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Abstract The aim of the present research paper is to study the J-Lorentzian Trans Sasakian mani-
folds endowed semi-symmetric metric connections addmitting the gradient Ricci Solitons, n-Ricci Soli-
tons and Ricci Solitions. Initialy, it is shown that the J-Lorentzian trans Sasakian manifolds with a
semi-symmetric-metric connection. We have found the expressions for curvature tensors, Ricci curvature
tensors and scalar curvature of the §-Lorentzian trans Sasakian manifolds with a semi-symmetric-metric
and metric connection. Also, we have discussed some results on quasi-projectively flat and ¢-projectively
flat manifolds endowed with a semi-symmetric-metric connection. It shown that the manifold satisfying
R.S =0, P,S = 0. Moreover, we have obtained the conditions for the §-Lorentzian Trans Sasakian

manifolds with a semi-symmetric-metric connection to be conformally flat and £-conformally flat.
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1. INTRODUCTION

The Study of differentiable manifolds with Lorentizain metric is a natural and inter-
esting topic in differential geometry. In 1996, Ikawa and Erdogan studied Lorentzian
Sasakian manifold [20]. Also Lorentzian para contact manifolds were introduced by Mat-
sumoto [23]. Trans Lorentzian para Sasakian manifolds have been used by Gill and Dube
[15]. In [40] Yildiz et. al. studied Lorentzian a- Sasakian manifold and Lorentzian (-
Kenmotsu manifold studied by Funda et. al. in [39]. After that in 2011, S. S Pujar and
V. J. Khairnar [27] have initiated the study of Lorentzian Trans-Sasakian manifolds and
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studied the some basic results with some of its properties. Earlier to this S. S. Pujar [28]
has initiated the study of §-Lorentzian a Sasakian manifolds and §-Lorentzian S Ken-
motsu manifolds[28].

The study of manifolds with indefinite metrics is of interest from the standpoint of
physics and relatively. In 1969, Takahashi [35] has introduced the notion of almost con-
tact metric manifolds equipped with pseudo Riemannian metric. These indefinite almost
conatct metric manifolds and indefinite Sasakian manifolds are known as (€)-almost con-
tact metric manifolds. The concept of (¢)-Sasakian manifolds was initiated by Bejancu
and Duggal [6]. U. C. De and A. Sarkar [11] studied the notion of (¢)-Kenmotsu manifolds.
In [38], X. Xufeng and C. Xiaoli studied e-Sasakian manifolds. Later, S.S. Shukla and D.
D. Singh [31] extended the study to (¢)-Trans-Sasakian manifolds with indefinite metric.
The semi Riemannian manifolds has the index 1 and the structure vector field £ is always
a time like. Siddiqi et. al. [32] also studied some properties of Indefinite trans-Sasakian
manifolds which is closely related to this topic. This motivated the Thripathi and others
[34] to introduced (g)-almost para contact structure where the vector filed ¢ is space like
or time like according as (¢) =1 or (¢) = —1.

When M has a Lorentzian metric g, that is, a symmetric non degenerate (0,2) tensor
field of index 1, then M is called a Lorentzian manifold. Since the Lorentzian metric is of
index 1, Lorentzian manifold M has not only spacelike vector fields but also timelike and
lightlike vector fields. This difference with the Riemannian case give interesting proper-
ties on the Lorentzian manifold. A differentiable manifold M has a Lorentzian metric
if and only if M has a 1- dimensional distribution. Hence odd dimensional manifold is
able to have a Lorentzian metric. Inspired by the above results In 2014, S. M Bhati [8]
introduced the notion of §-Lorentzian Trans Sasakian manifolds.

In 1924, the idea of semi-symmetric linear connection on a differentiable manifold was
introduced by A. Friedmann and J. A. Schouten [13]. In 1930, Bartolotti [5] gave a geo-
metrical meaning of such a connection. In 1932, H. A. Hayden [16] defined and studied
semi-symmetric metric connection. In 1970, K. Yano [41], started a systematic study of
the semi-symmetric metric connection in a Riemannian manifold and this was further
studied by various authors such as Sharfuddin Ahmad and S. I. Hussain [30], M. M. Tri-
pathi [33], I. E. Hirica and L. Nicolescu ([17], [18]), G. Pathak and U.C. De [26].

Let V be a linear connection in an n-dimensional differentiable manifold M. The torsion
tensor 7" and the curvature tensor R of V are given respectively by

T(X,Y)=VxY —VyX — [X,Y],

R(X, Y)Z =VxVyZ -VyVxZ— v[X,Y]Z-

The connection V is said to be symmetric if its torsion tensor 7' vanishes, otherwise
it is non-symmetric. The connection V is said to be metric connection if there is a Rie-
mannian metric g in M such that Vg = 0, otherwise it is non-metric. It is well known
that a linear connection is symmetric and metric if it is the Levi-Civita connection.

A linear connection V is said to be semi-symmetric connection if its torsion tensor T'
is of the form

T(X,Y)=n(Y)X —n(X)Y,
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where 7 is a 1-form.

Semi-symmetric connections play an important role in the study of Riemannian man-
ifolds. There are various physical problems involving the semi-symmetric metric connec-
tion. For example, if a man is moving on the surface of the earth always facing one
definite point, say Jaruselam or Mekka or the North pole, then this displacement is semi-
symmetric and metric [13].

In 1982, Hamilton [19] introduced that the Rici solitons move under the Ricci flow
simply by diffeomorphisms of the initial metric that is they are sationary points of the
Ricci flow is given by

0

6—? = —2Ric(g). (1.1)
Definition 1.1. A Ricci soliton (g,V,\) on a Riemannian manifold is defined by

Lyg+25+2X=0, (1.2)

where S is the Ricci tensor, Ly is the Lie derivative along the vector field V on M and
A is a real scalar. Ricci soliton is said to be shrinking, steady or expanding according as
A< 0,A\=0 and \ > 0, respectively.

In 1925, Levy [21] obtained the necessary and sufficient conditions for the existence
of such tensors. later, R. Sharma [29] initiated the study of Ricci solitons in contact
Riemannian geometry . After that, Nagaraja et. al. [24] and others like C. S. Bagewadi
et. al. [4] and O. chodosh and others extensively studied Ricci soliton. In 2009, J. T. Cho
and m. Kimura [11] introduced the notion of n-Ricci solitons and gave a classification
of real hypersurfaces in non-flat complex space forms admitting 7n-Ricci solitons. Later
n-Ricci solitons in (€) almost paracontact metric manifolds have been studied by A. M.
Blaga et. al. [3]. A. M. Blaga and various others authors also have been studied n-Ricci
solitons in different structures (see [1], [2]) Recently in 2017, K. Venu and G. Nagaraja
[37] study the n-Ricci solitns in trans-Sasakian maanifolds with semi-symmetric metric
connection. It is natural and interesting to study n-Ricci soliton in d-Lorentzian Trans-
Sasakian manifolds with semi-symmetric metric connection not as real hypersurfaces of
complex space forms but a special contact structures. In this paper we derive the condition
for a 3 dimensional §-Lorentzian Trans-Sasakian manifolds with semi-symmetric metric
connection as an n-Ricci soliton and derive expression for the scalar curvature.

2. PRELIMINARIES

Let M be an J-almost contact metric manifold equipped with §-almost contact metric
structure (¢, &,7,g,0) consisting of a (1,1) tensor field ¢, a vector field £, a 1-form 1 and
an indefinite metric g such that

¢? =X +n(X)¢ nop=0, ¢¢=0, (2.1)
n(€) = -1, (2.2)
9(§,§) = =4, (2.3)
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n(X) = d09(X,§), (2.4)

9(¢X,9Y) = g(X,Y) + dn(X)n(Y), (2.5)

for all X,Y € M, where § is such that 6> = 1 so that § = 1. The above structure
(6,€,1,9,0) on M is called the § Lorentzian structure on M. If § = 1 and this is usual
Lorentzian structure [27] on M, the vector field & is the time like [38], that is M contains
a time like vector field.

