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1. Introduction and preliminaries

Fixed point theory is an important issue that is used in many areas. So many authors
have worked on this topic. Altun and et al. [2] investigated a new approach for the
approximations of solutions to a common fixed point problem in metric spaces. They
were interested on the following problem:

Find x ∈ X such that
x = Tx,
x = Sx.

(1.1)

They provided sufficient conditions for the existence of one and only one solution to
the problem (1.1). Also they presented a numerical algorithm in order to approximate
such solution. Before the solvability of the problem (1.1) are based on a compatibility
condition. Some authors have give relevant examples in different areas [1, 3, 4, 6, 7, 9].
However, there are some major difficulties arise. So, Altun and et al. get a new useful
solution to the problem (1.1) without the compatibility condition in [2].
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In this paper, we use this new approach for the solution to problem (1.1) in fuzzy
metric spaces. We proved new some common fixed point theorems in fuzzy metric spaces
with this new approach.

Definition 1.1 ([10]). A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is called a continuous
triangular norm (in short, continuous t−norm) if it satisfies the following conditions:

(TN-1) ∗ is commutative and associative;
(TN-2) ∗ is continuous;
(TN-3) ∗(a, 1) = a for every a ∈ [0, 1];
(TN-4) ∗(a, b) ≤ ∗(c, d) whenever a ≤ c, b ≤ d and a, b, c, d ∈ [0, 1].

An arbitrary t−norm ∗ can be extended (by associativity) in a unique way to an nary
operator taking for (x1, x2, ..., xn) ∈ [0, 1]n, n ∈ N, the value ∗(x1, x2, ..., xn) is defined,
in [6], by

∗0
İ=1

xi = 1, ∗n
İ=1

xi = ∗(∗n−1
İ=1

xi, xn) = ∗(x1, x2, ..., xn).

Definition 1.2 ([5]). A fuzzy metric space is an ordered triple (X,M, ∗) such that X is
a nonempty set, ∗ is a cotinuous t-norm and M is a fuzzy set on X2 × (0,∞), satisfying
the following conditions, for all x, y, z ∈ X, s, t > 0 :

(FM-1) M(x, y, t) > 0;
(FM-2) M(x, y, t) = 1 iff x = y;
(FM-3) M(x, y, t) = M(y, x, t);
(FM-4) ∗( M(x, y, t),M(y, z, s)) ≤M(x, z, t+ s);
(FM-5) M(x, y, ·) : (0,∞)→ (0, 1] is continuous.

Definition 1.3 ([8]). Let (X,M, ∗) be a fuzzy metric space. Then

(i) A sequence {xn} in X is said to converge to x in X, denoted by xn → x, if and
only if lim

n→∞
M(xn, x, t) = 1 for all t > 0, i.e. for each r ∈ (0, 1) and t > 0, there

exists n0 ∈ N such that M(xn, x, t) > 1− r for all n ≥ n0.
(ii) A sequence {xn} is a G-Cauchy sequence if and only if lim

n→∞
M(xn, xn+p, t) = 1

for any p > 0 and t > 0.
(iii) The fuzzy metric space (X,M, ∗) is called G-complete if every G-Cauchy se-

quence is convergent.

Definition 1.4 ([11]). Let (X,M, ∗) be a fuzzy metric space and let {fn} be a sequence
of self mapping on X. f0 : X → X is a given mapping. The sequence {fn} is said to
converge uniformly to f0 if for each ε ∈ (0, 1) and t > 0, there exists n0 ∈ N such that

M(fn(x), f0(x), t) > 1− ε,

for all n ≥ n0 and x ∈ X.

In this paper, problem (1.1) is investigated under the following assumptions.

(A1) We suppose that X equipped with a partial order �.
(A2) The operator S : X → X is level closed from the left; that is, the set

levS� = {x ∈ X : x � Sx}, (1.2)

is nonempty and closed.
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(A3) For every x ∈ X, we have

x � Sx =⇒ Tx � STx,
x � Sx =⇒ Tx � STx. (1.3)

In order to fix our next assumption, we need to give the following class of mappings.

Definition 1.5 ([12]). Let Ψ be the class of all mappings ψ : [0, 1] −→ [0, 1] such that

(i) ψ is continuous and nondecreasing,
(ii) ψ(t) > t for all t ∈ (0, 1).

Lemma 1.6 ([12]). If ψ ∈ Ψ, then ψ(1) = 1.

Lemma 1.7 ([12]). If ψ ∈ Ψ, then lim
n→+∞

ψn(t) = 1 for all t ∈ (0, 1).

(A4) There exists a function ψ ∈ Ψ such that for every (x, y) ∈ X ×X, we have

x � Sx
y � Sy

}
=⇒M(Tx, Ty, t) ≥ ψ(M(x, y, t)). (1.4)

2. Main Results

Theorem 2.1. Let (X,M, ∗) be a complete fuzzy metric space. Suppose that the condi-
tions (A1)-(A4) are satisfied. Then x∗ ∈ X is a unique solution to (1.1) such that for
any x0 ∈ levS�, the Picard sequence {Tnx0} converges to x∗.

Proof. Let x0 be an arbitrary element of levS�; that is,

x0 ∈ X
x0 � Sx0.

Such an element exists from (A2). From (A3), we have

x1 � Sx1,

where x1 = Tx0. From (A3), we have

x2 � Sx2,

where x2 = Tx1. Now, let us consider the Picard sequence {xn} ⊂ X defined by

xn+1 = Txn, n = 0, 1, 2, ...

