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1. Introduction

The concept of fuzzy sets was introduced initially by Zadeh[17] in 1965. George and
Veeramani [3] modified the concept of fuzzy topological spaces induced by fuzzy metric
introduced by Kramosil and Michalek [8] and Grabiec[5] and proved the contraction prin-
ciple in the setting of fuzzy metric spaces. Many authors,for example,[2, 5, 6, 9, 10, 12,
15, 16] have proved fixed and common fixed point theorems in fuzzy metric spaces.
We donote R,R+ and N for the sets of real numbers, non-negative real numbers and
natural numbers respectively.Now, we give the following preliminaries.

Definition 1.1([14]). A binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1] is a continuous
t-norm if it satisfies the following conditions:

(1) ∗ is associative and commutative,
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(2) ∗ is continuous,
(3) a ∗ 1 = a for all a ∈ [0, 1],
(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of a continuous t-norm are a ∗ b = ab and a ∗ b = min{a, b}.
We use the following definition due to George and Veeramani [3].
Definition 1.2([3]). A 3-tuple (X,M, ∗) is called a fuzzy metric space if X is an arbitrary
(non-empty) set, ∗ is a continuous t-norm and M is a fuzzy set on X2× (0,∞), satisfying
the following conditions for each x, y, z ∈ X and t, s > 0,

(1) M(x, y, t) > 0,
(2) M(x, y, t) = 1 if and only if x = y,
(3) M(x, y, t) = M(y, x, t),
(4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(5) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

Let (X,M, ∗) be a fuzzy metric space. For t > 0, the open ball B(x, r, t) with center
x ∈ X and radius 0 < r < 1 is defined by
B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}.

If (X,M, ∗) is a fuzzy metric space, let τ be the set of all A ⊂ X with x ∈ A if and
only if there exist t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A. Then τ is a topology on
X (induced by the fuzzy metric M). This topology is Hausdorff and first countable.
A sequence {xn} in X converges to x if and only if M(xn, x, t) → 1 as n → ∞, for each
t > 0. It is called a G-Cauchy sequence in the sense of [3] if limn→∞M(xn, xn+p, t) = 1,
for all t > 0 and each p ∈ N . The fuzzy metric space (X,M, ∗) is said to be G-complete
if every G-Cauchy sequence is convergent.

Example 1.3. Let X = R. Put a ∗ b = ab or min{a, b} for all a, b ∈ [0, 1]. For all
x, y ∈ X,define M(x, y, t) = t

t+|x−y| for t > 0 and M(x, y, 0) = 0.Then (X,M, ∗) is a

fuzzy metric space.
Example 1.4. Let X = R. Put a ∗ b = ab for all a, b ∈ [0, 1]. For all x, y ∈ X,define

M(x, y, t) = e−
|x−y|

t for t > 0 and M(x, y, 0) = 0. Then (X,M, ∗) is a fuzzy metric space.
Lemma 1.5.[5] Let (X,M, ∗) be a fuzzy metric space. Then M(x, y, t) is non-decreasing
with respect to t, for all x, y in X.

