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Abstract The present paper deals with the study of infinitesimal CL-transformations on Kenmotsu

manifolds, whose metric tensor is a Ricci soliton. We obtain the conditions that the Ricci solitons to be

expanding, steady and shrinking. Among others we find a necessary and sufficient condition of a Ricci

soliton on Kenmotsu manifold with respect to CL-connection to be Ricci soliton on Kenmotsu manifold

with respect to Levi-Civita connection.
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1. Introduction

In [26] Tanno classified connected almost contact metric manifolds whose automor-
phism groups possess the maximum dimension. For such a manifold, the sectional cur-
vature of plane sections containing ξ is a constant, say c. He proved that they could be
divided into three classes: (i) homogeneous normal contact Riemannian manifolds with
c > 0, (ii) global Riemannian products of a line or a circle with a Kähler manifold of con-
stant holomorphic sectional curvature if c = 0 and (iii) a warped product space if c < 0.
It is known that the manifolds of class (i) are characterized by admitting a Sasakian
structure. The manifolds of class (ii) are characterized by a tensorial relation admitting a
cosymplectic structure. Kenmotsu [15] characterized the differential geometric properties
of the manifolds of class (iii) which are nowadays called Kenmotsu manifolds and later
studied by several authors.

As a generalization of both Sasakian and Kenmotsu manifolds, Oubiña [18] introduced
the notion of trans-Sasakian manifolds, which are closely related to the locally conformal
Kähler manifolds. A trans-Sasakian manifold of type (0, 0), (α, 0) and (0, β) are called
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the cosympletic, α-Sasakian and β-Kenmotsu manifolds respectively, α, β being scalar
functions. In particular, if α = 0, β = 1; and α = 1, β = 0 then a trans-Sasakian manifold
will be a Kenmotsu and Sasakian manifold respectively.

It is known that loxodrome is a curve on the unit sphere that intersects the meridians
at a fixed angle and C-loxodrome is a loxodrome cutting geodesic trajectories of the char-
acteristic vector field ξ of the Sasakian manifold with constant angle. In 1963, Tashiro
and Tachibana [25] introduced a transformation, called CL-transformation, on a sasakian
manifold under which C-loxodrome remains invariant. Here ‘CL’ stands for C-loxodrome.
CL-transformation have been studied by various authors in different context such as Koto
and Nagao [16], Takamatsu and Mizusawa [24], Shaikh et. al ([21], [22]) and many others.

In 1982, Hamilton [11] introduced the notion of Ricci flow to find a canonical metric
on a smooth manifold. Then Ricci flow has become a powerful tool for the study of
Riemannian manifolds, especially for those manifolds with positive curvature. Perelman
([19], [20]) used Ricci flow and its surgery to prove Poincare conjecture. The Ricci flow
is an evolution equation for metrics on a Riemannian manifold defined as follows:

∂

∂t
gij(t) = −2Rij .

A Ricci soliton emerges as the limit of the solutions of the Ricci flow. A solution
to the Ricci flow is called Ricci soliton if it moves only by a one parameter group of
diffeomorphism and scaling. A Ricci soliton (g, V, λ) on a Riemannian manifold (M, g) is
a generalization of an Einstein metric such that [12]

£V g + 2S + 2λg = 0, (1.1)

where S is the Ricci tensor, £V is the Lie derivative operator along the vector field V on
M and λ is a real number. The Ricci soliton is said to be shrinking, steady and expanding
according as λ is negative, zero and positive respectively.

During the last two decades, the geometry of Ricci solitons has been the focus of atten-
tion of many mathematicians. In particular, it has become more important after Perelman
applied Ricci solitons to solve the long standing Poincare conjecture posed in 1904. In
[23] Sharma studied the Ricci solitons in contact geometry. Thereafter Ricci solitons in
contact metric manifolds have been studied by various authors such as Bagewadi et. al
([1], [2], [3], [14]), Bejan and Crasmareanu [4], Blaga [6], Chandra et. al [7], Chen and
Deshmukh [8], Deshmukh et. al [10], He and Zhu [13], Nagaraja and Premalatta [17],
Tripathi [27] and many others.

