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1. Introduction

Let E be a real Banach space. Let A : E → E be a single valued operator and B : E ⊸ E
be a multi valued operator (possibly nonlinear). Consider the following problem:

find u ∈ E such that 0 ∈ (A+B)u. (1.1)

It is well known that problem (1.1) includes, as special cases, variational inequality
problems, split feasibility problems, convex minimization problems, equilibrium problems
which have applications in machine learning, signal processing, linear inverse problems
and image processing.

Iterative algorithms for approximating solutions of the inclusion (1.1) have been studied
extensively by numerous authors (see, e.g., [1–3] [11],[12], [13], [14] [15],[16]). Assuming
existence of solution, one of the classical methods for approximating solution(s) of (1.1)
in the setting of real Hilbert spaces is the well-known forward-backward algorithm (FBA)
which is an iterative procedure that starts at a point x1 ∈ H, and generates inductively
the sequence {xn} ⊂ H by:

xn+1 =
(
I + λnB

)−1(
I − λnA

)
xn, (1.2)

where λn > 0 is a regularization parameter. The FBA (1.2) as the name implies is based
on an explicit forward step with respect to A followed by an implicit backward step with
respect to B. Observe that the FBA (1.2) includes, in particular, the proximal point
algorithm (when A ≡ 0). Weak convergence of the sequence generated by (1.2) have been
established by various authors under suitable conditions (see, e.g., [11]).

In 2012, Takahashi et al [17] introduced and studied a generalization of the FBA in real
Hilbert spaces. They proved strong convergence of the sequence of their algorithm to a
solution of the inclusion (1.1). In the same year, Lopez et al [18] introduced and studied a
Halpern-type FBA in Banach spaces that are uniformly convex and q-uniformly smooth.
They proved weak and strong convergence of the sequence of their algorithm to a solution
of problem (1.1).

In 2016, Pholasa et al [19] extended the theorem of Takahashi et al [17] from real Hilbert
spaces to real Banach spaces that are uniformly convex and q-uniformly smooth. They
studied the following algorithm:

Algorithm 1.1. Step 0. Choose an arbitrary point u, x1 ∈ E, and set n = 1.

Step 1. Compute

yn = αnu+ (1− αn)
(
I + λnB

)−1
(I − λnA)xn.

Step 2. Compute

xn+1 = βnxn + (1− βn)yn,

where A : E → E is α-inverse strongly accretive, B : E ⊸ E is m-accretive and,
{αn}, {βn} ⊂ (0, 1) {λn} ⊂ (0,∞) are sequences satisfying conditions C1-C3 below.

Step 3. Update n = n+ 1 and go to Step 1.
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(C1) lim
n→∞

αn = 0 and

∞∑
n=1

αn = ∞,

(C2) lim sup
n→∞

βn < 1,

(C3) lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
(αq
κq

) 1
q−1

.

They proved that the sequence generated by Algorithm 1.1 converges strongly to a solu-
tion of problem (1.1).

The importance of the efficiency of any iterative algorithm in application cannot be over
emphasized. A lot of research efforts have been devoted to improving the speed of con-
vergence of existing algorithms to the desired solutions. One of the methods of doing this
is by introducing an inertial extrapolation term (see, e.g., [4–6, 8–10]. The motivation
for inertial type algorithms comes from the implicit discretization of the second-order
differential equation

d2x(t)

dt2
+ β(t)

dx(t)

dt
+∇F (x(t)) = g(t), 0 < t0 ≤ t α ∈ [0, 1], (1.3)

where β(t) = λ
tα , F : Rn → R is a differentiable convex function admitting at least one

minimizer, g is an integrable function. Equation (1.3) describes many models depending
on β. For example, if α = 0, (1.3) describes the motion of a heavy ball rolling with friction
or damping parameter λ. Equation (1.3) is related to inertial optimization algorithms,
with various inertia, depending on the choice of the damping function β and the error
terms defined by g.

In 2019, Cholamjiak and Shehu [20] introduced and studied an inertial version of the
algorithm of Lopez et al [18]. They studied the following algorithm in a uniformly convex
and q-uniformly smooth real Banach space E:

Algorithm 1.2. Step 0. Let β ∈ [0, 1) and x0, x1 ∈ E be given starting points. Set
n = 1.

Step 1. Given iterates xn−1 and xn, n ≥ 1, choose βn such that 0 ≤ βn ≤ β̄n, where

β̄n =

{
min

{
β, ϵn

∥xn−xn−1∥

}
, xn ̸= xn−1,

β, otherwise.