Definition 1.6. Let (X,M, ∗) be a fuzzy metric space. Then M is said to be
continuous on X2 × (0,∞) if limn→∞M(xn, yn, tn) = M(x, y, t), whenever a sequence
{(xn, yn, tn)} inX2×(0,∞) converges to a point (x, y, t) ∈ X2×(0,∞). i.e. limn→∞M(xn, x, t) =
limn→∞M(yn, y, t) = 1
and limn→∞M(x, y, tn) = M(x, y, t).
Lemma 1.7.([11]) Let (X,M, ∗) be a fuzzy metric space. Then M is a continuous func-
tion on X2 × (0,∞).
Definition 1.8.([10]) Let (x,M, ∗) be a fuzzy metric space and f, S : X → X. The pair
(f, S) is said to be compatible if limn→∞M(fSxn, Sfxn, t) = 1 for every t > 0, whenever
there exists a sequence {xn} in X such that fxn → z and Sxn → z as n → ∞ for some
z ∈ X .
Definition 1.9.([7])Let X be a non-empty set and f, S : X → X.The pair (f, S) is said
to be weakly compatible if fSu = Sfu whenever fu = Su for u ∈ X.
Samet et.al ([13]) introduced the notion of α- admissible mappings as follows
Definition 1.10. ([13]) Let X be a non empty set, T : X → X and
α : X×X → R+ be mappings. Then T is called α- admissible if for all x, y ∈ X, we have
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α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1.
Some interesting examples of such mappings are given in ([13]).
Gopal and Vetro [4]defined the following
Definition 1.11. Let (X,M, ∗) be a fuzzy metric space. The map T : X → X is α-
admissible if there exists a function α : X × X × (0,∞) → R+ such that α(x, y, t) ≥ 1
implies α(Tx, Ty, t) ≥ 1 for all x, y ∈ X and for all t > 0.
Theorem 1.12.(Theorem 3.6, [4]) Let (X,M, ∗) be a G-complete fuzzy
metric space. Let T : X → X and α : X ×X × (0,∞)→ R+ be satisfying

(i)α(x, y, t)
(

1
M(Tx,Ty,t) − 1

)
≤ φ

(
1

M(x,y,t) − 1
)

, ∀x, y ∈ X and ∀t > 0,

where φ : R+ → R+ is right continuous and φ(r) < r,∀r > 0,
(ii) T is α-admissible,
(iii) there exists x0 ∈ X such that α(x0, Tx0, t) ≥ 1,∀t > 0,
(iv) if {xn} is a sequence in X such that α(xn, xn+1, t) ≥ 1,∀n ∈ N and ∀t > 0 and
xn → x, then α(xn, x, t) ≥ 1,∀n ∈ N and ∀t > 0.
Then T has a fixed point in X.
In this paper, we introduce α-admissible condition for two pairs of maps in fuzzy metric
spaces as follows
Definition 1.13.Let (X,M, ∗) be a fuzzy metric space and f, g, S, T : X → X be map-
pings and α : X × X × (0,∞) → R+ be a function. We say that the pair(f, g) sat-
isfies α-admissible condition with respect to the pair (S, T ) if α(Sx, Ty, t) ≥ 1 implies
α(fx, gy, t) ≥ 1 and α(Tx, Sy, t) ≥ 1 implies α(gx, fy, t) ≥ 1 ∀x, y ∈ X and ∀t > 0.
Recently Abbas et al. [1] introduced the new concepts in a partially ordered set as follows
Definition 1.14.([1]) Let (X,�) be a partially ordered set and f, g : X → X.
(i)f is said to be a dominating map if x � fx.
(ii) f is said to be a weak annihilator of g if fgx � x.
Using these concepts, we now prove a unique common fixed point theorem for four maps
with α -admissible condtion in partially ordered fuzzy metric spaces.

2. Main Results

Theorem 2.1: Let (X,M, ∗,�) be a partially ordered G- complete fuzzy metric space
and f, g, S, T : X → X and α : X ×X × (0,∞)→ R+ be a function satisfying

(2.1.1) f and g are dominating maps and f and g are weak annihilators of T and S
respectively,

(2.1.2) f(X) ⊆ T (X), g(X) ⊆ S(X),

(2.1.3) α(Sx, Ty, t) ψ
(

1
M(fx,gy,t) − 1

)
≤ φ

(
1

m(x,y,t) − 1
)
− ϕ

(
1

m(x,y,t) − 1
)

for all comparable elements x, y ∈ X, ∀ t > 0, where
m(x, y, t) = min{M(Sx, Ty, t),M(fx, Sx, t),M(gy, Ty, t)} and
ψ, φ, ϕ : R+ → R+ are such that ψ is monotonically increasing and continuous
and φ and ϕ are upper and lower semi continuous respectively with satisfying the
folowing condition