Motivated by the above studies the present paper deals with the study of infinitesimal
CL-transformations on Kenmotsu manifolds whose metric is Ricci soliton. The paper is
organized as follows. Section 2 is concerned with preliminaries. Section 3 is devoted to
the study of infinitesimal CL-transformations and Ricci solitons on Kenmotsu manifolds.
It is proved that if (g, V, λ) is a Ricci soliton on a Kenmotsu manifold M such that V is an
infinitesimal CL-transformation, then V is a projective killing vector field. In [16] Koto
and Nagao introduced a new type of an affine connection, called CL-connection. In this
section we study Ricci solitons on Kenmotsu manifolds with respect to CL-connection
and obtain a necessary and sufficient condition of a Ricci soliton on Kenmotsu mani-
fold with respect to CL-connection to be a Ricci soliton on Kenmotsu manifold with
respect to Levi-Civita connection. Among others Ricci soliton on CL-flat (respectively
CL-symmetric and CL-semisymmetric) Kenmotsu manifolds are also investigated.
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2. Preliminaries

A smooth manifold (Mn, g) (n = 2m + 1 > 3) is said to be an almost contact met-
ric manifold [5] if it admits a (1,1) tensor field φ, a vector field ξ, an 1-form η and a
Riemannian metric g which satisfy

φξ = 0, η(φX) = 0, φ2X = −X + η(X)ξ, (2.1)

g(φX, Y ) = −g(X,φY ), η(X) = g(X, ξ), η(ξ) = 1, (2.2)

g(φX, φY ) = g(X,Y )− η(X)η(Y ) (2.3)

for all vector fields X, Y on M .
An almost contact metric manifold Mn(φ, ξ, η, g) is said to be Kenmotsu manifold if

the following condition holds [15]:

∇Xξ = X − η(X)ξ, (2.4)

(∇Xφ)(Y ) = g(φX, Y )ξ − η(Y )φX, (2.5)

where ∇ denotes the Riemannian connection of g.
In a Kenmotsu manifold Mn(φ, ξ, η, g), the following relations hold [15]:

R(X,Y )ξ = η(X)Y − η(Y )X, (2.6)

S(X, ξ) = −(n− 1)η(X) (2.7)

for any vector field X, Y , Z on M and R is the Riemannian curvature tensor and S is
the Ricci tensor of type (0,2) such that g(QX,Y ) = S(X,Y ).

3. Infinitesimal CL-trasformations and Ricci solitons

This section deals with the infinitesimal CL-trasformations on Kenmotsu manifolds
whose metric tensor is Ricci soliton.

Definition 3.1. A vector field V on a Kenmotsu manifold M is said to be an infinitesimal
CL-transformation ([21], [24]) if it satisfies

£V {hij} = ρjδ
h
i + ρiδ

h
j + α(ηjφ

h
i + ηiφ

h
j ) (3.1)

for a certain constant α, where ρi are the components of the 1-form ρ, £V denotes the Lie
derivative with respect to V and {hij} is the Christoffel symbol of the Riemannian metric
g.

In [21], Shaikh et. al studied infinitesimal CL-transformations on a Kenmotsu manifold
M and obtained the following useful result:

Proposition 3.2. [21] If V is an infinitesimal CL-transformations on a Kenmotsu man-
ifold M , then the 1-form ρ is closed.
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Theorem 3.3. [21] If V is an infinitesimal CL-transformation on a Kenmotsu manifold
M , then the relation

(£V g)(Y,Z) = (∇Y ρ)(Z)− αg(Y, φZ) (3.2)

holds for any vector fields Y and Z on M .

From (1.1) and (3.2), we obtain

S(Y,Z) = −λg(Y,Z) +
α

2
g(Y, φZ)− 1

2
(∇Y ρ)(Z). (3.3)

Since the Ricci tensor S and the metric tensor g are symmetric and the 1-form ρ is closed
by Proposition 3.1, so interchanging Y and Z in (3.3) and subtracting the obtained result
from (3.3), we get by virtue of (2.2) that

αg(Y, φZ) = 0,

which implies that α = 0 and hence the infinitesimal CL-transformation V is a projective
killing vector field. Also (3.3) yields

S(Y,Z) = −λg(Y,Z)− 1

2
(∇Y ρ)(Z). (3.4)

This leads to the following:

Theorem 3.4. If (g, V, λ) is a Ricci soliton on a Kenmotsu manifold M such that V
is an infinitesimal CL-transformation, then V is a projective killing vector field and the
Ricci tensor S is given by (3.4).

Definition 3.5. [16] A transformation f on a n(= 2m+ 1)-dimensional Kenmotsu man-
ifold M with structure (φ, ξ, η, g) is said to be a CL-transformation if the Levi-Civita
connection ∇ and a symmetric affine connection ∇f , called CL-connection, induced from
∇ by f are related by

∇fXY = ∇XY + ρ(X)Y + ρ(Y )X + α{η(X)φY + η(Y )φX}, (3.5)

where ρ is an 1-form and α is a constant.

