2

) = 1− ε,

(ii) lim
k→∞

M(xm(k), xn(k),
t0
2

) = 1− ε,

(iv) lim
k→∞

M(xm(k)−1, xn(k)+1,
t0
2

) = 1− ε,

(vi) lim
k→∞

M(xm(k)+1, xn(k)+1,
t0
2

) = 1− ε.

Proof. Suppose that the sequence {xn} is not a Cauchy sequence. Then there exist
ε ∈ (0, 1) and t0 > 0 such that for all k ≥ 1, there are positive integers m(k), n(k) ∈ N

with m(k) > n(k) ≥ k and

M(xn(k), xm(k), t0) ≤ 1− ε. (3.1)

Bangmod-JMCS−jmcs@kmutt.ac.th c©2017 By TaCS Center.



Bangmod Int. J. Math. & Comp. Sci., 2017 ISSN: 2408-154X 40

Since M(x, y, ·) is a non- decreasing map, we have

M(xn(k), xm(k),
t0
8

) ≤M(xn(k), xm(k),
t0
4

)

≤M(xn(k), xm(k),
t0
2

)

≤M(xn(k), xm(k), t0)

≤ 1− ε.

Now, for any n(k),m(k) satisfying (3.1), we have

M(xn(k), xm(k),
t0
8

) ≤ 1− ε.

We assume that m(k) is the least positive integer exceeding n(k) and satisfying the above
inequality, that is,

M(xn(k), xm(k),
t0
8

) ≤ 1− ε and M(xn(k), xm(k)−1,
t0
8

) > 1− ε.

Thus,

M(xn(k), xm(k)−1, t0) ≥M(xn(k), xm(k)−1,
t0
2

) ≥ M(xn(k), xm(k)−1,
t0
4

)

≥ M(xn(k), xm(k)−1,
t0
8

)

> 1− ε. (3.2)

we now prove (i). we have,

1− ε ≥M(xn(k), xm(k), t0) ≥ M(xn(k), xm(k)−1,
t0
2

) ∗M(xm(k)−1, xm(k),
t0
2

)

≥ (1− ε) ∗M(xm(k)−1, xm(k),
t0
2

). (3.3)

Since lim
k→∞

((1−ε)∗M(xm(k)−1, xm(k),
t0
2

)) = (1−ε)∗ lim
k→∞

M(xm(k)−1, xm(k),
t0
2

)) = (1−ε)∗
1 = 1−ε, from (3.3) it follows that lim

k→∞
M(xn(k), xm(k), t0) exists and lim

k→∞
M(xn(k), xm(k), t0) =

1− ε. Hence (i) holds.
Now, we have

1− ε ≥M(xn(k), xm(k),
t0
2

) ≥ M(xn(k), xm(k)−1,
t0
4

) ∗M(xm(k)−1, xm(k),
t0
4

)

≥ (1− ε) ∗M(xm(k)−1, xm(k),
t0
4

) (3.4)

Since lim
k→∞

(1 − ε) = lim
k→∞

((1 − ε) ∗M(xm(k)−1, xm(k),
t0
4

)) = 1 − ε, from (3.37) we have

lim
k→∞

M(xn(k), xm(k),
t0
2

) exists and lim
k→∞

M(xn(k), xm(k),
t0
2

) = 1− ε.
Again,we have

1− ε ≥M(xn(k), xm(k),
t0
4

) ≥ M(xn(k), xm(k)−1,
t0
8

) ∗M(xm(k)−1, xm(k),
t0
8

)

> (1− ε) ∗M(xm(k)−1, xm(k),
t0
8

). (3.5)
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Since lim
k→∞

((1−ε)∗M(xm(k)−1, xm(k),
t0
8

)) = 1−ε, from (3.5), we have lim
k→∞

M(xn(k), xm(k),
t0
4

)

exists and lim
k→∞

M(xn(k), xm(k),
t0
4

) = 1− ε.
Therefore (i)-(iii) follows

We now prove (iv). By condition (M4) in fuzzy metric space we have that

M(xm(k)−1, xn(k)+1,
t0
2

) ≥M(xn(k)+1, xn(k),
t0
8

) ∗M(xn(k), xm(k),
t0
4

) ∗M(xm(k), xm(k)−1,
t0
8

).(3.6)

By taking limit inferior as k →∞, we get

lim inf
k→∞

M(xm(k)−1, xn(k)+1,
t0
2

) ≥ lim inf
k→∞

M(xn(k)+1, xn(k),
t0
8

) ∗ lim inf
k→∞

M(xn(k), xm(k),
t0
4

)

∗ lim inf
k→∞

M(xm(k), xm(k)−1,
t0
8

).