In [36], Tano classified the connected almost contact metric manifold. For such a mani-
fold the sectional curvature of the plane section containing ¢ is constant, say c. He showed
that they can be divided into three classes. (1) homogeneous normal contact Riemannian
manifolds with ¢ > 0. Other two classes can be seen in Tano [36].

In Grey and Harvella [14], the classification of almost Hermitian manifolds, there ap-
pears a class W, of Hermitian manifolds which are closely related to the conformal Kaehler
manifolds. The class Cs @ C5 [25] coincides with the class of trans-Sasakian structure of
type (o, 8). In fact, the local nature of the two sub classes, namely Cs and Cj5 of trans-
Sasakian structures are characterized completely. An almost conatct metric structure on
M is called a trans-Sasakian (see [7], [22], [25]) if (M X R, J, G) belongs to the class Wy,
where J is the almost complex structure on M x R defined by

7 (x.15) = (600 - fenx )

for all vector fields X on M and smooth functions f on M x R and G is the product
metric on M x R. This may be expressed by the condition

(Vx@)Y = a(g(X,Y)E —n(Y)X) + B(g(¢X,Y)§ — n(Y)oX) (2.6)
for any vector fields X and Y on M, V denotes the Levi-Civita connection with respect
to g, @ and 8 are smooth functions on M. The existence of condition (2.3) is ensure by
the above discussion.

With the above literature now we define the J-Lorentzian trans-Sasakian manifolds
[28] as follows.

Definition 2.1. A d-Lorentzian manifold with structure (¢,€,1,9,0) is said to be §-
Lorentzian trans-Sasakian manifold of type (o, B) if it satisfies the condition

(Vx @)Y = alg(X,Y)§ = on(Y)X) + B(g(¢ X, Y)§ — on(Y)$X) (2.7)
for any vector fields X andY on M.

If 6 = 1, then the d-Lorentzian trans Sasakian manifold is the usual Lorentzian trans
Sasakian manifold of type (a, 8) [25]. d-Lorentzian trans Sasakian manifold of type (0, 0),
(0,8) («,0) are the Lorentzian cosymplectic, Lorentzian S-Kenmotsu and Lorentzian a-
Sasakian manifolds respectively. In particular if « = 1, § = 0 and o = 0, 8 = 1, the
d-Lorentzian trans Sasakian manifolds reduces to d-Lorentzian Sasakian and d-Lorentzian
Kenmotsu manifolds respectively.

Form (2.4), we have

Vx§=6{-ap(X) - B(X +n(X)¢}, (2.8)
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and

(Vxn)Y = ag(¢X,Y) + Blg(X,Y) + dn(X)n(Y)]. (2.9)
In a §-Lorentzian trans Sasakian manifold M, we have the following relations:

R(X,Y)E = (a® + ) [n(Y)X — n(X)Y] + 2aB[n(Y )X — n(X)¢Y] (2.10)

+o[(Ya)pX — (Xa)oY + (YB)¢*X — (XB)6°Y],
R(EY)X = (a® + 5%)[6g(X,Y)E = n(X)Y]
+5(X )oY + 6g(0X,Y)(grada)
+O(XB)(Y +n(Y)E) — 69(¢Y, X)) (gradp)
+208[09(¢ X, Y)E + n(X)oY],

n(R(X,Y)Z) = d(a® + 82)[n(X)g(Y, Z) = n(Y)g(X, Z) (2.11)
+20aB[-n(X)g(9Y, Z) +n(Y)g(¢X, Z)]

—[(Ya)g(¢ X, Z) + (Xa)g(Y, $Z)]

—(YB)9(6°X, Z) + (X B)g(¢*Y, Z)],

S(X,€) = [((n = 1)(a® + %) — (€A)In(X) + 6((¢X)a) + (n — 2)5(XB),  (2.12)
S(6,6) = (n—1)(a® + 5%) — 8(n — 1)(€), (2.13)

Q¢ = (3(n = 1)(a® + %) — (€8))¢ + d¢(grada) — 8(n — 2)(gradp), (2.14)
where R is curvature tensor, while @ is the Ricci operator given by S(X,Y) = ¢(QX,Y).
Further in an §-Lorentzian trans Sasakian manifold , we have

0g(grada) = §(n — 2)(gradp), (2.15)
and
2a6 — (o) = 0. (2.16)

The &-sectional curvature K¢ of M is the sectional curvature of the plane spanned by ¢
and a unit vector field X. From (2.11), we have

K¢ = g(R(§, X), €, X) = (o + %) = 6(£P). (2.17)
It follows from (2.17) that &-sectional curvature does not depend on X. From (2.11)
9(R(E,Y)Z,€) = [(a® + 5°) — 8(68)]g(Y. 2) (2.18)

+(€B) = 8(a® + B)n(Y)n(Z) + [2a8 + 6(50)]g(4Y, Z),

C(X,Y)Z=R(X,Y)Z —

- i ) [S(Y,2)X — S(X, Z)Y (2.19)
+9(Y, 2)QX — g(X, 2)QY] + m[gm 7)X —g(X, 2)Y],
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An affine connection V in M i called semi-symmetric connection [13], it its torsion
tensor satisfies the following relations

T(X,Y)=VxY - VyX — [X,Y], (2.20)
and

T(X,Y)=nX)Y —n(Y)X. (2.21)
Moreover, a semi-symmetric connection is called semi-symmetric metric connection if

(9)(X,Y) =0. (2.22)

If V is metric connection and V is the semi-symmetric metric connection with non-
vanishing torsion tensor 7" in M, then we have

T(X,Y)=n*Y)X —n(X)Y, (2.23)

VxY —VxY = %[T(X, YV)+T (X,Y)+T (X,Y)], (2.24)
where

9(T(2,X),Y) = g(T'(X,Y), 2). (2.25)

By using (2.4), (2.23) and (2.25), we get
g(T(X,Y),2) = g(X)Z —n(Z)X,Y),
9(T'(X,Y), Z) = n(X)g(2,Y) — 69(X, Y )g(&, Z),

T (X,Y) =n(X)Y — 6g(X,Y)E, (2.26)

T' (Y, X) = n(Y)X — dg(X, V)£, (2.27)
From (2.23), (2.24),(2.26) and (2.27), we get
VxY =VxY +9(Y)X - 6g(X,Y)E.

Let M be an-n-dimensional J-Lorentzian trans-Sasakian manifold and V be the metric
connection on M. The relation between the semi-symmetric metric connection V and the
metric connection V on M is given by

VxY =VxY +n(Y)X —6g(X,Y)E. (2.28)
3. CURVATURE TENSOR ON )-LORENTZIAN TRANS-SASAKIAN MNAIFOLD
WITH SEMI-SYMMETRIC METRIC CONNECTION

Lgt M be an n-dimensional §-Lorentzian trans-Sasakian manifolcl. The curvature ten-
sor R of M with respect to the semi-symmetric metric connection V is defined by

R(X,Y)Z =VxVyZ —VyVxZ -V xyZ. (3.1)
By using (2.4), (2.4), (2.28) and (3,1), we get
R(X,Y)Z = R(X,Y)Z + (0)[g(X, 2)Y — g(Y, Z)X] (3.2)

+(B+ )Y, Z2)n(X) — g(X, Z)n(Y)]¢
—(B6 = n(Y)X = n(X)Y]n(2),
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where
R(X,Y)Z=VxVyZ —-VyVxZ— Vix,y)Z
is the Riemannian curvature tensor of connection V.