(A) : ψ(t)− φ(t) + ϕ(t) > 0 for all t > 0

(2.1.4) (f, g) is α-admissible w.r.to (S, T ),
(2.1.5) α(Sx1, fx1, t) ≥ 1 and α(fx1, Sx1, t) ≥ 1 for some x1 ∈ X and ∀t > 0,
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(2.1.6)(a) S is continuous,the pair (f, S) is compatible and the pair (g, T ) is weakly com-
patible and we assume α(Sy2n, y2n−1, t) ≥ 1, α(z, y2n−1, t) ≥ 1 , α(y2n, T z, t) ≥ 1
and α(z, z, t) ≥ 1 ∀n ∈ N and ∀t > 0 whenever there exists {yn} in X such that
α(yn, yn+1, t) ≥ 1 and α(yn+1, yn, t) ≥ 1 ∀n ∈ N and for all t > 0 and yn → z for
some z ∈ X.

(or)
(2.1.6)(b) T is continuous,the pair (g, T ) is compatible and the pair (f, S) is weakly com-

patible and we assume α(y2n, T y2n−1, t) ≥ 1, α(y2n, z, t) ≥ 1 , α(Sz, y2n−1, t) ≥ 1
and α(z, z, t) ≥ 1 ∀n ∈ N and ∀t > 0 whenever there exists {yn} in X such that
α(yn, yn+1, t) ≥ 1 and α(yn+1, yn, t) ≥ 1 ∀n ∈ N and for all t > 0 and yn → z for
some z ∈ X.

(2.1.7) if for a non-decreasing sequence {xn} in X with xn � yn,∀n ∈ N and yn → z
implies xn � z,∀n ∈ N .

Then f, g, S and T have a common fixed point in X .

(2.1.8) Further if we assume that α(u, v, t) ≥ 1 ∀ t > 0 whenever u and v are common
fixed points of f, g, S and T and the set of common fixed points of f, g, S and T
is well ordered then f, g, S and T have unique common fixed point in X.

Proof. From (2.1.5), there exists x1 ∈ X such that α(Sx1, fx1, t) ≥ 1 and α(fx1, Sx1, t) ≥
1 , ∀t > 0.
From (2.1.2), we define the sequences {xn} and {yn} as
y2n+1 = fx2n+1 = Tx2n+2, y2n+2 = gx2n+2 = Sx2n+3, n = 0, 1, 2, · · · .
Now

α(Sx1, fx1, t) ≥ 1 ⇒ α(Sx1, Tx2, t) ≥ 1 from definition of {yn}
⇒ α(fx1, gx2, t) ≥ 1, from (2.1.4), i.e α(y1, y2, t) ≥ 1
⇒ α(Tx2, Sx3, t) ≥ 1 from definition of {yn}
⇒ α(gx2, fx3, t) ≥ 1, from (2.1.4), i.e α(y2, y3, t) ≥ 1.

Continuing in this way, we have

α(yn, yn+1, t) ≥ 1, ∀ n ∈ N and ∀ t > 0 (2.1)

Similarly by using α(fx1, Sx1, t) ≥ 1, we can show that

α(yn+1, yn, t) ≥ 1, ∀ n ∈ N and ∀ t > 0 (2.2)

From(2.1.1), we have
x2n+1 � fx2n+1 = Tx2n+2 � fTx2n+2 � x2n+2 ,
x2n+2 � gx2n+2 = Sx2n+3 � gSx2n+3 � x2n+3. Thus

xn � xn+1,∀n ∈ N (2.3)

Case (i): Suppose y2m = y2m+1 for some m.
Assume that y2m+1 6= y2m+2.
Then there exists t0 > 0 such that 0 < M(y2m+1, y2m+2, t0) < 1.
From (1), α(Sx2m+1, Tx2m+2, t0) = α(y2m, y2m+1, t0) ≥ 1 .
Now from (3) and (2.1.3), we have

ψ
(

1
M(y2m+1,y2m+2,t0)

− 1
)

