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1. Introduction

Pseudo-Riemannian metrics in contact manifolds were studied first by Takahashi [14]
and later by Duggal [6], Bejancu and duggal [3], Calvaruso and Perrone [5] and others.
Several authors studied different contact structures on manifolds with Lorentzian metric,
for example Lorentzian α-Sasakian [1] [16], Lorentzian β-Kenmotsu [2] [12], Lorentzian
para-Sasakian [8] [11] and Lorentzian trans-Sasakian [13] [7] [4] manifolds.
In 1982, Hamilton [9] introduced the notion of Ricci flow to find a canonical metric on a
smooth manifold. Then Ricci flow has become a powerful tool for the study of Riemannian
manifolds. Shrinking Ricci solitons correspond naturally to shrinking self similar solutions
to the Ricci flow. The classification of these Ricci solitons in two or three dimensions is
given in [9] [10]. Extension of this classification to four and higher dimensions help us to
understand the behaviour of solutions to the Ricci flow equation.
In this paper we give the characterisation of shrinking Ricci solitons in Lorentzian trans-
Sasakian manifolds. After presenting basic formulae for Lorentzian trans-Sasakian man-
ifolds in section 2, shrinking Ricci solitons in Lorentzian trans-Sasakian manifolds have
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been characterised with respect to second order parallel tensor in section 3. The shrink-
ing gradient Ricci solitons in three dimensional Lorentzian trans sasakian manifolds are
considered in section 4.

2. Preliminaries

A (2n + 1) dimensional differentiable manifold M is said to be a Lorentzian trans-
Sasakian manifold if it admits a (1, 1) tensor field ϕ, a structure tensor field ξ, a 1-form
η and the Lorentzian metric g which satisify

ϕ2X = X + η(X)ξ, ϕξ = 0, g(X, ξ) = η(X), η(ξ) = −1, η(ϕX) = 0, (2.1)

g(ϕX, ϕY ) = g(X,Y ) + η(X)η(Y ), (2.2)

(∇Xϕ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(ϕX, Y )ξ − η(Y )ϕX), (2.3)

for all vector fields X and Y on M , where α and β are some scalar functions and such
a structure is said to be the Lorentzian trans-Sasakian structure of type (α, β). We note
that Lorentzian trans-Sasakian manifold of type (0, 0), (0, β), (α, 0) are the Lorentzian
cosympletic, Lorentzian β-Kenmotsu and Lorentzian α- Sasakian manifolds respectively.
In particular if α = 1, β = 0 and α = 0, β = 1, then Lorentzian trans -Sasakian manifold
reduces to Lorentzian Sasakian and Lorentzian Kenmotsu manifolds respectively.
From (2.3), it follows that

∇Xξ = −α(ϕX)− β(X + η(X)ξ), (2.4)

(∇Xη)Y = αg(ϕX, Y ) + βg(ϕX, ϕY ), (2.5)

where ∇ denotes the Riemannian connection with respect to the Lorentzian metric g.
In a Lorentzian trans-Sasakian manifold [7] [13], we have

R(X,Y )ξ = (α2 + β2){η(Y )X − η(X)Y }+ 2αβ{η(Y )ϕX − η(X)ϕY }
+ (Y α)ϕX − (Xα)ϕY + (Y β)ϕ2X − (Xβ)ϕ2Y,

(2.6)

S(X, ξ) = {2n(α2 + β2)− ξβ}η(X) + (2n− 1)(Xβ)− (ϕX)α

+ {2αβη(X) +Xα}ψ,
(2.7)

Qξ = {2n(α2 + β2)− ξβ}ξ + (2n− 1)gradβ − ϕ(gradα)

+ {2αβξ + gradα}ψ,
(2.8)

2αβ − ξα = 0, (2.9)

for any vector field X,Y, Z on M , where R is the Riemannian curvature tensor of type
(0, 3), S is Ricci curvature tensor of type (1, 1) and Q is Ricci operator given by

S(X,Y ) = g(QX,Y ) and ψ = g(ϕei, ei). (2.10)

Further in a Lorentzian trans-Sasakian manifold of type (α, β) [7], we have

ϕ(gradα) = (2n− 1)gradβ. (2.11)
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For constants α and β, the equations (2.6) - (2.8) reduce to