Now, using M(xn, xn+1, t)→ 1 as n→∞,∀t > 0 and (iii) we obtain

lim inf
k→∞

M(xm(k)−1, xn(k)+1,
t0
2

) ≥ 1 ∗ (1− ε) ∗ 1 = 1− ε. (3.7)

Moreover, from the condition (M4) of fuzzy metric space, we have

M(xn(k), xm(k), t0) ≥M(xn(k), xn(k)+1,
t0
4

)∗M(xn(k)+1, xm(k)−1,
t0
2

)∗M(xm(k)−1, xm(k),
t0
4

).

(3.8)

By taking limit inferior as k →∞ on both sides of the above inequality , we get

1− ε ≥ lim inf
k→∞

M(xn(k)+1, xm(k)−1,
t0
2

). (3.9)

From (3.38) and (3.9) we have

lim inf
k→∞

M(xn(k)+1, xm(k)−1,
t0
2

) = 1− ε. (3.10)

Now we take limit superior in (3.8) as k →∞

1− ε ≥ lim sup
k→∞

M(xn(k)+1, xm(k)−1,
t0
2

). (3.11)

From (3.10) and (3.11) we obtain

lim inf
k→∞

M(xn(k)+1, xm(k)−1,
t0
2

) = lim sup
k→∞

M(xn(k)+1, xm(k)−1,
t0
2

) = 1− ε. (3.12)

Thus,

lim
k→∞

M(xn(k)+1, xm(k)−1,
t0
2

) exists and lim
k→∞

M(xn(k)+1, xm(k)−1,
t0
2

) = 1− ε.

Thus (iv) holds.

(v) We show that lim
k→∞

M(xm(k)−1, xn(k),
t0
2

) = 1− ε.
By using condition (M4) of fuzzy metric space, we have

M(xm(k)−1, xn(k),
t0
2

) ≥M(xm(k)−1, xm(k),
t0
4

) ∗M(xm(k), xn(k),
t0
4

). (3.13)
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By taking limit inferior as k →∞, in (3.13), we get

lim inf
k→∞

M(xm(k)−1, xn(k),
t0
2

) ≥ lim inf
k→∞

M(xm(k)−1, xm(k),
t0
4

)∗lim inf
k→∞

M(xm(k), xn(k),
t0
4

).

(3.14)

Now, using M(xn, xn+1, t)→ 1 as n→∞,∀t > 0 and (iii) we obtain

lim inf
k→∞

M(xm(k)−1, xn(k),
t0
2

) ≥ 1 ∗ (1− ε) ∗ 1 = 1− ε. (3.15)

Moreover, from the condition (M4) of fuzzy metric space, we have

M(xn(k), xm(k), t0) ≥M(xn(k), xm(k)−1,
t0
2

) ∗M(xm(k)−1, xm(k),
t0
2

). (3.16)

By taking limit inferior as k →∞ on both sides of the above inequality , we get

1− ε ≥ lim inf
k→∞

M(xn(k), xm(k)−1,
t0
2

). (3.17)

From (3.15) and (3.17) we have

lim inf
k→∞

M(xn(k), xm(k)−1,
t0
2

) = 1− ε. (3.18)

Now we take limit superior as k →∞ in (3.16) we have

1− ε ≥ lim sup
k→∞

M(xn(k), xm(k)−1,
t0
2

). (3.19)

From (3.18) and (3.19) we obtain

lim inf
k→∞

M(xn(k), xm(k)−1,
t0
2

) = lim sup
k→∞

M(xn(k), xm(k)−1,
t0
2

) = 1− ε. (3.20)

Thus,

lim
k→∞

M(xn(k), xm(k)−1,
t0
2

) exists and lim
k→∞

M(xn(k), xm(k)−1,
t0
2

) = 1− ε.