By induction we get

x2n � Sx2n,
x2n+1 � Sx2n+1, n = 0, 1, 2, ...

(2.1)

Therefore, by (A4), we have

M(Tx2n, Tx2n+1, t) ≥ ψ(M(x2n, x2n+1, t)), n = 0, 1, 2, ...

By (A4), we have

M(Tx2n+1, Tx2n+2, t) ≥ ψ(M(x2n+1, x2n+2, t)), n = 0, 1, 2, ...

As a consequence, we have

M(xn+1, xn, t) ≥ ψ(M(xn, xn−1, t)), n = 0, 1, 2, ... (2.2)
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From (2.2), since ψ is a nondecreasing function, for every n = 1, 2, ..., we have

M(xn+1, xn, t) ≥ ψ(M(xn, xn−1, t))

≥ ψ2(M(xn−1, xn−2, t)) ≥ ... ≥ ψn(M(x1, x0, t)). (2.3)

Suppose that

M(x1, x0, t) = 1.

In this case, from (2.1), we have

x0 = x1 = Tx0,
x0 � Sx0,
x0 = x1 � Sx1 = Sx0.

(2.4)

Since � partial order, this proves that x0 ∈ X is a solution to (1.1). Now, we may
suppose that M(x1, x0, t) 6= 0. Let

M(x1, x0, t) > 0.

From (2.3), we have

M(xn+1, xn, t) ≥ ψn(M(x1, x0, t)), n = 0, 1, 2, ... (2.5)

Using the (FM-4) and (2.5), for all m = 1, 2, 3, ..., we get

M(xn, xn+m, t) ≥ ∗(M(xn, xn+1,
t

m
),M(xn+1, xn+2,

t

m
), ...,M(xn+m−1, xn+m,

t

m
))

≥ ∗(ψn(M(x0, x1,
t

m
)), ψn+1(M(x0, x1,

t

m
)), ..., ψn+m−1(M(x0, x1,

t

m
)))

≥ ∗m−1i=0 ψ
n+i(M(x0, x1,

t

m
)). (2.6)

From Lemma 2, for all i ∈ {0, 1, 2, ...,m− 1} we have

lim
n→∞

ψn+i(M(x0, x1,
t

m
)) = 1.

That is,

lim
n→∞

M(xn, xn+m, t)→ 1

which implies that {xn} = {Tnx0} is a Cauchy sequence in (X;M ; ∗). Then there is some
x∗ ∈ X such that

lim
n→∞

M(xn, x
∗, t)→ 1 (2.7)

On the other hand, from (2.1), we have

x2n ∈ levS�, n = 0, 1, 2, ... (2.8)

Since S : X → X is level closed from the left (from (A2)), passing to the limit as
n→∞ and using (2.7), we obtain

x∗ ∈ levS�,
that is

x∗ � Sx∗. (2.9)

From (2.1), (2.9) and (A4), we get

M(Tx2n+1, Tx
∗, t) ≥ ψ(M(x2n+1, x

∗, t)), n = 0, 1, 2, ...
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that is,

M(x2n+2, Tx
∗, t) ≥ ψ(M(x2n+1, x

∗, t)), n = 0, 1, 2, ... (2.10)

Passing to the limit as n→∞, using , the property of ψ, we get

M(x∗, Tx∗, t) = 1

that is,

x∗ = Tx∗. (2.11)

Using (2.9), (2.11) and (A3), we have

x∗ = Tx∗ � STx∗ = Sx∗,

that is,

x∗ � Sx∗. (2.12)

Since � partial order, inequalities (2.9) and (2.12) yield

x∗ = Sx∗. (2.13)

Further, from (2.11), (2.13) we get that x∗ ∈ X is a solution to problem (1.1).
Now, suppose that y∗ ∈ X is another solution to problem (1.1) with x∗ 6= y∗. Using

(A4) and Definition 6, we get

M(x∗, y∗, t) = M(Tx∗, Ty∗, t) ≥ ψ(M(x∗, y∗, t))

> M(x∗, y∗, t), (2.14)

which is a contradiction. Therefore x∗ ∈ X is a unique solution to (1.1).

Observe that Theorem 1 holds true if we replace condition (A2) by the following.

(A2)′ The operator S : X → X is level closed from the right; that is; the set

levS� = {x ∈ X : x � Sx} (2.15)

is nonempty and closed.

Then, we get the following result.

Theorem 2.2. Let (X,M, ∗) be a complete fuzzy metric space. Suppose that Assumptions

(A1),(A2)
′
-(A4) are satisfied. Then x∗ ∈ X is a unique solution to 1.1 such that for any

x0 ∈ levS�, the Picard sequence {Tnx0} converges to x∗.

Taking S = Ix (the identity operator), we get from Theorem 1 (or from Theorem 2)
the following fixed point result.

Corollary 2.3. Let (X,M, ∗) be a complete fuzzy metric space and T : X → X be a
given mapping. Suppose that there exists ψ ∈ Ψ such that

M(Tx, Ty, t) ≥ ψ(M(x, y, t)), (x, y) ∈ X ×X.

Then x∗ ∈ X is a unique fixed point of T such that for any x0 ∈ X, the Picard sequence
{Tnx0} converges to x∗.
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