Lemma 3.1. Let M be an n-dimensional d-Lorentzian trans-Sasakian manifold with a
semi-symmetric metric connection, then

(Vxd)(Y) = a(g(6X,Y)§ — on(Y)X + Bg(¢X,Y)E = (08 + O)n(Y)eX,  (3.3)

Vx€ = —(1+88)X — (1+68)n(X)E - adX, (3.4)

(Vxn)Y = ag(¢X,Y) + (B +6)g(X,Y) — (1 + B8)n(X)n(Y). (3.5)
Proof. By the covariant differentiation of ¢Y with respect to X, we have

VxoY = (Vx¢) + o(VxY).
By using (2.1) and (2.28), we have

(Vx@)Y = (Vxo)Y —n(Y)oX.
In view of (2.7), the last equation gives

(Vxo)(Y) = alg(6X,Y)§ — on(Y)X + B(g(¢X,Y)E — (38 + d)n(Y)oX.

To prove (3.4), we replace Y = £ in (2.28) and we have
Vx&=Vx{+n(§)X —dg(X, £)¢.

By using (2.2), (2.4) and (2.8), the above equation gives
Vx§=—(1408)X — (1+B)n(X)§ — dagX.

In order to prove (3.5), we differentiate n(Y) covariantly with respect to X and using
(2.28), we have

Vxn(Y) = (Vxn)Y + g(X,Y) = n(X)n(Y).
Using (2.9) in above equation, we get
(Vxn)Y = ag(¢X,Y) + (B +6)g(X,Y) = (1 + B8)n(X)n(Y).
|

Lemma 3.2. Let M be an n-dimensional d-Lorentzian trans-Sasakian manifold with a
semi-symmetric metric connection, then

R(X,Y)¢ = (& + B = 6B)n(X)Y —n(Y)X]. (3.6)
+(2a8 + da)[n(Y)pX — n(X)¢Y]
+[(Ya)pX — (—Xa)pY — (XB)*Y + (Y B)¢* X].
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Proof. By replacing Z = ¢ in (3.2), we have
R(X,Y)§ = R(X,Y)§ + ()[9(X, )Y — g(Y,§)X]
+(B+ )Y, )n(X) — g(X, n(Y)]¢
— (B = Dn(Y)X = n(X)Y]n(§).
+alg(¢X, )Y — g(dY, )X — g(X,£)Y + g(V,§)pX]
In view of (2.2), (2.4) and (2.10), the above equation reduces to

R(X,Y)¢ = (& + B = 6B)n(X)Y —n(Y)X].
+(2a8 + 6a)[n(Y)pX — n(X)¢Y]
+[(Yo)pX — (Xa)oY — (XB)P’Y + (Y B)¢° X].

Remark 1. Replace Y = ¢ and using (3.2), (2.11), (2.2) and (2.4), we obtain
R(X,8)¢ = (a® + 5% = 68)[-X — n(X)Y]. (3.7)
+(2a8 + da + 6(£)) [ X + 6(£B)p* X].

Remark 2. Now, again replace X = ¢ in (3.6), using (2.1), (2.2) and (2.4), we obtain
R(&,Y)E = (o® + B2 = 6p)[-n(Y)E - Y. (3.8)
— (208 + da + 6(€a))[pY — 6(£B)¢?Y].

Remark 3. Replace Y = X in (3.8), we get
R(&, X)¢ = —(a® + B2 = 0B)[- X — n(X)¢]. (3.9)

—(2af8 + 8o+ 8(a))[0X — 6(£8)¢° X].
From (3.7) and (3.10), we obtain

R(X,€)€ = —R(&, X)E. (3.10)
Now, contracting X in (3.2), we get
S(Y,Z)=S(Y.Z) — [(9)(n - 2) + Blg(Y, Z) (3.11)

—(B6 = 1)(n = 2)n(Z)n(Y) — a(n — 2)g(¢Y, Z),
where S and S are the Ricci tensors of the connections V and V, respectively on M.
This gives
QY = QY — [(6)(n—2) + A)Y (3.12)
(88— 1)(n — 2n(Y) — aln — 2)6Y,
where @) and @ are Ricci operator with respect to the semi-symmetric metric connection
and metric connection respectively and define as g(QY,Z) = S(Y,Z) and ¢(QY,Z) =
S(Y, Z) respectively.
Replace Y = ¢ in (3.12) and using (2.15), we get
Q¢ =d(n —1)(a® + 5%)€ — (£8)€ — 26(n — 2)¢ (3.13)
+dp(grada) — 6(n — 2)(gradf) — B(n — 1)E.
Putting Y = Z = ¢; and taking summation over ¢, 1 < ¢ <n — 1 in (3.11), using (2.14)
and also the relations r = S(e;, e;) = > i, 6;R(e;, e, €5, ¢;), we get
F=r—(n-1[d)n-2)+25], (3.14)
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where 7 and r are the scalar curvatures of the connections V and V, respectively on M.
Now, we have the following lemmas.

Lemma 3.3. Let M be an n-dimensional 6-Lorentzian trans-Sasakian manifold with the
semi-symmetric metric connection, then

S(0Y,2) = —5(¢*Y)a — 6(n — 2)(¢Y)B — a(n — 2)9(4Y, 9Z), (3.15)

S(Y,€) = [(n —1)(a® + % = 5(¢B) — dB(n — 1)]n(Y) (3.16)

+6(n—2)(YB) +6(¢Y)5,

S(&,€) = [(n—1)(a® + 5% = 5(¢B) — 3B(n — D]n(Y). (3.17)

Proof. By replacing Y = ¢Y in equation (3.11) and using (2.13) and (2.5), we have (3.15).
Taking Y = ¢ in (3.11) and using (2.13) we get (3.16). (3.17) follows from considering
Y = ¢ in (3.16) we get (3.17). |

Lemma 3.4. Let M be an n-dimensional 6-Lorentzian trans-Sasakian manifold with the
semi-symmetric metric connection, then

S(grada, €) = 5(n —1)(a® + F*(£8) — B(n — 1)(€a) — (€a)(¢B) (3.18)

+d(pgrada)a + 6(n — 2)g(grada, gradp),

S(gradp,€) = 5(n — 1)(a® + B*(£) — B(n — 1)(¢B) — (€8)* (3.19)

+8(pgradB)a + 6(n — 2)g(gradB)?.
Proof. From equation (3.11) and (3.16) and using Y = grada we have (3.18) . Similarly

taking £ = gradf in (3.11) and using (3.16), we get (3.19).
|

Using (3.6), (3.13) and (3.16), for constant « and 3, we have

R(X,Y)E = (a® + % = 6(B8)n(Y) X — n(X)Y], (3.20)
S(X,Y) = [(n—1)(a® + % = 6(¢B) — 6B(n — 1)]n(Y), (3.21)
QX =6(n—1)(a® + B2 — 8(EB)E — 20(n — 2) — B(n — 1)E. (3.22)
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4. QUASI-PROJECTIVELY FLAT -LORENTZIAN TRANS-SASAKIAN MANI-
FOLD WITH SEMI-SYMMETRIC METRIC CONNECTION
Let M be an n-dimensional d-Lorentzian trans-Sasakian manifold. If there exists a one
to one correspondence between each co-ordinate neighborhood of M and a domain in Eu-
clidean space such that any geodesic of §-Lorentzian trans-Sasakian manifold corresponds
to a straight line in the Euclidean space, then M is said to be locally projectively flat.

The projective curvature tensor P with respect to semi-symmetric metric connection is
defined by

P(X,Y)Z = R(X,Y)Z — (n%l)[g(y, Z)X — 8(X, Z)Y]. (4.1)

Definition 4.1. A §-Lorentzian trans-Sasakian manifold M is said to be quasi-projectively
flat with respect to semi-symmetric metric connection, if

9(P(6X.Y)Z,¢U) =0, (4.2)

where P is the projective curvature tensor with respect to semi-symmetric metric connec-
tion.