This proves (v).

vi) We prove lim
k→∞

M(xm(k)+1, xn(k)+1,
to
2

) = 1− ε.
By using condition (M4) of fuzzy metric space, we have

M(xm(k)+1, xn(k)+1,
t0
2

) ≥M(xm(k)+1, xm(k),
t0
8

) ∗M(xm(k), xn(k),
t0
4

) ∗M(xn(k), xn(k)+1,
t0
8

).(3.21)

By taking limit inferior as k →∞ in (3.21), we get

lim inf
k→∞

M(xm(k)+1, xn(k)+1,
t0
2

) ≥ lim inf
k→∞

M(xm(k)+1, xm(k),
t0
8

)∗lim inf
k→∞

M(xm(k), xn(k),
t0
8

)∗

lim inf
k→∞

M(xn(k), xn(k)+1,
t0
8

). (3.22)

Now, using M(xn, xn+1, t)→ 1 as n→∞,∀t > 0 and (iii) we obtain

lim inf
k→∞

M(xm(k)+1, xn(k)+1,
t0
2

) ≥ 1 ∗ (1− ε) ∗ 1 = 1− ε. (3.23)
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Moreover, from the condition (M4) in the definition of fuzzy metric space

M(xn(k), xm(k), t0) ≥M(xn(k), xn(k)+1,
t0
4

)∗M(xn(k)+1, xm(k)+1,
t0
2

)∗M(xm(k)+1, xm(k),
t0
4

).

(3.24)

By taking limit inferior as k →∞ on both sides of the above inequality , we get

1− ε ≥ lim inf
k→∞

M(xn(k)+1, xm(k)+1,
t0
2

). (3.25)

From (3.23) and (3.25) we have

lim inf
k→∞

M(xn(k)+1, xm(k)+1,
t0
2

) = 1− ε. (3.26)

Now we take limit superior in (3.24) as k →∞

1− ε ≥ lim sup
k→∞

M(xn(k)+1, xm(k)+1,
t0
2

). (3.27)

From (3.26) and (3.27) we obtain

lim inf
k→∞

M(xn(k)+1, xm(k)+1,
t0
2

) = lim sup
k→∞

M(xn(k)+1, xm(k)+1,
t0
2

) = 1− ε. (3.28)

Thus,

lim
k→∞

M(xn(k)+1, xm(k)+1,
t0
2

) exists and lim
k→∞

M(xn(k)+1, xm(k)+1,
t0
2

) = 1− ε.

Hence (vi) holds.
This completes the proof of Proposition 3.1.

Proposition 3.2. Let (X,M, ∗) be a fuzzy metric space. Let T : X → X be a gen-
eralized modified (α∗, η∗, β)- contractive mapping. Fix x0 ∈ X and define a sequence
{xn} by xn+1 = Txn for n = 0, 1, 2, · · · . If α∗(xn, xn+1, t) ≥ η∗(xn, xn+1, t) ∀n and
lim
n→∞

M(xn, xn+1, t) = 1 then {xn} is Cauchy sequence in X.

Proof. Suppose, on the contrary, that {xn} is not a Cauchy sequence. By Proposition
3.1, there exist 0 < ε < 1, t0 > 0 and sequences of positive integers {m(k)}, {n(k)} with
m(k) > n(k) ≥ k for any k ∈ N such that

lim
k→∞

M(xn(k), xm(k), t0) = lim
k→∞

M(xn(k), xm(k),
t0
2

) = lim
k→∞

M(xn(k)+1, xm(k)+1, t0) = 1−ε

(3.29)

We have

α∗
(
xn(k), Txn(k),

t0
2

)
α∗
(
xm(k), Txm(k),

t0
2

)
≥ η∗

(
xn(k), Txn(k),

t0
2

)
η∗
(
xm(k), Txm(k),

t0
2

)
.

Hence, from (1), we have

M
(
Txn(k), Txm(k),

t0
2

)
≥ β

(
M
(
xn(k), xm(k),

t0
2

))
N
(
xn(k), xm(k),

t0
2

)
K
(
xn(k), xm(k),

t0
2

)
.