Step 2. Compute{
yn = xn + βn(xn − xn−1),

xn+1 = αnx0 + (1− αn)
(
KB

λn
(yn − λn(Ayn + an)) + bn

)
, n ≥ 1,

where A : E → E is α-inverse strongly accretive, B : E ⊸ E is m-accretive and,
{an}, {bn} ⊂ E, {αn}, {βn} ⊂ (0, 1) {ϵn}, {λn} ⊂ (0,∞) are sequences satisfying condi-
tions C4-C7.

Step 3. Update n = n+ 1 and go to Step 1.
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(C4) lim
n→∞

∥an∥/αn = 0 lim
n→∞

∥bn∥/αn = 0,

(C5) lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞,

(C6) lim inf
n→∞

λn ≤ lim sup
n→∞

λn < (αq/κq)
1/(q−1),

(C7) ϵn = o(αn).

They proved that the sequence {xn} generated by Algorithm 1.2 converges in strongly to
a solution of (1.1).

Remark 1.3. We remark here that the choice of the error sequences {an}, {bn} ⊂ E may
drastically affect the performance of algorithm 1.2.

Motivated by Remark 1.3, the results of Pholasa et al [19] and Cholamjiak and Shehu
[20], in this paper, we introduce an inertial version of algorithm 1.1 of Pholasa et al [19]
in the setting of real Banach spaces that are uniformly convex and q-uniformly smooth.
Furthermore, we proved a theorem that guarantees that the sequence generated by our
proposed algorithm converges strongly to a solution of problem (1.1). In addition, we give
some applications of our theorem to convex minimization problems and image denoising
and debluring problems. Finally, we present some numerical illustrations to support our
main theorem and its applications.

2. Preliminaries

In this section will state some important results used in the proof of our main Theorem
3.5. We will assume that the basic notions used are known by the reader (otherwise, see,
e.g., page 5 of [21]). The first lemma we will state is the famous subdifferential inequality
whose proof can be found in this monograph [22].

Lemma 2.1. [22] For q > 1, let Jq be the generalized duality mapping, then for all
x, y ∈ E there exists jq(x+ y) ∈ Jq(x+ y) such that

∥x+ y∥q ≤ ∥x∥q + q⟨y, jq(x+ y)⟩.
The next lemma of H.K. Xu will play a crucial role in our proof of Theorem 3.5 after we
proved boundedness of the sequence generated by algorithm 3.3.

Lemma 2.2 ([23]). Let E be a uniformly convex real Banach space and let q > 1 and
r > 0. Then there exists a strictly increasing continuous and convex functions ϕ : [0,∞) →
[0,∞) with ϕ(0) = 0 such that for all x, y ∈ B(0, r) := {x ∈ E : ∥x∥ ≤ r},

∥λx+ (1− λ)y∥q ≤ λ∥x∥q + (1− λ)∥y∥q − λ(1− λ)ϕ(∥x− y∥).
The next two lemmas are some key results established by Lopez et al [18] concerning
the study of the forward-backward algorithm on real Banach spaces involving accretive
operators. These results are what informed the setting and assumptions of Theorem 3.5.

Lemma 2.3 ([18]). Let E be a q-uniformly smooth real Banach space and let A : E → E
be an α-isa of order q. Then the following inequality holds for all x, y ∈ E

∥(I − λA)x− (I − λA)y∥q ≤ ∥x− y∥q − λ(αq − κqλ
q−1)∥Ax−Ay∥q,

where κq > 0 is the q-uniform smoothness coefficient of E. In particular, if 0 < λ <
(αq − κqλ

q−1) then (I − λA) is nonexpansive.
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Remark 2.4. Let A : E ⊸ E be an m-accretive map the resolvent KA
λ : E → E of A is

defined by KA
λ x := {u ∈ E : x ∈ (u + λAu)}. It is well-known that KA

λ is single valued
with F (KA

λ ) = A−10 and KA
λ is firmly nonexpansive. In the sequel we shall adopt the

following notation:

WA,B
λ := KB

λ (I − λA) = (I + λB)−1(I − λA), λ > 0.

The following statements are true, see, e.g., [18]

(i) For λ > 0, F (WA,B
λ ) = (A+B)−10.

(ii) For 0 < λ ≤ ϵ and x ∈ E, ∥x−WA,B
λ x∥ ≤ 2∥x−WA,B

ϵ x∥.

Lemma 2.5. [18] Let E be a uniformly convex and q-uniformly smooth real Banach space
and let A : E → E be an α-isa mapping of order q and B : E ⊸ E be an m-accretive
mapping. Then given r > 0, there exists a continuous, strictly increasing and convex
function φ : [0,∞) → [0,∞) with φ(0) = 0 such that for all x, y ∈ B(0, r)

∥WA,B
λ x−WA,B

λ y∥q ≤ ∥x− y∥q − λ
(
αq − λq−1κq

)
∥Ax−Ay∥q

− φ
(
∥(I −Kλ)(I − λA)x− (I −Kλ)(I − λA)y∥

)
.