R(X,Y )ξ = (α2 + β2){η(Y )X − η(X)Y }, (2.12)

S(X, ξ) = 2n(α2 + β2)η(X), (2.13)

Qξ = 2n(α2 + β2)ξ. (2.14)

An important consequence of (2.4) is that ξ is a geodesic vector field. i.e. ∇ξξ = 0. Then
for any arbitrary vector field X, we have that dη(ξ,X) = 0. The ξ-sectional curvature
K(ξ,X) of a Lorentzian trans-Sasakian manifold for a unit vector field X orthogonal to
ξ is given by,

K(ξ,X) = g(R(ξ,X)ξ,X) = α2 + β2. (2.15)

It follows that ξ-sectional curvature does not depend on X. If α2 + β2 = 0, then the
manifold is of vanishing ξ-sectional curvature. Throughout this paper we assume that α
and β are constants.
In a Riemannian manifold (M, g), g is called a Ricci soliton if

(LVg)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0, (2.16)

where LV is the Lie derivative along V , S is the Ricci tensor and λ is a constant. A Ricci
soliton is said to be shrinking or steady or expanding according as λ is negative, zero or
positive respectively. If the vector field V is gradient of some smooth function f on M ,
then g is called a gradient Ricci soliton and equation (2.16) assumes the form

▽▽ f = S + λg. (2.17)

3. Second order parallel tensor and Ricci solitons in Lorentzian
trans-Sasakian manifold

Definition. A tensor h of second order is said to be a parallel tensor if ∇h = 0, where
∇ denotes the operator of covariant differentiation with respect to the metric tensor g.

Let h be a (0, 2)-type symmetric tensor field on a Lorentzian trans-Sasakian manifold
M with non-vanishing ξ-sectional curvature such that ∇h = 0. Then it follows that

∇2h(X,Y ;Z,W )−∇2h(X,Y ;W,Z) = 0. (3.1)

From (3.1), we obtain the relation

h(R(X,Y )Z,W )− h(R(X,Y )W,Z) = 0, (3.2)

for arbitrary vector fields X,Y, Z on M .
Substitution of X = Z =W = ξ in (3.2) gives us

h(ξ,R(ξ, Y )ξ) = 0. (3.3)

Using (2.12) in (3.3), we get

(α2 + β2){η(Y )h(ξ, ξ) + h(ξ, Y )} = 0. (3.4)

Since (α2 + β2) ̸= 0, (3.4) reduces to

h(ξ, Y ) + η(Y )h(ξ, ξ) = 0. (3.5)
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Taking the covariant differentiation of (3.5) with respect to X, we get

h(∇Xξ, Y ) + h(ξ,∇XY ) + g(∇XY, ξ)h(ξ, ξ) + g(Y,∇Xξ)h(ξ, ξ)

+ 2g(Y, ξ)h(∇Xξ, ξ) = 0.
(3.6)

Replacing Y by ∇XY in (3.5), we obtain

h(ξ,∇XY ) + g(∇XY, ξ)h(ξ, ξ) = 0. (3.7)

In view of (3.7), it follows from (3.6) that

h(∇Xξ, Y ) + g(Y,∇Xξ)h(ξ, ξ) + 2g(Y, ξ)h(∇Xξ, ξ) = 0. (3.8)

Using (2.4) in (3.8), we get

{βg(X,Y )− αg(ϕX, Y )}h(ξ, ξ) + {βh(X,Y ) + αh(ϕX, Y )} = 0. (3.9)

Replacing X by ϕX in (3.9) and then using (2.1), we obtain

(α2 + β2){h(X,Y ) + g(X,Y )h(ξ, ξ)} = 0. (3.10)

This implies

h(X,Y ) = −g(X,Y )h(ξ, ξ). (3.11)

Thus we state the following:

Theorem 1. A symmetric parallel second order covariant tensor in a Lorentzian
trans-Sasakian manifold of non-vanishing ξ-sectional curvature is a constant multiple of
the metric tensor.

As an immediate corollary of theorem 3.1 we have the following result.

Corollary 3.1. A locally Ricci symmetric (∇S = 0) Lorentzian trans-Sasakian manifold
of non-vanishing ξ-sectional curvature is an Einstein manifold.