Therefore

M
(
xn(k)+1, xm(k)+1,

t0
2

)
N
(
xn(k), xm(k),

t0
2

)
K
(
xn(k), xm(k),

t0
2

) ≥ β(M (
xn(k), xm(k),

t0
2

))
≥ 1. (3.30)
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where
K(xn(k), xm(k),

t0
2 ) = max{M(xn(k), xm(k),

t0
2 ),M(xn(k), xm(k)+1,

t0
2 ),M(xm(k), xn(k)+1,

t0
2 ),

M(xn(k), xn(k)+1,
t0
2 ),M(xm(k), xm(k)+1,

t0
2 )} and

N(xn(k), xm(k),
t0
2 ) = min{M(xn(k), xm(k),

t0
2 ),max{M(xn(k), xn(k)+1,

t0
2 ),M(xm(k), xm(k)+1,

t0
2 )}}.

Hence we have

lim
k→∞

K(xn(k), xm(k),
t0
2

) = 1 and lim
k→∞

N(xn(k), xm(k),
t0
2

) = 1− ε. (3.31)

Thus, on taking limits as k → ∞ in (3.30) and by using (3.29) and (3.31), it follows
that

1− ε
1− ε

≥ lim
k→∞

β(M(xn(k), xm(k),
t0
2

)) ≥ 1

which implies that,

lim
k→∞

β(M(xn(k), xm(k),
t0
2

)) = 1.

Hence, from the property of β, we have

lim
k→∞

M(xn(k), xm(k),
t0
2

) = 1.

Thus, 1− ε = lim
k→∞

M(xn(k), xm(k),
t0
2

) = 1. so that ε = 0, which is a contradiction.

Therefore {xn} is a Cauchy Sequence.

Theorem 3.3. Let (X,M, ∗) be a complete fuzzy metric space. Let T : X → X be a gen-
eralized modified (α∗, η∗, β)- contractive mapping. Suppose that the following conditions
hold:

(a): T is (α∗, η∗) admissible mapping;
(b): there exists x0 ∈ X such that α∗(x0, Tx0, t) ≥ η∗(x0, Tx0, t) for all t > 0;
(c): for any sequence {xn} ⊂ X such that α∗(xn, xn+1, t) ≥ η ∗ (xn, xn+1, t) for

all n ∈ N, t > 0 and xn → x as n → ∞, then α∗(x, Tx, t) ≥ η ∗ (x, Tx, t) for all
t > 0.

Then T has a fixed point.

Proof. Let x0 ∈ X be such that α∗(x0, Tx0, t) ≥ η∗(x0, Tx0, t) for all t > 0. Define a
sequence {xn} in X such that xn = Tnx0 = Txn−1 for all n ∈ N . If xn = xn+1 for some
n ∈ N , then xn = Txn and hence xn is a fixed point of T and we are done.
Assume that xn 6= xn+1 for all n ∈ N . Since T is (α∗, η∗) admissible mapping and since
α∗(x0, Tx0, t) ≥ η∗(x0, Tx0, t) it follows that

α∗(x1, x2, t) = α∗(Tx0, Tx1, t) ≥ η∗(Tx0, Tx1, t) = η∗(x1, x2, t)

so that

α∗(x0, Tx0, t)α
∗(x1, Tx1, t) ≥ η∗(x0, Tx0, t)η∗(x1, Tx1, t).

On continuing this process, we have α∗(xn, Txn, t) ≥ η∗(xn, Txn, t), for all n ≥ 1 and so
we have
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α∗(xn−1, Txn−1, t)α
∗(xn, Txn, t) ≥ η∗(xn−1, Txn−1, t)η

∗(xn, Txn, t) for all n ∈ N and
t > 0. Now, from the inequality in (1), we have

M(xn, xn+1, t) = M(Txn−1, Txn, t)

≥ β(M(xn−1, xn, t))N(xn−1, xn, t)K(xn−1, xn, t) (3.32)

where

N(xn−1, xn, t) = min{M(xn−1, xn, t),max{M(xn−1, Txn−1, t),M(xn, Txn, t)}}
= min{M(xn−1, xn, t),max{M(xn−1, xn, t),M(xn, xn+1, t)}}.(3.33)

and

K(xn−1, xn, t) = max{M(xn−1, xn, t),M(xn−1, Txn−1, t),M(xn, Txn, t)M(xn−1, Txn, t),

M(xn, Txn−1, t)}.

Since M(xn, Txn−1, t) = 1 for all n ∈ N and t > 0 we have that K(xn−1, xn, t) = 1 for
all n.
Moreover, since min{a,max{a, b}} = a, we have

N(xn−1, xn, t) = min{M(xn−1, xn, t),max{M(xn−1, Txn−1, t),M(xn, Txn, t)}}
= M(xn−1, xn, t).