Now, from (4.1) taking inner product with U, we get
1
(n—1)
[S(Y, 2)9(X,U) = (X, Z)g(Y, U)].
Replace X = ¢X and U = ¢U in (4.3), we get

g(P(X,Y)Z,U) = g(R(X,Y)Z,U) —

b
(n—1)
[S(Y, Z)g(¢ X, 9U) — S(¢X, Z)g(Y, ¢U)].

From (4.2) and (4.4), we have

9(R(¢X,Y)Z,$U) = [S(Y, Z)g(¢X, 9U) — S(¢X, Z)g(Y, ¢U)].

1
(n—1)

Now, using equations (2.1), (2.4), (3.11) and (3.15) in equation (4.5), we have

9(R(6X.Y)Z,¢U) = [S(Y. 2)9(6X,6U) — S(¢X, Z)g(Y, ¢U)]

1
(=)
e Dg(oX, 2)g(Y.00) +

_mmmn(zm(«m oU) +

g, 21900, 00)

(60)
(n=1)
oI DY) = T 0(8Y, 2)g(6X, 0U)
+ag(¥, 2)g(X,0U) + ag(6X, Z)g(6X. 4U).

Let {e1,eq..c...... en—1,&} be a local orthonormal basis of vector fileds on d-Lorentzian
trans-Sasakian manifold M, then {¢eq, pes........ ¢en—1, &} is also a local orthonormal basis

n(X)n(Z)g(¢X, U)
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of vector fields on d-Lorentzian trans-Sasakian manifold M. Now putting X = U =e¢; in
equation (4.6) and using (2.2), (2.3),(2.19), (3.11) and (3.16), we have

S(Y,Z) = [(n—2)(8+6) + d(n — 1)(a® + §%) — (n = 1)(¢B)]g(Y. 2) (4.5)
+[0(n —2)(&B) + (n = 2)(80 — 1)]n(Y)n(2)
—[26(n —Daf + (n —1)(§a) — alg(¢Y, Z)
—n(Y)(¢Z)a = 6(n —2)(£B)n(Y).

If « =0 and 8 = constant in (4.7), we get
S(Y,Z) = [(n—2)(B+6) + (n— 1)3B%|g(Y, Z) + (86 — 1)(2 — n)n(Y)n(Z). (4.6)
Therefor, we have
S(Ya Z) = ag(Ya Z) + bU(Y)Tl(Z)a

where a = (n — 2)(B+ ) + (n — 1)63% and b = (36 — 1)(2 — n).
This results shows that the manifold under the consideration is an 7n-Einstein manifold.
Thus we can state the following theorem:

Theorem 4.2. Ann-dimensional quasi projectively flat 6-Lorentzian trans-Sasakian man-
ifold M with respect to a semi-symmetric metric connection is an n-FEinstein manifold if
a =0 and B = constant.

5. »-PROJECTIVELY FLAT 0-LORENTZIAN TRANS-SASAKIAN MANIFOLD WITH
SEMI-SYMMETRIC METRIC CONNECTION SATISFYING

An n-dimensional §-Lorentzian trans-Sasakian manifold with semi-symmetric metric
connection is said to be ¢-projectively flat if

¢*(P(¢, X, ¢Y)pZ) = 0, (5.1)
where P is the projective curvature tensor of M n-dimensional é-Lorentzian trans-Sasakian
manifold with respect to a semi-symmetric metric connection. Suppose M be ¢-projectively

flat d-Lorentzian trans-Sasakian manifold with respect to a semi-symmetric metric con-
nection. It is know that ¢?(P(¢, X, Y )¢Z) = 0 holds if and only if

9(P(¢X,9Y)¢Z, ¢U) = 0, (5.2)
for any X,Y,Z,U € TM. Replace Y = ¢Y and U¢U in (4.4), we have
1

(S(6Y.62)9(6X. 6U) — S(6X, 6Z)g(Y, 6U)].
From (5.2) and (5.3), we have
§(RGX.6Y)0Z.0) = -5 [S(6Y. 62)a(6X.U) (5.4)

—S(¢X,02)g(6Y, 9U)].
Now, using (2.1),(2.2),(2.4),(2.5), (3.2) and (3.11) in equation (5.4), we have

9(R(¢X,0Y)9Z,¢U) = [S(6Y, 0Z)g(¢ X, V) — S(¢X, Z)g(¢Y, ¢U)]

1
(n—1)
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Eit@ 90X, 67)g(6Y, 00)

—ﬁg(l/, 62)g(6X,0U) ﬁg(x, Y 2)9(6X,6U)
+ag(9Y,¢Z)g(X,pU) — ag(¢X, ¢Z)g(Y, ¢U).

Let {e1,€2...e,—1,&} be alocal orthonormal basis of vector fileds on é-Lorentzian trans-
Sasakian manifold M, then {¢eq, ges........ pen—1,&} is also a local orthonormal basis of
vector fields on d-Lorentzian trans-Sasakian manifold M. Now putting X = U = ¢; in
equation (5.5) and using (2.1)—(2.5), (2.19), (3.11) and (3.16), we have
S(Y.Z) = [(n—=2)(B+68) +d(n - 1)(a® + %) — (n — 1)(EP)]g(Y, 2)
+[20(n —2)(£B) + (n — 2)(B0 — 1)|n(Y)n(Z)
+la—26af(n —1) — (n —1)(§a)]g(¢Y, Z)
—[0(¢Z)a +6(n — 2)(ZB)n(Y) — [6(¢Y ) + 6(n — 2)(YB)|n(Z),
If « =0 and 8 = constant in (5.6), we get
S(Y,2) = [(n = 2)(B+6) + (n = 1)55°|g(Y, Z) + (86 — 1)(2 = n)n(Y)n(Z). (5.5)
Therefore,
S(Y,Z) = ag(Y,Z) + bn(Y)n(Z),

where a = (n —2)(8+8) + (n — 1)§3% and b= (85 — 1)(2 — n).
This results shows that the manifold under the consideration is an n-Einstein manifold.
Thus we can state the following theorem:

(0 +5)

9(9Y,9Z)g(¢ X, 9U) +

Theorem 5.1. An n-dimensional ¢-projectively flat §-Lorentzian trans-Sasakian mani-
fold M with respect to a semi-symmetric metric connection is an n-Einstein manifold if
a =0 and B = constant.

6. 0-LORENTZIAN TRANS-SASAKIAN MANIFOLD WITH SEMI-SYMMETRIC
METRIC CONNECTION SATISFYING R.S =0

Now, suppose that M be an n-dimensional é-Lorentzian trans-Sasakian manifold with
semi-symmetric metric connection satisfying the condition:

R(X,Y).S = 0. (6.1)
Then, we have
S(R(X,Y)Z,U)+ S(Z,R(X,Y)U) = 0. (6.2)

Now, we replace X = £ in equation (6.2), using equations (2.11) and (6.2), we have
8(a® + B*)g(Y. 2)S(6,U) — (o + B*)n(2)S(Y,U) — 26aBg(¢Y, Z)S(§,U)  (6.3)
+2a8n(2)S(¢Y,U) + §(Za)S(¢Y,U) — 6g(¢Y, Z)S(grade, U)
~59(8Y,62)S(gradB, U) + 5(Z8)5(Y,U) — 6(ZB)n(Y)3(£,U)