The following result is what we will use to conclude that the sequence generated by our
algorithm 1.2 converges strongly to a solution of problem 1.1.

Lemma 2.6. [24] Let {dn} be a sequence of nonnegative real numbers such that

dn+1 ≤ (1− θn)dn + θnτn and dn+1 ≤ dn − ηn + ρn,

where {θn} is a sequence in (0, 1), {ηn} is a sequence of of nonnegative real numbers,
{ρn} and {τn} are real sequences such that

(i)

∞∑
n=1

θn = ∞, (ii) lim
n→∞

ρn = 0,

(iii) lim
k→∞

ηnk
= 0 implies lim sup

k→∞
τnk

≤ 0, for any subsequence {nk} ⊂ {n}.

Then, lim
n→∞

dn = 0.

The next lemma will be used to conclude that the generated by our algorithm is bounded.
Moreover, this result can come handy for prove of boundedness of most inertial algorithms.

Lemma 2.7. [25] Suppose {an} and {bn} are two sequences of nonnegative numbers such
that an+1 ≤ an + bn, for all n ≥ 1. If

∑∞
n=1 bn converges, then lim

n→∞
an exists.

The next result of Reich is key in establishing strong convergence of Halpern-type
algorithms. Similar version for viscosity-type algorithms was established by Cai and Bu
(Optim. Lett. 7(2):267-287).

Lemma 2.8. [26] Let H be a real Hilbert space and let T : H → H be a nonexpansive
mapping with a nonempty fixed point set. For any u ∈ H and t ∈ (0, 1) let {zt} be a net
defined by zt := tu+ (1− t)Tzt. Then, {zt} converges strongly to a fixed point of T .

Remark 2.9. The analytic representations of duality maps and κq are known in Lp(Λ)
and Lq(Λ) spaces, Λ ⊂ R, for p > 1 and q > 1 such that 1

p + 1
q = 1 (see, e.g., page 7 of

[21]).
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3. Main result

The following assumptions are central in the proof of our main theorem.

Assumption 3.1. The real Banach space E is uniformly convex and q-uniformly smooth,
A : E → E is an α-isa operator of order q, B : E ⊸ E is a set-valued m-accretive operator
and the solution set Ω := (A+B)−10 ̸= ∅.

Assumption 3.2. Choose sequences {βn}, {γn} ⊂ (0, 1) and {ϵn}, {λn} ⊂ (0,∞) such
that

(A1) lim
n→∞

βn = 0 and

∞∑
n=1

βn = ∞,

(A2)

∞∑
n=1

ϵn < ∞ and lim
n→∞

ϵn
βn

= 0,

(A3) 0 < λ ≤ κqλ
q−1
n < αq.

Based on Assumptions 3.1 and 3.2, we now give our algorithm.

Algorithm 3.3. Inertial Halpern-type forward-backward splitting algorithm.

Step 0. (Initialization) choose arbitrary points x0, x1 ∈ E, and set n = 1.

Step 1. Choose αn such that 0 ≤ αn ≤ ᾱn, where

ᾱn =

{
min

{
α, ϵn

∥xn−xn−1∥

}
, xn ̸= xn−1,

α, otherwise.

Step 2. Compute 
yn = xn + αn(xn − xn−1)

vn = βnu+ (1− βn)K
B
λn

(yn − λnAyn)

xn+1 = γnyn + (1− γn)vn.

Step 3. Update n = n+ 1 and go to Step 1.

Lemma 3.4. Let {xn} be the sequence generated by Algorithm 3.3, then {xn} is bounded.

Proof. Let WA,B
λn

= KB
λn

(I − λnA) then WA,B
λn

is nonexpansive (see, e.g., [21]). Now,

using Remark 2.4 (i) and the nonexpansivity of WA,B
λn

, we have

∥vn − z∥ = ∥βnu+ (1− βn)K
B
λn

(yn − λnAyn)− z∥

≤ βn∥u− z∥+ (1− βn)∥WA,B
λn

yn −WA,B
λn

z∥
≤ βn∥u− z∥+ (1− βn)∥yn − z∥. (3.1)
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Thus, using inequality (3.1), we obtain

∥xn+1 − z∥ = ∥γnyn + (1− γn)vn − z∥
≤ γn∥yn − z∥+ (1− γn)∥vn − z∥
≤ γn∥yn − z∥+ (1− γn)

(
βn∥u− z∥+ (1− βn)∥yn − z∥

)
= γn∥yn − z∥+ (1− γn)βn∥u− z∥+ (1− γn)(1− βn)∥yn − z∥
= (1− γn)βn∥u− z∥+ (1− βn(1− γn))∥yn − z∥
≤ (1− γn)βn∥u− z∥+ (1− βn(1− γn))∥xn − z∥

+ (1− βn(1− γn))αn∥xn − xn−1∥
≤ (1− βn(1− γn))

(
∥xn − z∥+ ϵn

)
+ (1− γn)βn∥u− z∥

≤ max{∥xn − z∥+ ϵn, ∥u− z∥}.