Hence

M(xn, xn+1, t) ≥ β(M(xn−1, xn, t))M(xn−1, xn, t) for all n ∈ N and t > 0.

(3.34)

It follows that the sequence{M(xn, xn+1, t)} is an increasing sequence in (0, 1]. Thus,
there exists lt ∈ (0, 1] such that

lim
n→∞

M(xn, xn+1, t) = lt for each t > 0.

We now prove that lt = 1 for each t > 0. Let t > 0 from (3.34), we have M(xn,xn+1,t)
M(xn−1,xn,t)

≥
βM(xn−1, xn, t) ≥ 1, which implies that lim

n→∞
β(M(xn−1, xn, t)) = 1 . Hence by the

property of the function β we have lim
n→∞

M(xn−1, xn, t) = 1,, that is lt = 1.

Thus by Proposition 3.2 we have {xn} is a Cauchy sequence. Since (X,M, ∗) is complete,
there exists x∗ ∈ X such that xn → x∗ as n → ∞ for each t > 0. By condition (c) we
have α∗(x∗, Tx∗, t) ≥ η∗(x∗, Tx∗, t). Hence we get that α∗(xn, Txn, t)α

∗(x∗, Tx∗, t) ≥
η∗(xn, Txn, t)η

∗(x∗, Tx∗, t) for all n ∈ N∪{0} and t > 0. Now, by applying the inequality
(1), we have

M(Tx∗, Txn, t) = M(Tx∗, xn+1, t) ≥ β(M(x∗, xn, t))N(x∗, xn, t)K(x∗, xn, t)

(3.35)

where

N(x∗, xn, t) = min{M(x∗, xn, t),max{M(x∗, Tx∗, t),M(xn, Txn, t)}}

and

K(x∗, xn, t) = max{M(x∗, xn, t),M(x∗, xn+1, t),M(xn+1, Tx
∗, t)M(x∗, Tx∗, t),M(xn, Txn, t)}.
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Hence it follows that

lim
n→∞

N(x∗, xn, t) = 1 and lim
n→∞

K(x∗, xn, t) = 1. (3.36)

On taking limits as n→∞ in (3.35), we get

lim
n→∞

M(Tx∗, xn+1, t) ≥ lim
n→∞

β(M(x∗, xn, t)) ≥ 1.

This implies that limn→∞M(Tx∗, xn+1, t) = 1, which shows the sequence {xn} converges
to Tx∗,but the sequence {xn} converges to x∗. Since the limit of a convergent sequence
in a fuzzy metric space is unique, we have that Tx∗ = x∗.

In order to prove the uniqueness of fixed points of Theorem 3.3, we use the following
’Condition(H)’: α∗(x, y, t) = η∗(x, y, t) if and only if x = y. The following are examples
of α∗ and η∗ satisfying ’Condition(H)’

Example 3.4. Define α∗ and η∗ on [0,∞)× [0,∞)× (0,∞)→ [0,∞) by

α∗(x, y, t) =

{
5x+ t if x = y
0 if x 6= y

and

η∗(x, y, t) =

{
5y + t if x = y
1 if x 6= y.

Then α∗, η∗ satisfying Condition(H).

Example 3.5. Let X = [0,∞). we define α∗, η∗ : X ×X × (0,∞)→ [0,∞) by

α∗(x, y, t) =

{
(xy + t)2 if x = y
tx if x 6= y

and

η∗(x, y, t) =

{
(xy + t)2 if x = y
ty if x 6= y.

Then α∗, η∗ satisfying Condition(H).

Theorem 3.6. : In addition to the hypotheses of Theorem 3.3, we assume that ’Condi-
tion(H)’ holds. Then T has a unique fixed point in X.

Proof. Suppose x and y are fixed points of T . Thus, Tx = x and Ty = y which implies
that α∗(x, Tx, t) = α∗(x, x, t) and α∗(y, Ty, t) = α∗(y, y, t). By condition (H), we have
α∗(x, x, t) = η∗(x, x, t) and α∗(y, y, t) = η∗(y, y, t) for all t > 0. This implies that

α∗(x, Tx, t)α∗(y, Ty, t) ≥ η∗(x, Tx, t)η∗(y, Ty, t).

