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1. INTRODUCTION

In [8], Ahmad et al. considered the following method

Yn = Tn — (41,
Zn = Yn —aoq2 — (3 —2a0)gs — (ap — 2)qu,
Tpp1 = 2n — Q1G5 — A2g6 — A3Q7 — Aaqs — A5q9; (1.1)

Up = Ty + bOF(xn)z An = [mn,un,F], hn = Un + blF<yn)7 Bn = [hnayn . F]7 ln =
Zn + bQF(Z’rL)a C(’I’L = [ln7Z";F],b0,b1,b2 e R? Aan - F(xn)7ATLQ2 - F(yn)7Aqu3
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BnQ?yAnqél = Bnq&Anq5 = F(Zn)> AnQﬁ = qu5aAnq7 = CnQGaAnQ8 = qu7aAnq9 =
Cnas, a1 = 4+ as,az = —6 — 4das, a3 = 4 +6as,a4 = —1 —4as. and [, .; F] : D? — L(X)
is a divided difference of order one on D? [2], for solving systems of equations, provided
that X = R and D C X. In this study we consider method (1.1), but for approximating
a locally unique solution x* of the nonlinear equation

F(z)=0, (1.2)
where F' is a continuous operator defined on a convex subset D of a Banach space X with
values in X. The divided difference of order one satisfies [z, y; F](x —y) = F(x) — F(y) for
x #y with x,y € D and [z, z; F] = F'(z), € D, if F is Fréchet-differentiable on D. We
use the notation U(u, p), U(u, p) to denote the open and closed balls in X, respectively
with center v € X and of radius p > 0.

Finding solution for (1.2) is an important problem in mathematics due to the wide
application of the equation (1.2). Convergence analysis of the method in [2] used assump-
tions on the eighth Fréchet-derivative although no derivative appears in the method.
This assumption on the higher order Fréchet derivatives of the operator F' restricts the
applicability of method (1.1). For example consider the following;

EXAMPLE 1.1. Let X = C[0,1],D = U(z*,1) and consider the nonlinear integral
equation of the mixed Hammerstein-type [4, 7, 20] defined by

1 2
t
2(s) = / Gis ) " g
O 2
where the kernel G is the Green’s function defined on the interval [0, 1] x [0, 1] by

1—s)t, t<s
Gls:t) = { s(1—1t), s<t.

The solution z*(s) = 0 is the same as the solution of equation (1.2), where F : C[0,1] —
C[0,1]) is defined by

a(t)?
5 dt.

ﬂ@@=ﬂ@—AG@ﬂ

Notice that

ool =

I [ Gt nar <
Then, we have that
1
Fa)ys) =u(s) - [ Glsitiati,
0
so since F'(xz*(s)) =1,
|7 ) (B ()~ F' )] < 5 lle

One can see that the work in [2] cannot be applied in this setting, if we choose [z, y; F] =
1
Jo F'(y +0(x — y))do.

Our goal is to weaken the assumptions in [2] and apply the method for solving equation
(1.2) in Banach spaces, so that the applicability of the method (1.1) can be extended.
The technique of restricted convergence domains can apply on other iterative methods
[1, 3-25].

The rest of the paper is organized as follows. In Section 2 we present the local conver-
gence analysis. We also provide a radius of convergence, computable error bounds and
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uniqueness result not given in [2]. Special cases and numerical examples are given in the
last section.