—59(Y, 2)S(€,U) + 60(Z)S(Y, U) + ag(oY, Z)S(6,U) — ban(Z)8(6Y, V)
15(0® + BR)g(Y,0)3 (€, Z) — (o + B)(U)S(Y, Z) — 25ag(6Y, U)3(£, 2)
+2a8n(U)S(9Y, Z) + 6(Ua)S(9Y, Z) — 6g(¢Y,U)S(grada, Z)

~59(6Y, U)S(gradp, Z) + 5(UA)S(Y, Z) — 5(UR(Y)S(E, 7)

—0g(Y.U)S(&, Z) + on(U)S(Y, Z) + ag(¢Y,U)S (¢, Z) — dan(U)S(4Y, Z) = 0.
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Using equations (2.1)-(2.5), (2.13), (2.14), (3.11) and (3.15)—(3.19) in equation (6.3)
[(@® + %) — 8(£8) — 6B1S(Y, Z)
= [0(n = 1)(a® + §%) = 28(n — 1)(a® + %) — 2(n — 1)(a® + 5%)(€B)
+266(n — 1)(€8) — 8(¢6)° + (dgradB)a + (n — 2)(gradf)”
+0%(n = 2) + 6(n — 2)(a® + 5%) + B(a® + B%)
—2a*B(n — 2) = da(€ar) — (n — 2)(£) — IB(ER)
—B(n —2) 4+ da*(n — 2))g(Y, Z) + [~6(pgradB)a
~8(n —2)(gradp)* + (n — 2)(5 — 1)(a® + %)
+2602B(n — 2) + a(n — 2)(§a) + (B + 8)(n — 2)(£P)
+B(B+6)(n = 2) = o®(n = 2)[n(Y)n(Z) + [-26a8(n — 1)(a® + §?)
+2(n — 2)af? +2a8(n - 2)(§8) — (n — 1)(a” + §%)(¢a)
+0B(n —2)(§a) + 6(§a)(€B) + (dgrada)a + (n — 2)(g(grade, gradp)
+a(a? + B%) = da(f beta) — 2ab(n —2)(8) — (n — 2)(6a) + a(n — 2)]g(¢Y, Z)
+[0(€a) +2a8 — 0a]S (Y, Z) + [(n — 2)(£8)(ZB)
+o(a? + 52)(9Z)a — 6(n — 2)(a® + 57)(ZB) + (€6)(¢Z)ax
B(Z)a+ B(n—2)(ZB)n(Y) + [6(a® + %) (#Y )a + 6(n — 2)(a® + %) (Y §)
—26a3(¢%Y )a — 26aB(n — 2)(¢Y B) — B(¢Y )
—B(n = 2)(YB) + a(¢*Y )+ a(n — 2)(6Y B)n(Z)

—(n=2)(YB)(ZB) + (n = 2)(ZB)(£)-

If « =0 and 8 = constant in (5.6), we get

S(Y,Z) = ag(Y,Z) + n(Y)n(Z),
_[(n—1)6B4+(n—2)(grad6)2+(n—(;)+6§)2;(n—2)652—(n—2)ﬂ+(2n—3)ﬂ3]
and b = —[("_2)([35_1)[32+(n_2)(ﬁ+6)ﬁ_(n_2)6(gmw2]. This show that M is an n-Einstein

(B+9)B
manifold. Thus,we can state the following theorem:

where a =

Theorem 6.1. An n-dimensional §-Lorentzian trans-Sasakian manifold M with respect
to a semi-symmetric metric connection V satisfies R.S = 0, then 0-Lorentzian trans-
Sasakian manifold M is an n-Finstein manifold if « =0 and § = constant.
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7.0-LORENTZIAN TRANS-SASAKIAN MANIFOLD WITH SEMI-SYMMETRIC
METRIC CONNECTION SATISFYING P.5 =0
Now, we consider é-Lorentzian trans-Sasakian manifold with semi-symmetric metric
connection satisfying
(P(X,Y).8)(Z,U) =0. (7.1)

where P is the projective curvature tensor and S is the Ricci tensor with semi-symmetric
metric connection.Then, we have

S(P(X,Y)Z,U)+ S(Z,P(X,Y)U) = 0. (7.2)
Replace X = ¢ in the equation (7.2), we get
S(P(&,Y)Z,U)+ S(Z,P(&Y)U) =0. (7.3)

Putting X = ¢ in (4.1), we get
_ _ 1
P(Y)Z =R((Y)Z - [CE)

Using (2.1), (2.2), (2.4), (2.11), (3.2), (3.11), (3.17) and (7.4) in (7.3), we get

[S(Y,Z)§ — S(¢, 2)Y]. (7.4)

5(a® + B%)(n znl)_ﬂ;)(ff +6)(n — 2)g(Y, Z)S(&,U) — (7;)5()/, Z)S(&,U) (7.5)
EZ i i; o s O ?aﬁ(f Y ooy, 2)5(c.0)

)
—0g(¢Y, Z)S(grada, U) — 6g(¢Y, ¢Z)S(gradB, U) + 2a31(Z)S(¢Y,U)
+5(ZO¢)_(¢>YU)+5(Z/5’)_( U) = o(ZB)n(Y)S(&,U) — dan(Z)S(¢Y,U)

DS B ZHS,0) - L e2)as,0)
Ao e DGOy )56, 2) - L SOLUS(E 2)
OB @ - )3, 2) + = D er )36, 2)

—0g(¢Y,U)S(grada, Z) — 6g(¢Y, ¢U)S(gradB, Z) + 2a8n(U)S(4Y, Z)
+0(Ua)S(¢Y, Z) +8(ZB)S(Y, Z) = 6(UB)(Y)S(€, Z) — dan(U)S(¢Y, Z)

o (n=2); I S
) 5(EBn(2)S (YZ)( 0 S(UB)S(Y, Z) (n_1)5(¢U) S(Y.Z)=0

Putting U = £ and Using (2.1)—(2.5), (3.11)and (3.15)—(3.20) in (7.5), we get
[(a® + %) — 8(£8) — 6BIS(Y, Z) (7.6)
— [5(n— 1)(0? + 82) + (n— 2)(B0)(0* + 5) — Bln — 1)(o + )
—5(n—2)(B6 — 1) — 2(n — 1)(EB)(a® + %) — (n — 2)(86 — 1)(£6)
20%B(n — 2)da(n — 2)(¢a) + da2(n —2) + 6B(n — 1) + §(£B)?
+(pgrada)a + (n - 2)(gradf)?g(Y, Z) + [(n — 2)B(8 +6) — (n — 2)(o” + 5?)
+2(n — 2)6a’B + a(n — 2)(éa) + (n — 2)(B + 5)(55) —a?(n—2)
~8(n — 2)(gradp)* — 8(pgradp)aln(Y)n(Z) + [a(a® + 52)
—26af(a® + %) (n — 1) — 2af%n — §(£8) — 6B(Ea) + 2aB(£5)
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—20af(n —2) — (n = 1)(§a) + a(n = 2) — (n = 1)(e” + %) (§a) + (n — 1)3(8a)
+6(6) (€B)+(¢grada)a+)n—2)g(grada, gradB)|g(#Y, z)+[da+d(Sa) —6a]S(¢Y, Z)
+[8(n +3)(a® + B2)(ZB) + B(n — 2)(ZB) — delta(a® + B*)($Z)a
+(n = 1)B(6Z)a + (EB)(6Z)a)n(Y) + [~20aB(¢*Y o — 2603(n — 2)(4Y B)
+a(¢?Y)a + a(n — 2)(Y B) + 6(a® + 5%)(¢Y )a + 6(n — 2)(a” + 5%) (Y B)
—B(¢Y)a = B(n - 2)(YB)In(2)
~(Za)(¢*Y)a — (n = 2)(ZB)(¢Y B) — (ZB)(¢Y ) — B(n — 2)(Y ).