If the maximum is ∥u − z∥, we are done. Else, by Lemma 2.7, {∥xn − z∥} has a limit.
This implies that {xn} is bounded. Hence, {vn} and {yn} are also bounded.

Theorem 3.5. Let {xn} be the sequence generated by Algorithm 3.3. Then {xn} con-
verges strongly to z ∈ Ω.

Proof. Let z ∈ Ω. Using Remark 2.4 (i), Lemmas 2.1 and 2.5, we have

∥vn − z∥q = ∥βnu+ (1− βn)W
A,B
λn

yn − z∥q

≤ (1− βn)
q∥WA,B

λn
yn −WA,B

λn
z∥q + qβn⟨u− z, jq(vn − z)⟩

≤ (1− βn)
q
(
∥yn − z∥q − λn(αq − λq−1

n κq)∥Ayn −Az∥q

− (1− βn)
qφ(∥yn − λn(Ayn −Az)−WA,B

λn
yn∥)

)
+ qβn⟨u− z, jq(vn − z)⟩

= (1− βn)
q∥yn − z∥q − λn(1− βn)

q(αq − λq−1
n κq)∥Ayn −Az∥q

− (1− βn)
qφ(∥yn − λn(Ayn −Az)−WA,B

λn
yn∥)

+ qβn⟨u− z, jq(vn − z)⟩. (3.2)
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Next, using Lemma 2.2, inequality (3.2) and Lemma 2.1, we obtain

∥xn+1 − z∥q = ∥γnyn + (1− γn)vn − z∥q

≤ γn∥yn − z∥q + (1− γn)∥vn − z∥q

≤ γn∥yn − z∥q + (1− γn)
(
(1− βn)

q∥yn − z∥q

− λn(1− βn)
q(αq − λq−1

n κq)∥Ayn −Az∥q

− (1− βn)
qφ(∥yn − λn(Ayn −Az)−WA,B

λn
yn∥)

+ qβn⟨u− z, jq(vn − z)⟩
)

= γn∥yn − z∥q + (1− γn)(1− βn)
q∥yn − z∥q

− λn(1− γn)(1− βn)
q(αq − λq−1

n κq)∥Ayn −Az∥q

− (1− γn)(1− βn)
qφ(∥yn − λn(Ayn −Az)−WA,B

λn
yn∥)

+ qβn(1− γn)⟨u− z, jq(vn − z)⟩
≤ (1− (1− γn)βn)∥yn − z∥q

− λn(1− γn)(1− βn)
q(αq − λq−1

n κq)∥Ayn −Az∥q

− (1− γn)(1− βn)
qφ(∥yn − λn(Ayn −Az)−WA,B

λn
yn∥)

+ qβn(1− γn)⟨u− z, jq(vn − z)⟩
≤ (1− (1− γn)βn)∥xn − z∥q

+ q(1− (1− γn)βn)αn⟨xn − xn−1, jq(yn − z)⟩
− λn(1− γn)(1− βn)

q(αq − λq−1
n κq)∥Ayn −Az∥q

− (1− γn)(1− βn)
qφ(∥yn − λn(Ayn −Az)−WA,B

λn
yn∥)

+ qβn(1− γn)⟨u− z, jq(vn − z)⟩. (3.3)

Thus, from inequality (3.3), we deduce that

∥xn+1 − z∥q ≤ (1− (1− γn)βn)∥xn − z∥q

+ q(1− (1− γn)βn)αn⟨xn − xn−1, jq(yn − z)⟩
+ qβn(1− γn)⟨u− z, jq(vn − z)⟩

and

∥xn+1 − z∥q ≤ ∥xn − z∥q − λn(1− γn)(1− βn)
q(αq − λq−1

n κq)∥Ayn −Az∥q

− (1− γn)(1− βn)
qφ(∥yn − λn(Ayn −Az)−WA,B

λn
yn∥)

+ q(1− (1− γn)βn)αn⟨xn − xn−1, jq(yn − z)⟩
+ qβn(1− γn)⟨u− z, jq(vn − z)⟩,

for each n ≥ 1.