A straightforward computation gives

(Lξg)(X,Y ) = −2βg(ϕX, ϕY ). (3.12)

The metric g is called η-Einstein if there exists two real functions a and b such that the
Ricci tensor S of g is given by

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ). (3.13)

Let {e1, e2, e3, .......e2n+1} be a local orthonormal basis of vector fields in M . Then by
taking X = Y = ei in (3.13) and summing up with respect to i, we obtain

r = (2n+ 1)a− b. (3.14)

Again by taking X = Y = ξ in (3.13) and then using (2.1) and (2.13), we get

−2n(α2 + β2) = −a+ b. (3.15)

From (3.14) and (3.15), we obtain

a =
r

2n
− (α2 + β2) b =

r

2n
− (2n+ 1)(α2 + β2). (3.16)

Substituting the values of a and b in (3.13), we get

S(X,Y ) = { r
2n

− (α2+β2)}g(X,Y )+{ r
2n

− (2n+1)(α2+β2)}η(X)η(Y ). (3.17)
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Suppose

h(X,Y ) = (Lξg)(X,Y ) + 2S(X,Y ). (3.18)

Using (3.12) and (3.17) in (3.18), we obtain

h(X,Y ) = { r
n
− 2(α2 + β2)− 2β}g(X,Y )

+ { r
n
− 2(2n+ 1)(α2 + β2)− 2β}η(X)η(Y ).

(3.19)

Taking X = Y = ξ in (3.19), we get

h(ξ, ξ) = −4n(α2 + β2). (3.20)

If (g, ξ, λ) is a Ricci soliton on a Lorentzian trans-Sasakian manifold M , then from (2.16)
and (3.18), we have

h(X,Y ) = −2λg(X,Y ). (3.21)

Setting X = Y = ξ in (3.21), we get

h(ξ, ξ) = 2λ. (3.22)

Hence from (3.20) and (3.22), we have

λ = −2n(α2 + β2). (3.23)

Thus we state the following:

Theorem 1. If the tensor field Lξg+2S on a Lorentzian trans-Sasakian manifold with
non-vanishing ξ-sectional curvature is parallel, then the Ricci soliton (g, ξ, λ) is shrinking.

As particular cases, we state the following:

Corollary 3.2. [1] If the tensor field Lξg+2S on a Lorentzian α-Sasakian manifold with
α ̸= 0 is parallel, then the Ricci soliton (g, ξ, λ) is shrinking.

Corollary 3.3. If the tensor field Lξg + 2S on a Lorentzian β-Kenmotsu manifold with
β ̸= 0 is parallel, then the Ricci soliton (g, ξ, λ) is shrinking.

4. Gradient Ricci solitons in Lorentzian trans-Sasakian mani-
fold

In [15] De et al. studied gradient Ricci soliton in tran-Sasakian manifold and proved
that the manifold is Einstein. In this section we prove that gradient Ricci soliton in
Lorentzian trans-Sasakian manifold is shrinking.
Let us consider (M, g) to be a three dimensional Lorentzian trans-Sasakian manifold with
non-vanishing ξ-sectional curvature. Then we have

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y

− r

2
[g(Y, Z)X − g(X,Z)Y ].

(4.1)

Setting Y = Z = ξ in (4.1) and using (2.13) and (2.14), we get

QX = {r
2
− (α2 + β2)}X + {r

2
− 3(α2 + β2)}η(X)ξ. (4.2)
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Suppose g is a gradient Ricci soliton, then (2.17) can be written as

∇YDf = QY + λY, (4.3)

for all vector fields Y on M , where D denotes the gradient operator of g.
From (4.3) it follows that

R(X,Y )Df = (∇XQ)Y − (∇YQ)X. (4.4)

This implies

g(R(ξ, Y )Df, ξ) = g((∇ξQ)Y, ξ)− g((∇YQ)ξ, ξ). (4.5)

Now using (2.4), we have

g((∇YQ)ξ, ξ) = g(∇YQξ, ξ)− g(Q(∇Y ξ), ξ) = 0. (4.6)

Differentiating (4.2), we obtain

(∇WQ)(X) =
dr(W )

2
{X + η(X)ξ}+ (

r

2
− 3(α2 + β2))

{−αg(ϕW,X)− β(g(W,X) + η(X)η(W ) + η(X)∇W ξ}.
(4.7)