If o =0 and S = constant in (7.6), we get
S, Z) = ag(Y, Z) + bn(Y)n(Z), (7.7)

where a — 7[(nf1)B4+(n72)/32(56)+(n71)63f(g(ggﬁ(ﬁéf1)+(n71)5ﬁ+(n72)(gmd6)2}
and
b— _[(n—2)6(6+6)+(n—2)52—(n—2)6(grad/3)2]
B(B+9) :

This result showw that the manifold under the consideration is an 7-Einstein manifold.
Thus we have the following theorem:

Theorem 7.1. An n-dimensional §-Lorentzian trans-Sasakian manifold M with respect
to a semi-symmetric metric connection V satisfies P.S = 0, then 0-Lorentzian trans-
Sasakian manifold M is an n-Finstein manifold if « = 0 and § = constant.

8. WEYL CONFORMAL CURVATURE TENSOR ON (-LORENTZIAN TRANS-
SASAKIAN MANIFOLD WITH SEMI-SYMMETRIC METRIC CONNECTION
The Weyl conformal curvature tensor C of type (1,3) of M an n-dimensional 4-

Lorentzian trans-Sasakian manifold with semi-symmetric metric connection V is given
by [42]

C(X,Y)Z=R(X,Y)Z — m[S‘(Y, 2)X - 8(X,2)Y (8.1)
0¥, 2)QX ~ (X, 2)QY]+ i oY 2)X —g(X, 2)Y),

where @ is the Ricci operator with respect to the semi-symmetric metric connection
V. Let M ba an n-dimensional §-Lorentzian trans-Sasakian manifold. The Weyl confor-
mal curvature tensor C' of M with respect to the semi-symmetric metric connection V is
defined in equation (8.1).

Now, taking inner product with U in (8.1), we get
_ _ 1 _
g(C(X» Y)Z7 U) = g(R(Xv Y)Zv U) - M[S(Yv Z)g(Xa U) - S(Xv Z)g(Y’ U)
(8.2)
f

+9(Y, 2)9(QX,U) — g(X, Z)g(QY, U)] + m—1Dn—2)

[9(Y, Z)g(X,U) — g(X, Z)g(Y,U)].
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Using (2.4), (3.2), (3.11), (3.12) and (3.14) in (8.2), we get

C(X.Y.2.U) = o(RX.Y)2.U)~ s S(Y. Z)g(X.0)=S(X. Z)g(¥.1) (83)

r
Y, Z X, U)—g(X,Z Y, U —_
[9(Y, Z2)g(X,U) — g(X, Z)g(Y,U)],
where g(C(X,Y)Z,U) = C(X,Y,Z,U) and R(X,Y)Z,U) = C(X,Y,Z,U) are Weyl
curvature tensor with respect to semi-symmetric metric connection respectively, we have

where

C(X,Y,Z,U) = g(R(X,Y)Z,U)— [S(Y, 2)g(X,U)=S(X, Z)g(Y,U) (8.5)

_ b
(n—2)
r
Y, Z X —-9(X,Z Y, —_
+9(Y, 2)9(QX,U) — g(X, Z)g(QY,U)] + CECE)
Theorem 8.1. The Weyl conformal curvature tensor of a §-Lorentzian trans-Sasakian

manifold M with respect to a metric connection is equal to the Weyl curvature of with
respect to the semi-symmetric metric connection.

9. 0-LORENTZIAN TRANS-SASAKIAN MANIFOLD WITH WEYL CONFORMAL
FLAT CONDITIONS WITH SEMI-SYMMETRIC METRIC CONNECTION
Let us consider that the J-Lorentzian trans-Sasakian manifold M with respect to the

semi-symmetric metric connection is Weyl conformally flat, that is C' = 0. Then from
equation (8.1), we get

R(X,Y)Z = =) S(Y,Z2)X — S(X,2)Y (9.1)
0¥, 2)QX ~ (X, 2)QY ]+ i oY 2)X —g(X, 2)Y),

Now, taking the inner product of equation (9.1) with U. then we get
§(RXY)Z.0) = = S(Y. Z)g(X.U) - (X, 2)o(V.0) 92

+9(Y, Z2)9(QX,U) — g(X, Z)g(QY,U)] —

l9(Y, Z2)g(X,U) = g(X, Z)g(Y, U)].

Using equations (2.4), (3.2), (3.11), (3.12) and (3.14) in equation (9.2), we get
1

(n—2)

+9(Y, 2)9(QX,U) — g(X, Z)g(QY,U)] —

[9(Y, Z)g(X,U) — g(X, Z)g(Y,U)].

(n—1)(n—-2)

g(R(X,Y)Z,U) =

[S(Y; 2)9(X,U) = S(X, Z)g(Y,U) (9-3)

(n—1)(n—2)
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Putting X = U = ¢ in equation (9.3) and using (2.2), (2.3) and (2.4), we get

9(R(§,Y)Z,§) =

o ! 5 85(Y.2) ~ 5n()51(6.2) (9.4)

+9(Y,2)5(&,€) — n(2)S(Y, )] -

(n—1)(n-2)
69(Y, Z) = n(Y)n(2)],
where g(QY, Z) = S(Y, 2).
Now, using equations (2.13), (2.14) and (2.16), we get
S(Y,2) = [(6(a® + %) — (¢8)] + (nrﬁ]g(ﬁ Z) +16(n—4)(¢P) (9-5)

(0 4 52) = n— (Y )n(2) ~ 25050 —2) + (n — 2)(€0)]
9(9Y, Z) = [6(¢Z)a+0(ZB)(n—=2)In(Y) = [6(¢Y )a+6(n—2)(Y B)|n(Z).
If « =0 andd 8 = constant in (7.6), we get
S(Y,2) = [68* + l9(Y,Z) + [np* -

There fore
S, 2) = ag(Y Z) +bn(Y)n(2),
where a = [638% + ] and b = [nf3? — ‘Sf ]. This shows that M is an n-Einstein

(n 1) 1)
manifold. Thus we can state the following theorem:

or

= 1)]77(Y)77(Z)' (9.6)

(n—1)

Theorem 9.1. Let M ba an n-dimensional Weyl conformally flat d-Lorentzian trans-
Sasakian manifold with respect to semi-symmetric metric connection V is an n-FEinstein
manifold if « =0 and B = constant.

Now, taking equation (8.1)

C(X,Y)Z = R(X,Y)Z — (n i ) [S(Y, 2)X — 8(X, 2)Y (9.7)
0¥ 2)QX —9(X, D)Q¥ ]+ g5 [0V 2)X —9(X. 2)Y]

Using (2.20), (3.2), (3.11), (3.12) and (3.14) in equation (9.7), we get
C(X,Y)Z = C(X,Y)Z + 8[g(X, 2)Y — g(Y, Z)X] (9.8)

+(6+B)I(X)g(Y,Z) —n(Y)g(X, Z)|¢
—(B6 = Un(Z2)[n(Y)X —n(X)Y] + alg(¢X, Z)Y

~0(6.2)X ~g(¥. 2)0X +4(X. Z)0Y] + =5

(86 = 1)(n = 2)n(Y)n(Z) = ((0)(n = 2) + B)g(V, 2) X
+a(n = 2)g(¢Y, 2)X + ((9)(n - 2) + B)g(X, 2)Y
+(8 = 1)(n = 2)n(X)n(2)Y — a(n - 2)9(sX, Z2)Y
—((9)(n = 2) + B)g(Y, 2)X + (B + 8)(n = 2)9(Y, Z)n(X)¢
a(n=2)g(Y, 2)¢X + ((09)(n = 2) + B)g(X, 2)Y
—(B+0)(n = 2)g(X, Z2)n(Y)§ — an - 2)g(X, Z)$Y]
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BHi+(n—2)

(n—2)
Let X and Y are orthogonal basis to . Putting Z = £ and using (2.1), (2.2) and (2.4) in
(9.8), we get

C(X,Y)E=C(X,Y)E.