Since T is a generalized modified (α∗, η∗, β) contractive mapping, we have that

M(x, y, t) = M(Tx, Ty, t) ≥ β(M(x, y, t))N(x, y, t)K(x, y, t)

where N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}} = M(x, y, t) and

K(x, y, t) = max{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)} = 1.
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This implies that

M(x, y, t) ≥ β(M(x, y, t))M(x, y, t) ≥M(x, y, t)

Thus β(M(x, y, t)) = 1 for all t > 0. By Remark 2.17 we get that M(x, y, t) = 1 for all
t > 0. This implies that x = y and the conclusion of the Theorem follows.

Theorem 3.7. Let T be a self map satisfy all the hypotheses of Theorem 3.3. Then for
any x ∈ X with α∗(x, Tx, t) ≥ η∗(x, Tx, t), the sequence of iterates {Tnx} converges to
z(say) in X. Further, z the unique fixed of T .

Proof. Let x, y be points in X with α∗(x, Tx, t) ≥ η∗(x, Tx, t)
and

α∗(y, Ty, t) ≥ η∗(y, Ty, t).

From the proof of Theorem 3.3, the sequences {Tnx} and {Tny} converge to the fixed
points of T .
Suppose Tnx→ u and Tny → v. we show that u = v. From the hypotheses of Theorem
3.3 we have α∗(u, Tu, t) ≥ η∗(u, Tu, t) and α∗(v, Tv, t) ≥ η∗(v, Tv, t). This implies

α∗(u, Tu, t)α∗(v, Tv, t) ≥ η∗(u, Tu, t)η∗(v, Tv, t)for all t > 0. (3.37)

Thus

M(u, v, t) = M(Tu, Tv, t) ≥ β(M(u, v, t))N(u, v, t)K(u, v, t).

Here we observe that N(u, v, t) = M(u, v, t) and K(u, v, t) = 1. By (3.37) we get

M(u, v, t) ≥ β(M(u, v, t))(M(u, v, t)) ≥M(u, v, t).

Hence β(M(u, v, t)) = 1. By Remark 2.17, we have M(u, v, t) = 1, for all t > 0. Hence
u = v.

By taking η∗(x, y, t) = 1 in Theorem 3.3, we have the following result.

Corollary 3.8. Let (X,M, ∗) be a complete fuzzy metric space. A mapping T : X → X
be α∗-admissible map. Assume that there exists a function β ∈ S such that

α∗(x, Tx, t)α∗(y, Ty, t) ≥ 1⇒M(Tx, Ty, t) ≥ β(M(x, y, t))N(x, y, t)K(x, y, t)

where

N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}

and

K(x, y, t) = max{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)}

for all x, y ∈ X and t > 0. Suppose that the following conditions hold

(a): there exists x0 ∈ X such that α∗(x0, Tx0, t) ≥ 1 for all t > 0.
(b): For any sequence {xn} ⊂ X such that α∗(xn, xn+1, t) ≥ 1, for all n ∈

N, t > 0 and xn → x as n→∞, then α∗(x, Tx, t) ≥ 1 for all t > 0.

Then T has a fixed point.
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Corollary 3.9. Let (X,M, ∗) be a complete fuzzy metric space. A mapping T : X → X
be α∗-admissible map. Assume that there exists a function β ∈ S such that

1

α∗(x, Tx, t)α∗(y, Ty, t)
M(Tx, Ty, t) ≥ β(M(x, y, t))N(x, y, t)K(x, y, t) (3.38)

where
N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}.

and

K(x, y, t) = max{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)}
for all x, y ∈ X and t > 0. Suppose that the following conditions hold.

(a): there exists x0 ∈ X such that α∗(x0, Tx0, t) ≥ 1 for all t > 0.
(b): For any sequence {xn} ⊂ X such that α∗(xn, xn+1, t) ≥ 1, for all n ∈

N, t > 0 and xn → x as n→∞, then α∗(x, Tx, t) ≥ 1 for all t > 0.

Then T has a fixed point.