Set dn = ∥xn − z∥q, θn = βn(1− γn)

τn =
q(1− (1− γn)βn)αn

βn(1− γn)
⟨xn − xn−1, jq(yn − z)⟩+ q⟨u− z, jq(vn − z)⟩

Publications

c⃝ 2022 The authors. Published by

TaCS-CoE, KMUTT

https://doi.org/10.58715/bangmodjmcs.2022.8.4

Bangmod J-MCS 2022

https://doi.org/10.58715/bangmodjmcs.2022.8.4


AN ACCELERATED HALPERN-TYPE ALGORITHM ... 45

ηn = λn(1− γn)(1− βn)
q(αq − λq−1

n κq)∥Ayn −Az∥q

+ (1− γn)(1− βn)
qφ(∥yn − λn(Ayn −Az)−WA,B

λn
yn∥)

ρn = q(1− (1− γn)βn)αn⟨xn − xn−1, jq(yn − z)⟩+ qβn(1− γn)⟨u− z, jq(vn − z)⟩

dn+1 ≤ (1− θn)dn + θnτn and dn+1 ≤ dn − ηn + ρn.

Observe that
∑∞

n=1 βn = ∞ implies
∑∞

n=1 θn = ∞. By the boundedness of {yn} and
{vn}, and the fact that lim

n→∞
βn = 0 = lim

n→∞
αn∥xn − xn−1∥, we obtain that lim

n→∞
ρn = 0.

Next, by Lemma 2.6, it remains to show lim
k→∞

ηnk
= 0 implies lim sup

k→∞
τnk

≤ 0, for any

subsequence {nk} ⊂ {n}. Let {ηnk
} be a subsequence of {ηn} such that lim

k→∞
ηnk

= 0.

Then, by the property of φ, we have

lim
k→∞

∥Aynk
−Az∥ = lim

k→∞
∥ynk

− λnk
(Aynk

−Az)−WA,B
λnk

ynk
∥ = 0.

Thus, by the triangle inequality,

lim
k→∞

∥WA,B
λnk

ynk
− ynk

∥ = 0.

Furthermore,

∥WA,B
λnk

ynk
− xnk

∥ ≤ ∥WA,B
λnk

ynk
− ynk

∥+ ∥ynk
− xnk

∥

≤ ∥WA,B
λnk

ynk
− ynk

∥+ αnk
∥xnk

− xnk−1∥

implies

lim
k→∞

∥WA,B
λnk

ynk
− xnk

∥ = 0.

Also,

∥ynk
− vnk

∥ ≤ ∥xnk
− vnk

∥+ αnk
∥xnk

− xnk−1∥

≤ βnk
∥xnk

− u∥+ (1− βnk
)∥xnk

−WA,B
λnk

ynk
∥+ αnk

∥xnk
− xnk−1∥

implies

lim
k→∞

∥ynk
− vnk

∥ = 0.

By Assumption 3.2 there exists λ > 0 such that λn ≥ λ, for all n ≥ 1. Hence, using
Remark 2.4 (ii), we have

∥WA,B
λ ynk

− ynk
∥ ≤ 2∥WA,B

λnk
ynk

− ynk
∥.

This implies that

lim sup
k→∞

∥WA,B
λ ynk

− ynk
∥ ≤ 2 lim sup

k→∞
∥WA,B

λnk
ynk

− ynk
∥ = 0.

So, lim sup
k→∞

∥WA,B
λ ynk

− ynk
∥ = 0. Thus, lim

k→∞
∥WA,B

λ ynk
− ynk

∥ = 0.

Observe that

∥WA,B
λ ynk

− vnk
∥ ≤ ∥WA,B

λ ynk
− ynk

∥+ ∥ynk
− vnk

∥
implies

lim
k→∞

∥WA,B
λ ynk

− vnk
∥ = 0.
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Also,

∥WA,B
λ vnk

− vnk
∥ ≤ ∥WA,B

λ vnk
−WA,B

λ ynk
∥+ ∥WA,B

λ ynk
− vnk

∥

≤ ∥vnk
− ynk

∥+ ∥WA,B
λ ynk

− vnk
∥

implies lim
k→∞

∥WA,B
λ vnk

− vnk
∥ = 0.

Now, let zt = tu+ (1− t)WA,B
λ zt, t ∈ (0, 1). By Lemma 2.8, zt converges strongly to a

z ∈ F (WA,B
λ ) = (A+B)−10.