(Y, 2)X — g(X, Z)Y].

Theorem 9.2. An n-dimensinal §-Lorentzian trans-Sasakian manifold M is Weyl &-
conformally flat with respect to the semi-symmetric metric connection if and only if the
manifold is also Weyl &-conformally flat with respect to the metric connection provided
that the vector fields are horizontal vector fields.

10. n-Ricct SOLITONS AND RICCI SOLITONS IN §-LORENTZIAN TRANS-
SASAKIAN MANIFOLD WITH SEMI-SYMMETRIC METRIC CONNECTION

Let M be 3-dimensional §-Lorentzian trans-Sasakian manifold with semi-symmetric
metric connection and V' be pointwise collinear with £ i.e. V' = b, where b is a function.
Then consider the equation [11]

Lyg+2S+2\g+2un®@n =0, (10.1)

where Ly is the Lie derivative operator along the vector field V, S is the Ricci curvature
tensor field of the metric g and A and u are real constants. Then equation (10.1) implies,

g(VxEY) + g(Vyb, X) +25(X,Y) + 22g(X,Y) + 2un(X)n(Y) =0,  (10.2)
bg(Vx&Y) + (Xb)n(Y) +bg(Vy &, X) + (Y)n(X) (10.3)
+25(X,Y) +209(X,Y) + 2un(X)n(Y) = 0.

Using (3.4) in (10.3), we get
bg[—(1+08)X — (14 68)n(X)§ — X, Y] + (Xb)n(Y) (10.4)
+bg[=(1+68)Y — (1 +68)n(Y)€ — dagY, X] + (Yb)n(X)
+25(X,Y) +20g9(X,Y) + 2un(X)n(Y) = 0.

—2b(14+68)g(X,Y) —2b(1 4+ 68)n(Y)n (X) (Xb)n(Y) + (Yb)n(X) (10.5)

+25(X,Y) + 2X0g(X,Y) + 2un(X)n(Y) =
With the substitution of Y with £ in (10.5) a d using (3.21) for constants a and 3, it
follows that

(Xb) + (€0)n(X) — 4b(1 + 88)n(X) + 2[2(a® + 5% — 6(£B)) — 208]n(X)  (10.6)
+2An(X) + 2un(X) = 0.
(Xb) + (&b)n(X)+ (10.7)
[—4b(1+ 68) + 2(2(a* + 5 — 8(8)) — 266 + 2\ + 2uln(X) = 0.

Again replacing X = ¢ in (10.7), we obtain
€= —[-2b(1 + 6B) + (2(a” + % — 5(£B)) — 6B+ A + ] (10.8)
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Putting (10.8) in (10.7), we obtain

db = [2b(1 + 68) — (2(a® + 5 — 6(€B)) — 66 — A — pin. (10.9)
By applying d on (10.9), we get

[20(1 +683) — (2(a® + B* = 6(€B)) — 68 — X — p]dn = 0. (10.10)
Since dn # 0 from (10.10), we have

[2b(1+ 68) — (2(0® + 52 — 6(€8)) — 86 — A — p] = 0. (10.11)

By using (10.9) and (10.11), we obtain that b is a constant. Hence from (10.5) it is verified

S(X,Y) = (1 +68) — Ng(X,Y) + [b(1 + 68) — uln(X)n(Y). (10.12)
which implies that M is an 7-Einstien manifold. This lead to the following:

Theorem 10.1. In a 3-dimensional §-Lorentzian trans-Sasakian manifold with semi-
symmetric metric connection, the metric g is an n-Ricci soliton and V is a positive
collinear with &, then V is a constant multiple of & and g is an n-FEinstien manifold of
the form (10.12) and n-Ricci soliton is expanding or shrinking according as the following
relation is positive and negative

A= —[2b(1+68) — (2(a? + B2 — 8(¢8)) — 98 — 1. (10.13)
For p = 0, we deduce equation (10.12)
S(X,Y) = [b(1 +68) = AJg(X,Y) + [b(1 + 65)In(X)n(Y). (10.14)

Now, we have the following corollary:

Corollary 10.2. In a 3-dimensional 0-Lorentzian trans-Sasakian manifold with semi-
symmetric metric connection, the metric g is a Ricci soliton and V' is a positive collinear
with &, then V is a constant multiple of £ and g is an n-Einstien manifold and Ricci
soliton is shrinking according as the following relation is negative. For p =0, (10.13)
reduce to

A= —[2b(1+38) — (2(a® + 5% — 6(£B)) — 61]. (10.15)

Here is an example of n-Ricci soliton on d-Lorentzian trans-Sasakian manifold with
semi-symmetric metric connection.
Example: We consider the three dimensional manifold M = [(x,y,2) € R® | z # 0],
where (z,y, z) are the cartesian coordinates in R3. Choosing the vector fields

—, € = 2—, € 3
8.737 2 — 8ya 3 azv

which are linearly independent at each point of M. Let g be the Riemannian metric define
by

el =2z =—z

gle1,e3) = g(ez,e3) = glez,e2) =0, gle1,e1) = g(ea, e2) = g(es, e3) =4,

where 6 = £1. Let 7 be the 1-form defined by n(Z) = eg(Z, e3) for any vector field Z
on TM. Let ¢ be the (1,1) tensor field defined by ¢(e;) = —ea, @(e2) = e1, @(ez) = 0.
Then by the linearity property of ¢ and g, we have

$*Z = Z +n(Z)es, nles) =1 and g(¢Z,oW) = g(Z, W) — dn(Z)n(W)
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for any vector fields Z, W on M.

Let V be the Levi-Civita connection with respect to the metric g. Then we have
le1,e2] =0, [e1,e3] = deq, [eq,es] = dea.

The Riemannian connection V with respect to the metric g is given by
29(VxY, Z2) = Xg(Y,2) + Yg(Z, X) = Zg(X,Y) + 9([X, Y], 2) — ¢([Y, Z], X)

+9([2,X],Y).
From above equation which is known as Koszul’s formula, we have
Veleg = 561, v62€3 = 562, Veseg = 0, (1016)

Ve,e2 =0, Ve,eq = —de3, Vezea =0,
Ve, €1 = —6e3, Ve,e1 =0, Ve,er =0.
Using the above relations, for any vector field X on M, we have

Vx§=0{B(X +n(X)S},
for £ € es, « = 0 and 5 = 1. Hence the manifold M under consideration is an §-Lorentzian
trans Sasakian of type (0,1) manifold of dimension three.
Now, we consider at this example for semi-symmetric metric connection from (2.9) and
(10.14), we obtain:
Veez3 = (1+0d)er, Ve,es = (1 +0)ea, Vesez =0, (10.17)
Ve,e2 =0, Ve,ea = —(1+d)es, Veyea =0,
Ve,e1=—(1+d)es, Ve,e1 =0, Veeq = 0.
Then the Riemannian and the Ricci curvature tensor fields with respect to semi-symmetric
metric connection are given by:

R(e1,ex)es = —(1+0)%e1, R(er,es)es = —0(1+0)ea, R(ez,er)er = —(1+6)%es,
R(eg,e3)es = —3(1+ 8)ea, R(es,e1)er = 6(1+6)es, R(es,es)es = —0(1+ d)es,
S(er,e1) = S(ea,ez) = —(1+6)(1+25), S(es, es,) = 26(1+6).
From (10.14), for A = % and p = —(1+ 9)(1 + 39), the data (g,&, A\, 1) is an 7-Ricci
soliton on (M, ¢,&,1,9).