2. LOCAL CONVERGENCE ANALYSIS

Let bo, b1, b2 € R. Let wy : [0, 4+00) X [0, +00) — [0, +00), vg : [0, +00) — [0, +00) be a
continuous, non-decreasing in both variables satisfying wq(0,0) = 0. Define the parameter
ro by

ro = sup{t > 0 : wo(t, (1 + |bo|vo(t))t) < 1}. (2.1)

Let also v, w : [0,79) X [0,709) — [0, +00) be continuous and non-decreasing functions with
w(0,0) = 0. Define functions g;, g;, i = 1,2,3 on the interval [0,7¢) by
_w(t, t+ |bolvo(t)t)
e Gl
Q) =a(t) -1,
_ Jw+ g1t + |bolvo()t) | [1 —aolv(gl(t) 0)
) = -0 0
v(g1(t)t + [b1]vo(ga (¢t t)gl(t)tagl(t)tv(gl( )t,0)
(1—p(t))?
(g1 ()t + [b1|vo(g1(H)t)g1 (), g1 (1) tPv(g1(8)t, 0)
0= p(0)? 91(),
B20) = 02(0) ~ 1
w4 go(t)t, t 4 |bolvo(t)t) 1 — a1]v(g2(t)t,0)
g3(t) - 1— (t) o2 1 — (t)
v(g2(t)t + |ba|vo(g2()t)g2(2)t, g2(t)t)
(1—-p(t)?
v(ga(t)t + |b2|vo (g2 (t)t)g2(t)t, ga(t)t)?
(1 —p(t)?
V(g2 ()t + |ba|vo(g2(t)t)g2(t)t, g2()t)*
(1 —p(2))*
V(g2 ()t + |ba|vo(g2(t)t)g2(t)t, g2(t)t)*
(1-p(t)?

» p(t) = wo(t, T+ [bo|vo (1)),

+|3— 2a0|

+ |a0—2\

+laz|

+las|

+aa|

+ ‘a5‘ gQ(t)a

and

gs(t) = gs(t) — 1.
We have that g;(0) = —1 < 0 and g;(t) = +oo as t — 1, . By applying the intermediate
value theorem on the functions g; defined on the interval [0,7¢], we deduce that there
exist zeros on the interval (0, 7). Denote by r; the smallest zero of functions g; on the
interval (0,rg).. Define the radius of convergence r by

r=min{r;},i =1,2,3. (2.2)
Then, for each t € [0,r)
0<gi(t) <1, (2.3)
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and
0<p() <1 (2.4)
Define also parameter R by
R = max{r, r+|bo[vo(r)r, g1 (r)r+|bilvo (g1 (r)r) g1 (r)r, g2(r)r-+[b2|vo(g2(r)r) g2 (7)1}
(2.5)

Next, we present the local convergence analysis of method (1.1) under the preceding
notation.

THEOREM 2.1. Let F : D ¢ X — X be a continuous operator. Let also [.,.; F] :
D x D — L(X) be a divided difference of order one. Suppose:
there exists z* € D such that operator F' is Fréchet-differentiable at x = x*,

F(z*) =0, F'(z*)"! € L(X); (2.6)

there exist functions wy : [0, +00) X [0, 4+00) — [0, +00), v : [0,4+00) — [0, +00) continu-
ous, nondecreasing with wg(0,0) = 0 such that for each z,y € D,

1F" (@)~ (ys 2 F] = F'(@)|| < wollly — 27|, & — 2”|)), (2.7)

I, ™5 FII < wo(fl — 2™|]); (2.8)

there exist functions w : [0,79) X [0,79) — [0,400),v : [0,79) x [0,79) — [0,+00) con-
tinuous, non-decreasing with w(0,0) = 0 such that for each x,y € Dy = D N U(xg, o)

1" (%) " ([, ys F] = [, 2™ F) | < wlla = 2™, ly — 27])) (2.9)

1F"(2*) " e, ys FII| < w(lla — 2%, [ly — 2*])) (2.10)
and

U(z*,R) C D (2.11)

where ro,r and R are given by (2.1), (2.2) and (2.5) respectively. Then sequence {z,}
generated for z¢ € U(x*,r) — {*} by method (1.1) is well defined, remains in U(x*,r)
for each n =0,1,2,... and converges to =*. Moreover, the following estimates hold

lyn — 2| < g1([|zn — 2" [Dllzn — 2™ < [l2n — 27| <7, (2.12)