= ψ
(

1
M(fx2m+1,gx2m+2,t0)

− 1
)

≤ α(Sx2m+1, Tx2m+2, t0)ψ
(

1
M(fx2m+1,gx2m+2,t0)

− 1
)

≤ φ
(

1
m(x2m+1,x2m+2,t0)

− 1
)
− ϕ

(
1

m(x2m+1,x2m+2,t0)
− 1
)
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where

m(x2m+1, x2m+2, t0) = min {M(y2m+1, y2m, t0),M(y2m+1, y2m, t0),M(y2m+2, y2m+1, t0)}
= M(y2m+1, y2m+2, t0).

Thus

ψ
(

1
M(y2m+1,y2m+2,t0)

− 1
)
≤ φ

(
1

M(y2m+1,y2m+2,t0)
− 1
)
− ϕ

(
1

M(y2m+1,y2m+2,t0)
− 1
)
.

It is a contradiction to (A). Hence y2m+1 = y2m+2.
Continuing in this way, we get y2m = y2m+1 = y2m+2 = · · ·
Hence {yn} is a Cauchy sequence in X.
Case (ii): Assume that yn 6= yn+1 ,∀n.
As in Case ( i), we have

ψ
(

1
M(y2n+1,y2n+2,t)

− 1
)
≤ φ

(
1

m(x2n+1,x2n+2,t)
− 1
)
− ϕ

(
1

m(x2n+1,x2n+1,t)
− 1
)

where

m(x2n+1, x2n+2, t) = min {M(y2n, y2n+1, t),M(y2n+1, y2n+2, t)} .

If m(x2n+1, x2n+2, t) = M(y2n+1, y2n+2, t) then

ψ
(

1
M(y2n+1,y2n+2,t)

− 1
)
≤ φ

(
1

M(y2n+1,y2n+2,t)
− 1
)
− ϕ

(
1

M(y2n+1,y2n+2,t)
− 1
)
.

It is a contradiction to (A). Hence

ψ
(

1
M(y2n+1,y2n+2,t)

− 1
)
≤ φ

(
1

M(y2n,y2n+1,t)
− 1
)
− ϕ

(
1

M(y2n,y2n+1,t)
− 1
)

< ψ
(

1
M(y2n,y2n+1,t)

− 1
)
, from (A).

(2.4)

Since ψ is monotonically increasing we have

M(y2n+1, y2n+2, t) ≥M(y2n, y2n+1, t), ∀ t > 0.

Similarly by using (2) and proceding as above we can show that

M(y2n+2, y2n+3, t) ≥M(y2n+1, y2n+2, t), ∀ t > 0.

Thus M(yn, yn+1, t) ≥M(yn−1, yn, t) for n = 2, 3, · · · and ∀t > 0.
Thus {M(yn, yn+1, t)} is an increasing sequence of positive real numbers in [0, 1] and
hence converges to some r(t) ,∀t > 0.
Thus lim

n→∞
M(yn, yn+1, t) = r(t),∀t > 0.

Suppose there exists some t0 > 0 such that r(t0) < 1.
Letting n → ∞ in (2.4) and using continuity, upper semi continuity and lower semi
continuity of ψ, φ and ϕ respectively, we get

ψ

(
1

r(t0)
− 1

)
≤ φ

(
1

r(t0)
− 1

)
− ϕ

(
1

r(t0)
− 1

)
.

It is a contradiction from (A).
Hence r(t) = 1 ,∀t > 0.
Thus

lim
n→∞

M(yn, yn+1, t) = 1, ∀ t > 0. (2.5)

Bangmod-JMCS−jmcs@kmutt.ac.th c©2017 By TaCS Center.



Bangmod Int. J. Math. & Comp. Sci., 2017 ISSN: 2408-154X 21

Now for each positive integer p, we have

M(yn, yn+p, t) ≥M
(
yn, yn+1,

t

p

)
∗M

(
yn+1, yn+2,

t

p

)
∗· · ·∗M

(
yn+p−1, yn+p,

t

p

)
.

letting n→∞ and using (5), we get

lim
n→∞

M(yn, yn+p, t) = 1, ∀ t > 0.