If R and Rf are respectively the curvature tensor with respect to Levi-Civita connection
∇ and CL-connection ∇f in a Kenmotsu manifold then we have [21]

Rf (X,Y )Z = R(X,Y )Z +B(X,Z)Y −B(Y, Z)X (3.6)

− α
[
{η(Y )φX − η(X)φY }η(Z)

+ {g(Y,Z)φX − g(X,Z)φY } − {g(Y, φZ)η(X)

− g(X,φZ)η(Y )− 2g(X,φY )η(Z)}ξ
]

for all vector fields X, Y , Z on M , where the symmetric tensor field B is given by

B(X,Y ) = (∇Xρ)(Y )− ρ(X)ρ(Y )− α2η(X)η(Y ) (3.7)

− α
[
η(X)ρ(φY ) + η(Y )ρ(φX)

]
.

From (3.6) we get

Sf (Y,Z) = S(Y,Z)− (n− 1)B(Y,Z), (3.8)

where Sf and S are respectively the Ricci tensor of a Kenmotsu manifold with respect to
the CL-connection ∇f and Levi-Civita connection ∇.
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We now consider (g, V, λ) is a Ricci soliton on a Kenmotsu manifold M with respect to
CL-connection ∇f . Then we have

(£f
V g)(Y,Z) + 2Sf (Y,Z) + 2λg(Y,Z) = 0, (3.9)

where £f
V is the Lie derivative along the vector field V on M with respect to CL-

connection ∇f .
By virtue of (3.5) we have

(£f
V g)(Y, Z) (3.10)

= g(∇fY V,Z) + g(Y,∇fZV )

= g
(
∇Y V + ρ(Y )V + ρ(V )Y + α{η(Y )φV + η(V )φY }, Z

)
+ g

(
Y,∇ZV + ρ(Z)V + ρ(V )Z + α{η(Z)φV + η(V )φZ}

)
= (£V g)(Y, Z) + ρ(Y )g(V,Z) + ρ(Z)g(Y, V )

+ 2ρ(V )g(Y, Z) + α{η(Y )g(φV,Z) + η(Z)g(Y, φV )}.
In view of (3.8) and (3.10), (3.9) yields

(£V g)(Y,Z) + 2S(Y,Z) + 2λg(Y,Z) (3.11)

+ ρ(Y )g(V,Z) + ρ(Z)g(Y, V ) + 2ρ(V )g(Y,Z)

+ α{η(Y )g(φV,Z) + η(Z)g(Y, φV )} − 2(n− 1)B(Y, Z) = 0.

If (g, V, λ) is a Ricci soliton on a Kenmotsu manifold with respect to Levi-Civita connec-
tion then (1.1) holds. Thus from (1.1) and (3.11) we can state the following:

Theorem 3.6. A Ricci soliton (g, V, λ) on a Kenmotsu manifold is invariant under CL-
connection if and only if the relation

ρ(Y )g(V,Z) + ρ(Z)g(Y, V ) + 2ρ(V )g(Y,Z)

+ α{η(Y )g(φV,Z) + η(Z)g(Y, φV )} − 2(n− 1)B(Y,Z) = 0

holds for arbitrary vector fields Y , Z and V .

Now, let (g, ξ, λ) be a Ricci soliton on a Kenmotsu manifold with respect to CL-
connection. Then we have

(£f
ξ g)(Y,Z) + 2Sf (Y,Z) + 2λg(Y,Z) = 0. (3.12)

From (2.1), (2.2), (2.4) and (3.5) we have

(£f
ξ g)(Y,Z) (3.13)

= g(∇fY ξ, Z) + g(Y,∇fZξ)
= g(Y − η(Y )ξ + ρ(Y )ξ + ρ(ξ)Y + αφY,Z)

+ g(Y, Z − η(Z)ξ + ρ(Z)ξ + ρ(ξ)Z + αφZ)

= 2[{1 + ρ(ξ)}g(Y, Z)− η(Y )η(Z)] + ρ(Y )η(Z) + ρ(Z)η(Y ).

Using (3.8) and (3.13) in (3.12), we get

S(Y,Z) = −{λ+ 1 + ρ(ξ)}g(Y,Z) + η(Y )η(Z) (3.14)

+ (n− 1)B(Y,Z)− 1

2
{ρ(Y )η(Z) + ρ(Z)η(Y )}.

This leads to the following:
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Theorem 3.7. If (g, ξ, λ) is a Ricci soliton on a Kenmotsu manifold M with respect to
CL-connection then the Ricci tensor S is given by (3.14).