[2n — 2% < g2(llzn — 2" Dl|2n — || < [l — 27, (2.13)
and

[Zn+1 — 2| < gs(l|lzn — 2"z — 2| < lzn — 27|, (2.14)

where, the functions g;,7 = 1,2, 3 are defined previously. Furthermore, if there exists for
R* > r, such that

wo(R*,0) <1 or we(0,R*) <1, (2.15)
then, the limit point * is the only solution of equation F(x) = 0 in Dy := DNU(z*, R*).

o m Bangmod-JMCS—jmcs@kmutt.ac.th ~ (©2017 By TaCS Center.
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Proof. We shall show estimates (2.12)-(2.14) using induction on k = 0,1,2--- . Using
(2.6) and (2.8), we have that

lzo — &* + bo(F(w0) — F(z"))||
||lxo — ™ + bo[xo, z*; F](xo — =*)||

luo — =7

o = 2|l + [bolvo(llzo — z"[Dllzo — ]|
7+ [bolvo(r)r < R, (2.16)

IN A CIA

so ug € U(z*, R). Then, by (2.2), (2.4), (2.5), (2.6), (2.7) and (2.16), we get that

| F (%)~ ([xo, uo; F] — F'(x%))]| wo(llzo — 2|, [|uo — 2™|)
wo (R, R+ [bo|vo(R)R)

= p(R)< 1. (2.17)

<
<

It follows from (2.17) and the Banach Lemma on invertible operators [1-7] that Ay =
[z0,u0; F]™! € L(X) and

1
ATYF (2 < )
O e NITTe=r )

(2.18)

We also have that yg, zo, 21 are well defined by the method (1.1) for n = 0. By (2.2),
(2.3)(for i = 1), (2.6), (2.9), (2.18) and the first substep of method (1.1) we obtain in
turn that

lyo —a*ll = llzo — 2™ — A" F'(zo)]
< AT @) IF (27) 7 (Ao (wo — &%) — F(x0))
< AG F @)IIF (%) 7 (Ao = [20, 275 F]) (20 — o)
< wlllzo ==, lzo — ™|l + [bolvo(llzo — =" [Dl|zo — 2" [)]|z0 — ="

1= p(llzo — =)
gi(llzo = z*Dllzo — ™| < [lwo — 2| <, (2.19)

which shows (2.12) for k = 0 and yg € U(z*,r). As in (2.19) (with yo = z¢), we obtain
the estimates

lyo — =™ — A F (o) |

< A (@)[IF (%)~ (Ao = [yo, 25 F1) (yo — )|
w(||xeg — x* + 2% — yol|, ||uo — x* N
< (H 0 0”*” 0 H)Hyo . ”
1 —p(|lzo — z*|)
< wllzo = 2" + llyo — «*[|, llzo — 2™ || + [bolvo(llzo — 2" [)llzo — 2" |)llyo — ="
- 1 —p([lzo — 2*|)
(2.20)
and
_ 1 —aglv —z*],0 —x*

1= p([lwo — z*[))
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In view of the second substep of method (1.1) for n = 0, (2.2), (2.3) (for i = 2), (2.10),
(2.19)-(2.21) we get in turn that

lz0 = 2%l < lyo — 2™ — A5 Fyo) || + 11 — ao) A5 F(yo)ll + [|(3 — 2a0) A5 BoAg " F(yo) |
+l(a0 = 2)Ag " BoAg " F(yo)|
< [|wllzo = 2" + llyo — ™[], llxo — 2™ || + |bo|vo(l|zo — =" [} [[x0 — 2™[])
- 1= p(llwo — *[))
1= aofolllyo — 1, 0)
T p(llro — =)
h _ * _ * _ *
+‘372a0|v(|| o— ="l llyo —= ||)li(||y(2> 2", 0)
(1 = p(llwo — *[]))
v(llho = =*[I. llyo — =*[)*v(llyo — =*[|, 0)
+ fao — 2| . g0 — 7|
(1= p(llzo — 2*)))?
< ga(llwo — 2™ [Dllwo — 27| < flzo — 2™ <1, (2.22)
which shows (2.13) and zg € U(z*,r). We also used
lho — =7 lyo — "I + [balvo(llyo — 2" [Dllyo — =] (2.23)

IAIA

g1(r)r + |bi|vo(g1(r)r)g1(r)r < R.