Proof. let α∗(x, Tx, t)α∗(y, Ty, t) ≥ 1. Thus 1
α∗(x,Tx,t)α∗(y,Ty,t) ≤ 1 and this implies that

1
α∗(x,Tx,t)α∗(y,Ty,t)M(Tx, Ty, t) ≤M(Tx, Ty, t). From (3.38) it follows that

M(Tx, Ty, t) ≥ β(M(x, y, t))N(x, y, t)K(x, y, t). Hence by Corollary 3.8 T has a fixed
point.

By taking α∗(x, y, t) = 1 in Theorem 3.3, we have the following result.

Corollary 3.10. Let (X,M, ∗) be a complete fuzzy metric space. A mapping T : X → X
be η∗-sub admissible map. Assume that there exists a function β ∈ S such that

η∗(x, Tx, t)η∗(y, Ty, t) ≤ 1⇒M(Tx, Ty, t) ≥ β(M(x, y, t))N(x, y, t)K(x, y, t)

where
N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}

and

K(x, y, t) = max{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)}.
for all x, y ∈ X and t > 0. Suppose that the following conditions hold

(a): there exists x0 ∈ X such that η∗(x0, Tx0, t) ≤ 1 for all t > 0.
(b): For any sequence {xn} ⊂ X such that η∗(xn, xn+1, t) ≤ 1, for all n ∈

N, t > 0 and xn → x as n→∞, then α∗(x, Tx, t) ≤ 1 for all t > 0.

Then T has a fixed point.

If T : X → X is η∗-sub admissible, then we have the following corollary.

Corollary 3.11. Let (X,M, ∗) be a complete fuzzy metric space. A mapping T : X → X
be η∗-sub admissible map. Assume that there exists a function β ∈ S such that

M(Tx, Ty, t) ≥ 1

η∗(x, Tx, t)η∗(y, Ty, t)
β(M(x, y, t))N(x, y, t)K(x, y, t)

where
N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}

and

K(x, y, t) = max{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)}.
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for all x, y ∈ X and t > 0. Suppose that the following conditions hold

(a): there exists x0 ∈ X such that η∗(x0, Tx0, t) ≤ 1 for all t > 0.
(b): For any sequence {xn} ⊂ X such that η∗(xn, xn+1, t) ≤ 1, for all n ∈

N, t > 0 and xn → x as n→∞, then α∗(x, Tx, t) ≤ 1 for all t > 0.

Then T has a fixed point.

If we take α∗(x, y, t) = 1 in Corollary3.9 or η∗(x, y, t) = 1 in Corollary 3.11, we have
the following result

Corollary 3.12. Let (X,M, ∗) be a complete fuzzy metric space. T be a mapping T :
X → X . Assume that there exists a function β ∈ S such that

M(Tx, Ty, t) ≥ β(M(x, y, t))N(x, y, t)K(x, y, t)

where

N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}
and

K(x, y, t) = max{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)}.

for all x, y ∈ X and t > 0. Then T has a fixed point.

Remark 3.13. Theorem 2.18 follows as a corollary to Theorem 3.3 by choosingK(x, y, t) =
1 for all x, y ∈ X and t > 0.

Now, we give an example in support Theorem 3.3.

Example 3.14. Let X = [0, 23 ] ∪ [1,∞) and M(x, y, t) = ( t
t+1 )d(x,y), where d(x, y) =

|x−y|, x, y ∈ X, ∗ is product continuous t-norm. Here (X,M, ∗) is complete fuzzy metric
space.
Let T : X → X be a map defined by

Tx =

{
x
2 if x ∈ [0, 23 ]
0 if x ∈ [1,∞)

Let α∗, η∗ : X ×X × (0,∞)→ [0,∞) defined by

α∗(x, y, t) =

{
2 if x, y ∈ [0, 23 ] ∪ {1}
0 otherwise.

and

η∗(x, y, t) =

{
1 if x, y ∈ [0, 23 ] ∪ {1}
2 otherwise.

We have α∗(x, y, t) ≥ η∗(x, y, t) if and only if x, y ∈ [0, 23 ] ∪ {1}. On the other hand ,

for all x, y ∈ [0, 23 ] ∪ {1}, we have Tx ≤ 1 and Ty ≤ 1. This implies that

α∗(Tx, Ty, t) ≥ η∗(Tx, Ty, t).

Hence T is α∗, η∗ admissible mapping.
Moreover, α∗( 1

3 , T
1
3 , t) ≥ η

∗( 1
3 , T

1
3 , t).