By Lemma 2.1 and the fact that WA,B
λ is nonexpansive, we obtain

∥zt − vnk
∥q = ∥tu+ (1− t)WA,B

λ zt − vnk
∥q

≤ (1− t)q∥WA,B
λ zt − vnk

∥q + qt⟨u− vnk
, jq(zt − vnk

)⟩

≤ (1− t)q
(
∥WA,B

λ zt −WA,B
λ vnk

∥+ ∥WA,B
λ vnk

− vnk
∥q
)q

+ qt⟨u− vnk
, jq(zt − vnk

)⟩

≤ (1− t)q
(
∥zt − vnk

∥+ ∥WA,B
λ vnk

− vnk
∥q
)q

+ qt⟨u− vnk
, jq(zt − vnk

)⟩

≤ (1− t)q
(
∥zt − vnk

∥+ ∥WA,B
λ vnk

− vnk
∥q
)q

+ qt⟨u− zt, jq(zt − vnk
)⟩

+ qt⟨zt − vnk
, jq(zt − vnk

⟩.

Thus,

⟨zt − u, jq(zt − vnk
)⟩ ≤ (1− t)q

qt

(
∥zt − vnk

∥+ ∥WA,B
λ vnk

− vnk
∥q
)q

+
(qt− 1)

qt
∥zt − vnk

∥q.

Hence,

lim sup
k→∞

⟨zt − u, jq(zt − vnk
⟩ ≤ (1− t)q

qt
Cq +

(qt− 1)

qt
Cq

=
( (1− t)q + qt− 1

qt

)
Cq, (3.4)

where C = lim sup
k→∞

∥zt − vnk
∥. Observe that lim

t→0

(1− t)q + qt− 1

qt
= 0. By the uniform

continuity of jq on bounded sets and the fact that zt → z, as t → 0, we have

lim
t→0

∥jq(zt − vnk
)− jq(z − vnk

)∥ = 0.

Thus, by the bicontinuity of ⟨·, ·⟩, continuity jq, and the fact that zt → z, as t → 0, we
have that

lim
t→0

⟨zt − u, jq(zt − vnk
)⟩ = ⟨z − u, jq(z − vnk

)⟩.

From inequality (3.4), we deduce that

lim sup
k→∞

⟨z − u, jq(z − vnk
)⟩ ≤ 0.
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Furthermore, since

(1− (1− γnk
)βnk

)αnk
q

(1− γnk
)βnk

⟨xnk
− xnk−1, jq(ynk

− z)⟩ ≤ (1− (1− γnk
)βnk

)αnk
q

(1− γnk
)βnk

× ∥xnk
− xnk−1∥∥ynk

− z∥q−1 ≤
( (1− (1− γnk

)βnk
)q

(1− γnk
)

∥ynk
− z∥q−1

) ϵnk

βnk

,

lim sup
k→∞

(1− (1− γnk
)βnk

)αnk
q

(1− γnk
)βnk

⟨xnk
− xn−1, jq(ynk

− z)⟩ ≤ 0.

Hence, obtain that lim sup
k→∞

τnk
≤ 0. Hence, by Lemma 2.6, lim

n→∞
dn = 0, i.e.,

lim
n→∞

xn = z ∈ (A+B)−10.

This completes the proof.

Next, we give a corollary of our main Theorem 3.5 in Lq, 2 < q < ∞ spaces.

Corollary 3.6. Let {xn} be the sequence generated by Algorithm 3.3 under the same
assumptions with E = Lq, 2 < q < ∞. Then {xn} converges strongly to z ∈ Ω.

Proof. Since Lq, 2 < q < ∞ spaces are uniformly convex and q-uniformly smooth spaces,
the proof follows from Theorem 3.5.

4. Applications and Numerical Illustrations

In this section, we shall apply the strong convergence of the inertial Halpern type FBA
obtained in section 3 to convex minimization problem and convexly constrained linear
inverse problem.

4.1. Application to convex minimization problem

Let H be a real Hilbert space and let h : H → R be a convex smooth function and
g : H → R ∪ {∞} be a proper lower-semicontinuous and convex function. We consider
the following convex minimization problem:

Find x∗ ∈ H such that h(x∗) + g(x∗) = min
x∈H

{
h(x) + g(x)

}
. (4.1)

Problem (4.1) is equivalent, by Fermat’s rule, to the problem of finding x∗ ∈ H such that

0 ∈ ∇h(x∗) + ∂g(x∗), (4.2)

where ∇h is the gradient of h and ∂g is the subdifferential of g. Set A = ∇h and B = ∂g
in Algorithm 3.3. It is well-known that if ∇h is (1/α)-Lipschitz continuous, then it is
α-inverse strongly monotone and ∂g is maximal monotone. Hence from Algorithm 3.3 we
have the following algorithm:

Algorithm 4.1. Inertial Halpern-type forward-backward splitting algorithm.