Putting Z = ξ in (3.14) and using (2.1) and (2.2), we get

S(Y, ξ) = −{λ+
3

2
ρ(ξ)}η(Y ) + (n− 1)B(Y, ξ)− 1

2
ρ(Y ). (3.15)

From (2.7) and (3.15), we obtain

−{λ+
3

2
ρ(ξ)}η(Y ) + (n− 1)B(Y, ξ)− 1

2
ρ(Y ) = −(n− 1)η(Y ). (3.16)

Setting Y = ξ in (3.16) we get

λ = (n− 1)[1 +B(ξ, ξ)]− 2ρ(ξ). (3.17)

This leads to the following:

Theorem 3.8. A Ricci soliton (g, ξ, λ) on a Kenmotsu manifold Mn(φ, ξ, η, g) with
respect to CL-connection is shrinking, steady and expanding according as (n − 1)[1 +
B(ξ, ξ)] − 2ρ(ξ) < 0, (n − 1)[1 + B(ξ, ξ)] = 2ρ(ξ) and (n − 1)[1 + B(ξ, ξ)] − 2ρ(ξ) > 0
respectively.

Also, Shaikh et. al [21] proved the tensor field

A(X,Y )Z = R(X,Y )Z − 1

n− 1

[
{S(Y, Z)X − S(X,Z)Y }

− {g(Y, Z) + η(Y )η(Z)}QX + {g(X,Z) + η(X)η(Z)}QY
+ {S(X,Z) + (n− 1)g(X,Z)}η(Y )ξ

− {S(Y, Z) + (n− 1)g(Y,Z)}η(X)ξ

+ 2{S(X,Y ) + (n− 1)g(X,Y )}η(Z)ξ
]

+ {g(Y, Z) + η(Y )η(Z)}X − {g(X,Z) + η(X)η(Z)}Y

is invariant on a Kenmotsu manifold M under a CL-transformation, and it is called the
CL-curvature tensor field on M .

Definition 3.9. [21] A Kenmotsu manifold M is said to be CL-flat if the CL-curvature
tensor field A of the type (1, 3) vanishes identically on M .

Definition 3.10. [21] A Kenmotsu manifold M is said to be CL-symmetric if ∇A = 0.

Definition 3.11. [21] A Kenmotsu manifold M is said to be CL-semisymmetric if the
R(X,Y ) ·A = 0.

In [21], Shaikh et. al proved that in a Kenmotsu manifold M , the concept of CL-
semisymmetry, CL-symmetry, CL-flatness and manifold of constant curvature -1, i.e.
manifold is Einsteinnian are equivalent and its Ricci tensor is of the form

S(Y, Z) = −(n− 1)g(Y,Z). (3.18)

Again in [9], Debnath and Bhattacharyya studied second order parallel tensor in trans-
Sasakian manifolds and as a corollary of their result we have the following:

Theorem 3.12. In a Kenmotsu manifold M , every second order parallel symmetric
tensor is a constant multiple of the metric tensor.
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Suppose that the (0,2) type symmetric tensor field £V g+ 2S is parallel for any vector
field V on a Kenmotsu manifold M . Then Theorem 3.6 yields £V g + 2S is a constant
multiple of the metric tensor g, i.e. (£V g)(X,Y ) + 2S(X,Y ) = −2λg(X,Y ) for all X, Y
on M , where λ is a constant. Hence the relation (1.1) holds. This implies that (g, V, λ)
yields a Ricci soliton. Hence we can state the following:

Theorem 3.13. If the tensor field £V g+ 2S on a Kenmotsu manifold is parallel for any
vector field V , then (g, V, λ) is a Ricci soliton.

Let us consider h be a (0, 2) symmetric parallel tensor field on a Kenmotsu manifold
such that

h(X,Y ) = (£ξg)(X,Y ) + 2S(X,Y ). (3.19)

From (2.4) we have

(£ξg)(X,Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ) = 2[g(X,Y )− η(X)η(Y )]. (3.20)

Using (3.18) and (3.20) in (3.19), we get

h(X,Y ) = −2(n− 2)g(X,Y )− 2η(X)η(Y ). (3.21)

Putting X = Y = ξ in (3.21), we obtain

h(ξ, ξ) = −2(n− 1). (3.22)

If (g, ξ, λ) is a Ricci soliton on a Kenmotsu manifold M , then from (1.1) we have

h(X,Y ) = −2λg(X,Y ) (3.23)

and hence

h(ξ, ξ) = −2λ. (3.24)

From (3.22) and (3.24) we get λ = (n− 1) > 0 and consequently the Ricci soliton (g, ξ, λ)
is expanding. Thus we can state the following:

Theorem 3.14. If the tensor field £ξg + 2S on a CL-flat (respectively CL-symmetric,
CL-semisymmetric) Kenmotsu manifold is parallel, then the Ricci soliton (g, ξ, λ) is al-
ways expanding.
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