As in (2.20), (2.21) (for yo = zp), we obtain the estimates

lzo — 2™ — AgF (z0) |
w(llzo — 2" + 20 — 2™, [lzo = 2™[| + |bolvo(llxo — 2|, [[z0 — 2™ |)][20 — 2™
1 —=p([lzo — 2*])

(2.24)

and

11— aa|v(l[z0 — "], 0)[[20 — 2|
1= p(llzo — *[))

I(1 = a1) Ag F(z0)]| < (2.25)

o m Bangmod-JMCS—jmcs@kmutt.ac.th ~ (©2017 By TaCS Center.
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Then, using the third substep of method (1.1) for n = 0, (2.2), (2.3) (for i = 3), (2.18),
(2.19) (2.22), (2.24) and (2.25), we have in turn that

o1 =¥ < [lz0 — 2% — Ag F(20) || + [I(1 — a1) Ag ' F(20) |

+llaz Ay ' Co AT F(20)|| + [las Ay Co Ay ' Co A F(z0)]

+llas A5 CoAy ' CoAG Co Ayt (20) | + llas Ay ' CoAy ' Co Ay ' CoAg ' Co Ay F (20|
w(l|zo — @*|| + |20 — @*||, llwo — &*[| + |bolvo([lzo — 2*|)l|wo — z*[1))

<
1= p(llzo — 2*[))
1= arfo(flz0 — «*[],0)
1—=p(lzo — 2*[])
v(llz0 = ™[] + |bafvo(ll20 — =[]l 20 = =, [|20 — 2™[))
+|a2| 1 * 2
(1 = p(llwo — *[]))
+|a3|v(||zo — 2| + [bafvo(ll20 — 2*[Dll20 — 2*[|, |20 — 2*))°
(1= p(llzo — 2*)))?
v(llzo — 2*[| + [b2[vo(llz0 — z*[Dllz0 — 2* ||, llz0 — =*[))°
+|a4| 1 * 4
(1= p(lzo — z*[]))
v(llzo — «*[| + [ba[vo(llz0 — 2*[Dllz0 — =*|I. [l20 — =*|)*
+ |as| 1 TENY
(1 = p(llzo — 2*[]))
< gs(llzwo — " [Dllwo — ™[] < flo — 27| <1, (2.26)
which shows (2.14) for n = 0 and z; € U(z*,r). We also used that

o ="l < llzo = 2"|| + [b2|vo(llz0 — 2" [D)llz0 — 27| (2.27)
< ga2(r)r + |b2fvo(g2(r)r)g2(r)r < R.
The induction for error bounds (2.12)-(2.14) is completed in an analogous way, if we
replace xq, Yo, 20, 1 by Tk, Yk, 2k, Tx+1 in the preceding estimates. Then, in view of the
estimate
laps —a*| < cllew —a*| <. (2.28)
here ¢ = g3(||Jzo—z*]|) € [0,1), we deduce that lim xy = 2* and z44; € U(z*,r). Finally,

k—o0

to show the uniqueness of the solution z* in Dy, suppose y* € D; with F(y*) = 0. Define
the linear operator Q = [y*, z*; F]. Using (2.7) and (2.15) we obtain that

[F(2*)"H(Q — F'(z*))]| < wo(lly* —2*[],0) < wo(R*,0) <1, (2:29)
so Q71 € L(X). Then, using the identity
0=F(y") - F(z") = Q(y" —a7), (2.30)
we conclude that x* = y*.
O
REMARK 2.2. (a) A stronger condition depending on function wq can replace

condition (2.8). Indeed, using (2.7), we have in turn that
[z, z"; F| [F" (") F" (") [z, 2™ F]|
< NF'@)IIIEF ()" ([1? o F] = F'(2")) + 1|]
< BAH|F' (@) [, 2* F = F'(@)])

o m Bangmod-JMCS—jmcs@kmutt.ac.th ~ (©2017 By TaCS Center.
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Therefore, vg(t) := S(1 4+ wo(t,0)) or vo(t) := B(1 + wo(re,0)) or ve(t) := B(1 4+
wo(ro,0)), where ||[F'(x*)|| < 5.