Step 0. (Initialization) choose arbitrary points x0, x1 ∈ H, and set n = 1.
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Step 1. Choose αn such that 0 ≤ αn ≤ ᾱn, where

ᾱn =

{
min

{
α, ϵn

∥xn−xn−1∥

}
, xn ̸= xn−1,

α, otherwise.

Step 2. Compute 
yn = xn + αn(xn − xn−1)

vn = βnu+ (1− βn)K
∂g
λn

(I − λn∇h)yn

xn+1 = γnyn + (1− γn)vn.

Step 3. Update n = n+ 1 and go to Step 1.

Theorem 4.2. Let {xn} be the sequence generated by Algorithm 4.1. Then {xn} con-
verges strongly to z ∈ Ω.

Proof. Since Hilbert spaces are uniformly convex and q-uniformly smooth spaces, the
proof follows from Theorem 3.5.

4.2. Application to image restoration problems

In this subsection, we focus on using mathematical algorithms in the implementation
of image processing tasks on computers. Precisely, we are interested on the classical
problems of image restoration: image denoising and debluring. Assume we have a noisy
image of dimension n×n with missing pixels, our objective is to find the closest image to
the original image. General image restoration problem can be formulated by the inversion
of the following observation model:

b = Lx+ y,

where b is the observed image, x is the unknown image, y is the noise and L is a linear
operator that depends on the concerned image recovery problem. It is well-known that
regularization methods are used in image restoration problems. The l1-regularization is
a powerful tool in image denoising. The restoration process is given by:

min
x

1

2
∥Lx− b∥2 + λ∥x∥1, (4.3)

where ∥ · ∥ denotes the Euclidean norm, λ is a positive regularization parameter and ∥ · ∥1
is the l1-regularization term.

Now, we use algorithms 1.1, 1.2 and 4.1 to approximate the solution of the following
convex minimization problem:

find u ∈ H such that u = argmin
x∈H

{1

2
∥Lx− b∥2 + λn∥x∥1

}
.

In algorithm 1.1, we set αn = 1
1000n , βn = n

2n+1 , λn = 0.001, in algorithm 1.2, we

set αn = 1
1000n , β = 0.5, βn = β̄n, and in algorithm 4.1, we take α = 0.5, alphan =

ᾱn, βn = 1
1000n , ϵn = 1

(n+1)6 , γn = 1
(n+1)8 , λn = 0.001 as our parameters and in all

these algorithms, we set u = x0 = Lx+b, A = ∇g and B = ∂h, where g(x) = 1
2∥Lx−b∥2,

h(x) = λn∥x∥1. We consider the blur function in MATLAB “fspecial (’motion’, 30, 60)”
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and add random noise (0.01× randn(size(x))). The test images are Abubakar, Lena and

butterfly (see Figure 1) and the stopping criterion of the algorithms is ∥xn+1−xn∥
∥xn+1∥ < 10−4.

As we can see from Figure 1 and Table 1, our proposed algorithm is competitive and
promising.

The signal to noise ratio (SNR) is used to measure the quality of the restored images and
it is defined as:

SNR := 10 log
∥x∥2

∥x− xn∥
,

where x and xn are the original and estimated image at iteration n, respectively. All
algorithms were implemented with Ubuntu 64bits and MATLAB 2018b running on a
Zinox laptop with Intel(R) Core(TM) i7 CPU and 4 GB of RAM.

Table 1. Numerical results of SNR in Figure 1

The Signal to Noise Ratio (SNR)
Algorithm 1.1 Algorithm 1.2 Algorithm 4.1

n Abubakar Lena Butterfly Abubakar Lena Butterfly Abubakar Lena Butterfly
1 23.63 29.25 28.86 21.11 25.35 23.58 21.22 25.52 23.77
10 25.59 32.52 31.25 27.79 35.44 33.76 27.92 35.61 33.92
20 26.62 33.91 32.52 29.15 36.94 35.53 30.03 37.98 36.60
30 27.21 34.64 33.23 29.14 36.81 35.47 31.31 39.31 38.07
40 27.48 34.95 33.55 28.57 36.09 34.78 32.27 40.28 39.15
50 27.54 34.96 33.61 27.92 35.31 34.01 33.04 41.07 40.01
60 27.43 34.79 33.46 27.38 34.66 33.37 33.67 41.73 40.71
70 27.22 34.49 33.20 26.96 34.15 32.87 34.21 42.31 41.31
80 26.96 34.14 32.88 26.63 33.74 32.48 34.68 42.81 41.82
90 26.69 33.79 32.55 26.37 33.41 32.17 35.09 43.26 42.27
100 26.43 33.44 32.24 26.14 33.11 31.91 35.46 43.66 42.67