Hence {yn} is a G-Cauchy sequence in X.
SinceX isG-complete, there exists z ∈ X such that {yn} converges to z. Thus lim

n→∞
M(yn, z, t) =

1, ∀ t > 0. Hence

lim
n→∞

fx2n+1 = lim
n→∞

gx2n+2 = lim
n→∞

Tx2n+2 = lim
n→∞

Sx2n+1 = z.

Suppose (2.1.6)(a) holds.
Since S is continuous, we have S2x2n+1 → Sz and Sfx2n+1 → Sz.
Since the pair (f, S) is compatible, we have

lim
n→∞

M(fSx2n+1, Sfx2n+1, t) = 1, ∀ t > 0.

Hence fSx2n+1 → Sz.
Now from (2.1.6)(a), we have

α(SSx2n+1, Tx2n, t) = α(Sy2n, y2n−1, t) ≥ 1.

From(2.1.1), we have x2n � gx2n = Sx2n+1.
By using (2.1.3), we have

ψ
(

1
M(fSx2n+1,gx2n,t)

− 1
)
≤ α(SSx2n+1, Tx2n, t)ψ

(
1

M(fSx2n+1,gx2n,t)
− 1
)

≤ φ
(

1
m(Sx2n+1,x2n,t)

− 1
)
− ϕ

(
1

m(Sx2n+1,x2n,t)
− 1
)

(2.6)

where

m(Sx2n+1, x2n, t) = min{M(SS2n+1, Tx2n, t),M(SS2n+1, fSx2n+1, t),M(Tx2n, gx2n, t)}
→M(Sz, z, t) as n→∞.

Letting n→∞ in (6), we get

ψ

(
1

M(Sz, z, t)
− 1

)
≤ φ

(
1

M(Sz, z, t)
− 1

)
− ϕ

(
1

M(Sz, z, t)
− 1

)
which in turn yields from (A) that Sz = z.
Since x2n � gx2n and gx2n → z,by (2.1.7), we have x2n � z.
From (2.1.6)(a), we have α(Sz, Tx2n, t) = α(z, y2n−1, t) ≥ 1.
By using (2.1.3), we have

ψ
(

1
M(fz,gx2n,t)

− 1
)
≤ α(Sz, Tx2n, t)ψ

(
1

M(fz,gx2n,t)
− 1
)

≤ φ
(

1
m(z,x2n,t)

− 1
)
− ϕ

(
1

m(z,x2n,t)
− 1
) (2.7)

where

m(z, x2n, t) = min{M(Sz, Tx2n, t),M(Sz, fz, t),M(Tx2n, gx2n, t)}
→M(z, fz, t) as n→∞.
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Letting n→∞ in (7), we get

ψ

(
1

M(fz, z, t)
− 1

)
≤ φ

(
1

M(fz, z, t)
− 1

)
− ϕ

(
1

M(fz, z, t)
− 1

)
which in turn yields from (A) that fz = z.
Since f(X) ⊆ T (X), there exists w ∈ X such that z = fz = Tw. Also we have z = fz =
Tw � fTw � w.
From(2.1.6)(a),α(Sz, Tw, t) = α(z, z, t) ≥ 1.
By using (2.1.3), we have

ψ
(

1
M(Tw,gw,t) − 1

)
= ψ(

(
1

M(fz,gw,t) − 1
)

≤ α(Sz, Tw, t)ψ
(

1
M(fz,gw,t) − 1

)
≤ φ

(
1

m(z,w,t) − 1
)
− ϕ

(
1

m(z,w,t) − 1
) (2.8)

where

m(z, w, t) = min{M(Sz, Tw, t),M(fz, Sz, t),M(gw, Tw, t)}
→M(gw, Tw, t).