Let {xn} be a sequence in X such that α∗(xn, xn+1, t) ≥ η∗(xn, xn+1, t) for all n ∈ N∪{0}
and xn → x as n→∞, then {xn} ⊂ [0, 1], and hence x ∈ [0, 23 ] ∪ {1} . This implies that
α∗(x, Tx, t) ≥ η∗(x, Tx, t) for all n ∈ N and t > 0.
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Suppose α∗(x, Tx, t)α∗(y, Ty, t) ≥ η∗(x, Tx, t)η∗(y, Ty, t). Then x, y ∈ [0, 23 ] ∪ {1}.

Case i : If x, y ∈ [0, 23 ] and β(t) = t−
1
2 thenM(Tx, Ty, t) =

(
t
t+1

)d(Tx,Ty)
=
(

t
t+1

)|Tx−Ty|
=(

t
t+1

)| x2− y
2 |

=
(

t
t+1

)−| x2− y
2 | ( t

t+1

)|x−y|
= β(

(
t
t+1

)|x−y|
)
(

t
t+1

)d(x,y)
= β(M(x, y, t))M(x, y, t) ≥

β(M(x, y, t))N(x, y, t) ≥ β(M(x, y, t)N(x, y, t)K(x, y, t).

Case ii : If x ∈ [0, 23 ] and y = 1

Then,

M(Tx, Ty, t) =

(
t

t+ 1

)| x2−0|
=

(
t

t+ 1

) x
2

,M(x, y, t) =

(
t

t+ 1

)1−x

,

M(x, Tx, t) =
(

t
t+1

) x
2

,M(y, Ty, t) =
(

t
t+1

)
,M(x, Ty, t) =

(
t
t+1

)x
,M(y, Tx, t) =

(
t
t+1

)(1− x
2 )

.

Here we have

N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}

= min

{(
t

t+ 1

)1−x

,max

{(
t

t+ 1

) x
2

,

(
t

t+ 1

)}}

=

(
t

t+ 1

)1−x

. (3.39)

On the other hand

K(x, y, t) = max{M(x, y, t),M(x, Tx, t),M(y, Ty, t),M(x, Ty, t),M(y, Tx, t)}

= max

{(
t

t+ 1

)1−x

,

(
t

t+ 1

)x
2,

(
t

t+ 1

)
,

(
t

t+ 1

)x
,

(
t

t+ 1

)(1− x
2 )
}

=

(
t

t+ 1

) x
2

. (3.40)

Now, M(Tx, Ty, t) =
(

t
t+1

) x
2 ≥

(
t
t+1

)− 1
2+x

(
t
t+1

)1−x (
t
t+1

) x
2

.

This implies that

M(Tx, Ty, t) ≥ β(M(x, y, t))N(x, y, t)K(x, y, t).

It is easy to show that M(Tx, Ty, t) ≥ β(M(x, y, t))N(x, y, t)K(x, y, t) for x = 1, y = 1.

Therefore T satisfies all conditions of Theorem 3.3 with β(t) = t−
1
2 and β ∈ S. 0 is the

fixed point of T .
we now show that contractive condition in Theorem 2.18 fails to hold . For, we choose,
x = 2

3 and y = 1 and t > 0, we obtain

M(T
2

3
, T1, t) =

(
t

t+ 1

) 1
3

,M(
2

3
, 1, t) =

(
t

t+ 1

) 1
3

,M(
2

3
, T

2

3
, t) =

(
t

t+ 1

) 1
3

,M(1, T1, t) =

(
t

t+ 1

)
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and

N(x, y, t) = min{M(x, y, t),max{M(x, Tx, t),M(y, Ty, t)}}

= min

{(
t

t+ 1

) 1
3

,max

{(
t

t+ 1

) 1
3

,

(
t

t+ 1

)}}

=

(
t

t+ 1

) 1
3

. (3.41)

If there exist β ∈ S such that
(

t
t+1

) 1
3

= M(T 2
3 , T1, t) ≥ β(M( 2

3 , 1, t))N( 2
3 , 1, t), then

β(M( 2
3 , 1, t)) = 1. By Remark 2.17 we have M( 2

3 , 1, t) = 1, a contradiction. Hence
Remark 3.13 suggests that Theorem 3.3 is a generalization of Theorem 2.18.
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