(b) It is worth noticing that method (1.1) are not changing if we use the new
instead of the old conditions [2]. Moreover, for the error bounds in practice we
can use the computational order of convergence (COC) [25]

| el |

5 _ lzntr—z=
In lonts—z*||
llzn—z*|l

foreachn=1,2,...

or the approximate computational order of convergence (ACOC)

ln”z"“_z"“”
5* — ‘lszrl*mnH
1 |Znt1=zn|
lzn—2n—1l|

for each n=0,1,2,...

instead of the error bounds obtained in Theorem 2.1.

(¢) As in [2] we can consider methods with memory, if we approximate by =
by = by :=TM = —[tn_1,2n_1; F]7',n > 1. This way the order of convergence
4 + /19 ~ 8.3589 was shown in [2, Theorem 2]. The method with memory is
defined by B(()k) = ng) = Bék) = —[up_1,2p_1; F]7t = *A;il

Yn = Tn —q1
Zn = Yn—3q2+3q3—qa (2.31)
Tpt1 = 2zn —4q5 + 6g6 — 4q7 + g3,

where

Up = T + B((]")F(:cn), hn = Yn + BYI)F(yn)7 ln=zp + Bén)F(zn).
In order for us to apply Theorem 2.1 to method (2.31), let us simply replace
bo, b1, by in Theorem 2.1 by (see (2.7))

Bo < Bo
1=p(lzo —=*[)) = 1—p(r)
where ||F’(z*)7}|| < Bo. Indeed, for example by (2.7)

[bo| < || = [n—1,@n1; F] 7 F'(z*)F'(z*) 71|

= b(r) (2.32)

Bo Bo

Un—1,Tn_1; F] L F (@) ||| F ()7 < <
[wn—1, @n—1; F]7F'(@)[[[| F' (™) "] = p(lzo—2°]) = T=p(r)

=b(r).
(2.33)

The other methods studied in [2] can also be handled in an analogous way as
method (2.31).

3. NUMERICAL EXAMPLES

The numerical examples are presented in this section. We choose

[z, y; F] = / F(y + 6(x — y))do.

We have taken bg = 0.5,a; = 4,as = —6;a3 = 4,a4 = —1 and a5 = 0.

o m Bangmod-JMCS—jmcs@kmutt.ac.th ~ (©2017 By TaCS Center.
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EXAMPLE 3.1. Let X =R3 D = U(0,1),z* = (0,0,0)7. Define function F on D for
w = (z,y,2)" by

-1
P(w) = ("~ 1,5~y +4.2)".

Then, the Fréchet-derivative is given by

e’ 0 0
F'(v)=1] 0 (e—1)y+1 0
0 0 1

Notice that using the (2.9) conditions, we get wq (s, t) = %(s—!—t), v(t) = 1 (1+e), w(s, t) =
1

Lot v(s,t) = 56710(5 +1t), Lo = e — 1. The parameters are
r1 = 0.3394, ro = 0.3576, r3 = 0.3086 = r.

EXAMPLE 3.2. Returning back to the motivational example given at the introduction
of this study, we can choose (see also Remark 2.2 (a) for function v) wq(t, s) = w(t, s) =
tf—ﬁs and vg(t) = v(s,t) = 1 + wp(0,t) and S = 1. Then, the radius of convergence r is
given by

r1 = 3.081318457, ro = 0.99469429615, r3 = 0.1667265158 = 7.
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