Thus

ψ

(
1

M(Tw, gw, t)
− 1

)
≤ φ

(
1

M(Tw, gw, t)
− 1

)
− ϕ

(
1

M(Tw, gw, t)
− 1

)
which in turn yields from (A) that gw = Tw = z.
Since the pair(g, T ) is weakly compatible , we have gz = gTw = Tgw = Tz.
Since x2n+1 � fx2n+1 and fx2n+1 → z, by (2.1.7), we have x2n+1 � z.
From(2.1.6)(a), α(Sx2n+1, T z, t) = α(y2n, T z, t) ≥ 1.
From(2.1.3),we have

ψ
(

1
M(fx2n+1,gz,t)

− 1
)
≤ α(Sx2n+1, T z, t)ψ

(
1

M(fx2n+1,gz,t)
− 1
)

≤ φ
(

1
m(x2n+1,z,t)

− 1
)
− ϕ

(
1

m(x2n+1,z,t)
− 1
) (2.9)

where

m(x2n+1, z, t) = min{M(y2n, T z, t),M(y2n+1, y2n, t),M(gz, Tz, t)}
→M(z, gz, t) as n→∞.

Letting n→∞ in (9), we get

ψ

(
1

M(z, gz, t)
− 1

)
≤ φ

(
1

M(z, gz, t)
− 1

)
− ϕ

(
1

M(z, gz, t)
− 1

)
which in turn yields from (A) that gz = z. Hence Tz = z.
Thus z is a common fixed point of f, g, S and T .
Uniqueness of common fixed point follows easily by (2.1.8).
Similarly we can prove the theorem when (2.1.6)(b) holds.
Now we give an example to illustrate Theorem 2.1
Example 2.2. Let X = [0,∞)and define x � y if y ≤ x. Put a ∗ b = min{a, b} for all
a, b ∈ [0, 1]. For all x, y ∈ X define M(x, y, t) = t

t+|x−y| for t > 0 and M(x, y, 0) = 0.

Define f, g, S, T : X → X by fx = x
2 , gx = x

4 , Sx = 8x and Tx = 4x for all x ∈ X.
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Let ψ, φ, ϕ : R+ → R+ be defined as ψ(t) = t, φ(t) = 3t
4 and ϕ(t) = t

4 .

Define α(x, y, t) =

 1, if x, y ∈ [0, 1],

0, otherwise
for all t > 0.

We have fx = x
2 ≤ x⇒ x � fx and gx = x

4 ≤ x⇒ x � gx.
Also fTx = 2x ≥ x⇒ fTx � x and gSx = 2x ≥ x⇒ gSx � x.
If x > 1

8 and y ∈ X then α(Sx, Ty) = 0.

If x ≤ 1
8 and y > 1

4 then α(Sx, Ty) = 0.
In these cases,the condition (2.1.3) is clearly satisfied.
Suppose x ≤ 1

8 and y ∈ [0, 14 ] then α(Sx, Ty) = 1.

We have 1
M(fx,gy,t) − 1 = |2x−y|

4t and 1
M(Sx,Ty,t) − 1 = 4 |2x−y|

t .

Clearly 1
m(x,y,t) − 1 ≥ 1

M(Sx,Ty,t) − 1 for all x, y ∈ X and for all t > 0.

Now,

φ( 1
m(x,y,t) − 1)− ϕ( 1

m(x,y,t) − 1) = 1
2 ( 1

m(x,y,t) − 1)

≥ 1
2 ( 1

M(Sx,Ty,t) − 1)

= 2 |2x−y|
t

= 8 ( 1
M(fx,gy,t) − 1)

> ψ( 1
M(fx,gy,t) − 1)

= α(Sx, Ty, t)ψ( 1
M(fx,gy,t) − 1)

Thus (2.1.3) is satisfied.
One can easily verify all the other conditions of Theorem 2.1. Clearly 0 is the unique
common fixed point of f, g, S and T .
By suitably taking α,ψ, φ and ϕ in Theorem 2.1,one can obtain some previous results in
fuzzy metric spaces.
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