11. GRADIENT RICCI SOLITONS IN 3-DIMENSIONAL 0-LORENTZIAN TRANS-
SASAKIAN MANIFOLD WITH SEMI-SYMMETRIC METRIC CONNECTION
(N=3)

If the vector field V is the gradient of a potential function -1 then g is called a gradient

Ricci soliton and ( 1.2) assume the form

VVy =S5+ Ag. (11.1)
This reduces to

Vy Db = QY + )Y, (11.2)
where D denoted the gradient operator of g. From (11.2) it follows

R(X,Y)Dy = (VxQ)Y — (VyQ)X. (11.3)
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Differentiating (3.12) and using (3.22)
dr(W) r 9 o
5 (X =n(X)8) = (5 = 3(a” + 7)) (alg(eW, X) (11.4)

+(B+8)g(W, X) — (1 +3B8)n(X)n(W)) +n(X)Vwé.
In (11.4) replacing W = &, we obtain

(VwQ)X =

(ve@)x = U (x —y(x)e). (1L5)
Then we have
9(Ve@)X = (VxQ)(£,€) (11.6)
= (" (x yx0e.0) = M gx.9) - nx) =0
Using (11.6) and (11.5), we obtain
9(R(§, X)Dy, &) = 0. (11.7)
From (3.20)

G(R(E,Y)D,€) = (a® + B2 — 3(68)(9(Y, D) — (Y (D).
Using (11.7), we get

(a® + 5% = 6(£B) (g(Y, D) — (Y )n(

(a® + 5% = 8(&B) (g(Y, D) — n(Y )g(

Dy)) =0
Dy, €)) =0,
or
(9(Y, DY) — g(Y,€)g(Dy, §)) = 0,
which implies
Dip = (€)E, since o’ + B2 # 5(€P). (11.8)
Using (11.8) and (11.2)

S(X’ Y) + /\g(Xv Y) = g(vYDw’X) = g(vY(@//)faX)

= (£)g(Vy &, X) + Y (§)n(X)
= (E¥)g(=0agY — (1+0B)Y — (1 +0B8)n(Y)E, X) + Y (§4)n(X)
S(X,Y) + Ag(X,Y) = —0a(§)g(dY, X) — (1 + 68)(€4)g(Y, X) (11.9)
—(1+08)()n(Y)n(X) + Y (§¢)n(X).
Putting X = ¢ in (11.9) and using (3.21) we get
S(Y,&)+M(Y) =Y (&) = [A+20(1+00) +2(a®+ 5% ~6(¢8)) —268]n(Y). (11.10)
Interchanging X and Y in (11.9), we get
S(X,Y) + Ag(X,Y) = —da(&)g(Y, 6X) — (1 + 38)(€W)g(X,Y) (11.11)
—(1+8)(€)n(Y)n(X) + X (E¢)n(Y).
Adding (11.9) and (11.11) we get

25(X,Y) + 2Xg(X,Y) = —2(1 + 08)(§4)g(X, Y) + Y (§¥)n(X) (11.12)
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—2(1+6B)(EP)n(X)n(Y) + X (E)n(Y).
Using (11.10) in (11.12) we have

S(X,Y) + Ag(X,Y) = —(1+6B)(§¥)[9(X, Y) — n(X)n(Y)] (11.13)

HA+ (L +08) +2(a” + 52 = 6(£8)) — 208)n(X)n(Y).
Then using (11.2) we have

Vy Dy = (14 68)(E0)(Y —n(Y)E) (11.14)
+HA+(1+88)+2(a” + 52— 5(£8)) —2(38)In(Y )€
Using (11.14) we calculate
R(X,Y)Dy = VxVyDy — VyVxDp — Vix y| Dy

—(1+468)X(§)Y + (1+ 6B)Y (£) X (11.15)
—(1+0B)Y (EP)n(X)€ + (1 +58) X (E)n(Y)E
+HA+ (1408) +2(a” + 5 = 6(¢8)) = 268 (Vxm) (V)§ = (Vyn) (X))

HAH (1 +08) +2(a” + 52 = 6(£8)) — 2(8B8)]((VxE)n(Y)E — (VyEn(X)).
Taking inner product with £ in (11.15), we get

(
(

0= g(R(X,Y)Dy, &) = 20a[A + (1 +68) +2(a” + 52 = 6(£8)) — 2(58)]g(¢Y, X).
(11.16)

Thus we have 26a[X + (14 8) + 2(a? + 82 — 6(£8)) — 2(68)] =

Now we consider the following cases:
Case (i) 6o =0, or
Case (ii) [N+ (1 +68) +2(a® + 8% = 6(£B)) — 2(583)] = 0,
Case (ii) a =0 and [A+ (1 +68) + 2(a? + 5% — 6(£B)) — 2(68)] =
Case (i) If o = 0, the manifold reduces to a d-Lorentzian S-Kenmotsu manifold with
respect to a semi-symmetric metric connection.
Case (ii) Let [\ + (1+08) +2(a® + 82 —5(£8)) — 2(683)] = 0. If we use this in (11.10) we
get Y (&) = — (14 68)(&y)n(Y). Substitute this value in (11.12) we obtain

S(X,Y) + Mg(X,Y) = —(1+68)(E0)g(X,Y) — 201+ 6p(Xpn(Y).  (1L.17)
Now, contracting (11.17), we get

T4+3\x=-3(14+8)(&Y) —2(1 4+ 68), (11.18)
which implies

(&) = r A 2 (11.19)

- + =
-3(14+463) —(1+3) -3
If 7 = constant, then (§¢) = constant = k(say). Therefore from (11.8) we have Dy =
()€ = k€. This we can write this equation as

9(DY, X) = kn(X), (11.20)
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which means that dy(X) = kn(X). Applying d this, we get kdn = 0. Since dn # 0, we
have £ = 0. Hence we get Dy = 0. This means that ) = constant Therefore equation
(11.1) reduces to

S(X,Y) =2(a® + 52 — §(€8)) — 268)9(X.Y),
that is M is an Einstein manifold.
Case (iii) Using a = 0 and [\ + (1 +38) + 2(a? + B2 — 6(£8)) — 2(68)] = 0. in (11.10) we
obtain Y (&y) = —(1 4+ 08)(§¢)n(Y). Now as in Case (i) we conclude that the manifold

is an Pinstein manifold.
Thus we have the following :

Theorem 11.1. If a 3-dimensional 6-Lorentzian trans Sasakian manifold with a semi
symmetric metric connection with constant scalar curvature admits gradient Ricci soliton,
then the manifold is either a §-Lorentzian 5-Kenmotsu manifold or an Einstein manifold
provided o, B = constant .

In [12] it was proved that if a 3-dimensional compact connected trans-Sasakian man-
ifold is of constant curvature, then it is either a-Sasakian or g-Kenmotsu. Since for a
3-dimensional Riemannian manifold constant curvature and Einstein manifold are equiv-
alent, therefore from the Theorem 3 we state the following;:

Corollary 11.2. If a compact 3-dimensional 0-Lorentzian trans-Sasakian manifold with
a semi-symmetric metric connection with constant scalar curvature admits Ricci soliton,
then the manifold is either 6-Lorentzian a-Sasakian or §-Lorentzian B-Kenmotsu.

Also in [12], authors proved that a 3-dimensional connected trans-Sasakian manifold is
locally ¢-symmetric if and only if the scalar curvature is constant provided o and 3 are
constants. Hence from Theorem 3 we obtain the following:

Corollary 11.3. If a locally ¢-symmetric 3-dimensional connected 0-Lorentzian trans-
Sasakian manifold with respect to a semi symmeyric metric connection ith admits gradient
Ricci soliton, then manifold is either 6-Lorentzian B-Kenmotsu or Einstein manifold pro-
vided a, B = constant.
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