Remark 4.3. In these applications we just considered, our proposed algorithm 3.3
restored the test images better than algorithms 1.1 of Pholasa et al [19] and 1.2 of
Cholamjiak and Shehu [20]. While Algorithms 1.1, 1.2 and 3.3 were given in the setting
of Banach spaces, and the applications we have mentioned so far are all in Hilbert spaces,
we remark here that the purpose of this applications is to illustrate the performance of
the algorithms in this important applications. In the next subsection, we will give an
implementation of these algorithms in the setting of the real Banach space L5([−1, 1]).

4.3. An Example in L5([−1, 1])

In this subsection, we present a numerical example to compare the convergence of the
sequence generated by our algorithm 3.3 and that algorithms 1.1 and 1.2.

Example 4.4.

We consider the Banach space E = L5([−1, 1]), with norm defined by

∥x∥5 :=
(∫ 1

−1

|x(t)|5dt
) 1

5 ∀x, y ∈ E.
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(a) original images

(b) images degraded by motion blur and random noise

(c) restored images with algorithm 1.1

(d) restored images with algorithm 1.2

(e) restored images with our algorithm 4.1

Figure 1. Test images and their restorations via algorithms 1.1, 1.2 and 4.1
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Let A : E → E, B : E → E, be defined as

Ax(t) := 5x(t) + t+ cos t, Bx(t) := 2x(t).

Then, it is easy to see that A is 1
5 -isa of order 2, B is m-accretive. Furthermore, the

solution set Ω = (A+B)−10 =
{

−(t+cos t)
7

}
. Observe that

KB
λ (I − λA)x(t) =

1− 5λ

1 + 2λ
x(t)− λ

1 + 2λ
(t+ cos t), ∀ λ > 0.

In the Algorithm 1.1, we take αn = 1
1000n , βn = n

2n+1 , λn = 1
64 and u(t) = t

2 , in Algorithm

1.2, we take αn = 1
1000n , λn = 1

64 and β̄n = βn, β = 0.8, an(t) = bn(t) = 0 and, in

Algorithm 3.3, we take α = 0.8, αn = ᾱn, βn = 1
1000n , ϵn = 1

(n+1)6 , γn = 1
(n+1)8 , λn = 1

64

and u(t) = t
2 as our parameters. Clearly, these parameters satisfy the hypothesis of the

theorem of Pholasa et al [19], Cholamjiak and Shehu [20] and Theorem 3.5, respectively.
Finally, we use a tolerance of 10−3 and set maximum number of iterations n = 15.

Table 2. Table of values choosing x0 = 2t2 + 1, x1 = −t3

Algorithm 1.1 Algorithm 1.2 Algorithm 3.3
n ∥xn − z∥ ∥xn − z∥ ∥xn − z∥
1 0.5701 0.5701 0.5701
2 0.5292 0.5084 0.5074
3 0.4944 0.4535 0.4520
5 0.4338 0.3624 0.3605
7 0.3806 0.2897 0.2878
9 0.3331 0.2317 0.2298
11 0.29 0.1853 0.164
13 0.2509 0.1482 0.1309
14 0.2327 0.1325 0.1309

Table 3. Table of values choosing x0 = t− 4, x1 = sin t

Algorithm 1.1 Algorithm 1.2 Algorithm 3.3
n ∥xn − z∥ ∥xn − z∥ ∥xn − z∥
1 0.8463 0.8463 0.8463
2 0.7863 0.7574 0.7621
3 0.7361 0.6725 0.6801
5 0.6504 0.5322 0.5432
7 0.5777 0.4221 0.4341
9 0.5147 0.3561 0.3469
11 0.46 0.2684 0.2773
13 0.4123 0.2171 0.2216
14 0.3908 0.1966 0.1981
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Figure 2. Graph of the results from Table 2 and Table 3

5. Conclusion

In this paper, an inertial version of the algorithm of Pholasa et al [19] is introduced
and studied. Strong convergence of the sequence of the proposed algorithm is proved in
real Banach spaces that are uniformly convex and q-uniformly smooth. Furthermore, the
strong convergence result obtained is applied to convex minimization and image restora-
tion problems. Numerical experiments were carried out on some classical test images and
personal images degraded with motion blur and random noise. From the results obtained
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using these images (see Figure 1 and Table 1) the proposed algorithm appears to compet-
itive and promising. Finally, a numerical example is presented in L5([−1, 1]) to support
the main theorem.
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