Replacing W by ξ in (4.7), we get

(∇ξQ)(X) =
dr(ξ)

2
{X + η(X)ξ}. (4.8)

From (4.6) and (4.8), we obtain

g((∇ξQ)Y, ξ)− g((∇YQ)ξ, ξ) = 0. (4.9)

Using (4.9) in (4.5), we get

g(R(ξ, Y )Df, ξ) = 0. (4.10)

In view of (2.12), we have

g(R(ξ, Y )Df, ξ) = −(α2 + β2){g(Y,Df) + η(Y )η(Df)}. (4.11)

Hence from (4.10) and (4.11), it follows that

Df = −(ξf)ξ, since (α2 + β2) ̸= 0. (4.12)

Using (4.12) in (4.3), we get

S(X,Y ) + λg(X,Y ) = g(∇XDf, Y ) = −g(∇X(ξf)ξ, Y )

= α(ξf)g(ϕX, Y ) + β(ξf)g(X,Y ) + β(ξf)η(X)η(Y )

−X(ξf)η(Y ).

(4.13)

Setting Y = ξ in (4.13), we get

X(ξf) = {2(α2 + β2) + λ}η(X). (4.14)

Interchanging X and Y in (4.13), we obtain

S(X,Y ) + λg(X,Y ) = α(ξf)g(X,ϕY ) + β(ξf)g(Y,X) + β(ξf)η(Y )η(X)

− Y (ξf)η(X).
(4.15)

Adding (4.13) and (4.15), we get

2S(X,Y ) + 2λg(X,Y ) = 2β(ξf)g(X,Y ) + 2β(ξf)η(X)η(Y )

− Y (ξf)η(X)−X(ξf)η(Y ).
(4.16)
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From (4.16) and (4.14), we obtain

S(X,Y ) + λg(X,Y ) = β(ξf){g(X,Y ) + η(X)η(Y )}
− {2(α2 + β2) + λ}η(X)η(Y ).

(4.17)

Then using (4.3) and (4.17), we get

∇YDf = β(ξf){Y + η(Y )ξ} − {2(α2 + β2) + λ}η(Y )ξ. (4.18)

Using (4.18), we compute R(X,Y )Df and obtain

R(X,Y )Df = ∇X∇YDf −∇Y ∇XDf −∇[X,Y ]Df

= βX(ξf)Y − βY (ξf)X + βX(ξf)η(Y )ξ − βY (ξf)η(X)ξ

+ (β(ξf)− 2(α2 + β2)− λ){(∇Xη)(Y )ξ − (∇Y η)(X)ξ}
+ (β(ξf)− 2(α2 + β2)− λ){η(Y )∇Xξ − η(X)∇Y ξ}.

(4.19)

Contracting the above with ξ, we get

g(R(X,Y )Df, ξ) = 2α{2(α2 + β2) + λ− β(ξf)}g(X,ϕY ) = 0. (4.20)

Thus we have 2α{2(α2 + β2) + λ− β(ξf)} = 0.
If α = 0, then the manifold reduces to a Lorentzian β-Kenmotsu manifold.
If 2(α2 + β2) + λ− β(ξf) = 0, then from (4.14), we get

X(ξf) = β(ξf)η(X). (4.21)

By substituting (4.21) in (4.17), we obtain

S(X,Y ) + λg(X,Y ) = β(ξf)g(X,Y ). (4.22)

On contracting (4.22), we get

(ξf) =
r

3β
+
λ

β
. (4.23)

If r is a constant, then (ξf) = constant. So from (4.12), we have Df = cξ, where c is a
constant. Thus we can write from this equation df = cη and its exterior derivative implies
that cdη = 0. Since dη ̸= 0, we have c = 0 and hence Df = 0. This implies that f is a
constant.
Consequently, equation (4.3) reduces to

S(X,Y ) = 2(α2 + β2)g(X,Y ). (4.24)

This means that M is an Einstein manifold and λ = −2(α2 + β2). i.e. g is shrinking.
Thus we have the following:

Theorem 1. If a three dimensional Lorentzian trans-Sasakian manifold with non-
vanishing ξ-sectional curvature admits a gradient Ricci soliton, then the manifold is ei-
ther a Lorentzian β-Kenmotsu manifold or an Einstein manifold provided α and β are
constants and the Ricci soliton is shrinking.
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