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Abstract In this paper, we propose and analyze eco–epidemiological of prey–predator system. Here

Singe prey population is taken as nature limited growth rate and interaction of both predator species, and

predator population is taken as competitive of the infected–susceptible species. We propose positive and

boundedness. We analyze the positive equilibrium point of trivial, disease–free, and interior equilibrium

point with stability analysis. Stability analysis carried out theorem is called stable, asymptotically stable,

unstable, saddle point. The dynamical behavior of this system of nonlinear differential equation both

analytically and numerically is investigated from the point of view of stability analysis time series and

phase portrait plot. Finally, conclusion of our results suggest that the prey–predator of the SI–type.
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1. Introduction

Article work is very interesting and importance area for eco–epidemiological of bio-
logical dynamical system in mathematics by discussed [13]. By influencing the dynamics
of phytoplankton which is the basis of all food webs in the sea, marine viruses play an
even more important role, if is be-lived now that they are a key factor in global bio–
geochemical cycles. Use predation may defeat spatial spread of infection by [14]. Math-
ematical modeling is one way to explain many of the ideas and concepts in the sciences
discussed [11]. In the field of eco–epidemiological of ecology, a lot of theoretical studies
were carried out since the beginning of last century to explain the interaction between
the ecological communities. Particular study describes the three type of the interaction
(i) prey–predator model (ii) host–parasite model (iii) infected–susceptible model between
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one population (prey) and the other (predator) living in a closed environment with the
two populations striving for survival discuss [12], [21], [10]. A predator infected prey
model with harvesting of infected prey for very interesting work follows the susceptible
–infected–susceptible cycle by discuss [22]Switching from simple to complex dynamics in
a predator–prey–parasite model for an interplay between infection rte and incubation de-
lay. This type of the form is susceptible–infected and predator for Leslie–Gower model.
Susceptible–infected interaction using Holling type II functional response using different
ways of working very interesting. Harvesting as a disease control measure in an eco–
epidemiological system, the dynamics of host –parasite predator interaction that includes
non–selective prey harvesting can be described by susceptible–infected prey and predator
model. This type is lot of theoretical study of the system [9]. Highly valued of the paper
role of environmental disturbance in an eco– epidemiological model with disease from
external source. The extended model defined by the following system of ordinary differ-
ential equation of this model is susceptible–infected prey and predator model. A model
of predator–prey dynamics as modified by the action of a parasite for a predator prey
system, where the prey population is divided into two independent groups [7]. A mathe-
matical study of a predator–prey dynamics with disease in predator most models the set
of nonlinear ordinary differential form prey and susceptible–infected predator model [8].
Ecological populations suffer from the various infectious diseases and these diseases have
a significant role in regulating population size [6]. We use the an eco–epidemiological
mathematical model with treatment (recovered) and disease infection in both prey and
predator population. To do this, we will consider a plausible epidemiological context of
mathematical models have become important tools for analyzing of role of standard inci-
dence in an eco–epidemiological system with more infectious disease transmission models
are descendants of the classic SIR–type [5]. Now we can discuss the effect of disease and
harvesting on the dynamics of prey–predator system has been propose and studies ana-
lytically as well as numerically [2]. Explained the mathematical models which represent
the dynamics of ecological systems. Now we can discuss the example of SI–type, SIS–
type, SIR–type of disease are known as eco–epidemiological models. Recently, propose
and analyze a prey–predator model with infectious SIS–type of disease in prey–predator
population. They studied the local and global stability of the system analytically as well
as numerically [3]. Now we can discuss the boundedness, existence and uniqueness of the
solution [4]. Again, recently propose and analysis an eco–epidemic model with suscepti-
ble pest, infected pest and predator [1]. The dynamical behavior of the system is studied
both analytically and numerically. Formulated and solved the optimal control problem
and higher value of force of infection leads the system pest free. Now we can discuss
the dynamics of pest and its predator model with disease in the pest and optimal use
of pesticide. Before we can discuss and introduce the model and its analysis we would
like to present a brief sketch of the construction of the model to indicate the biological
relevance of it. To study analytically and numerically the influence of disease an an envi-
ronment where two or more interacting species are present [15]-[20], we shall put emphasis
on an eco–epidemiological system consisting of three species, namely (i) Prey–predator
only susceptible–infected species means SI–type of single prey and predator only. (ii)
Prey–predator for susceptible–infected–susceptible species means SIS–type of two prey or
two predator and one prey or one predator. (iii) Prey–predator for susceptible–infected–
recovered or treatment species means SIR, SIT–types of two prey or predator and one

Bangmod-JMCS−jmcs@kmutt.ac.th c⃝2018 By TaCS Center.



Bangmod Int. J. Math. & Comp. Sci., 2018 ISSN: 2408-154X 19

prey or predator in any where species we assume the model define. Before we can pro-
pose an eco–epidemiological model with susceptible prey and infected prey and predator
is considered. Now we will present the dynamical behavior of the system is studied both
analytically and numerically. A disease–free system an eco–epidemiological model fur-
ther for mathematical simplicity by [23], [24]. They assumed that the mode of disease
transmission follow the simple law of mass action.

2. Mathematical modeling

Organized model is as follows formulation of mathematical model. In this section
some basic assumptions (i) Let x denote the population density of the prey, y denote the
population density of the first susceptible predator and z denote the population density
of the second infected predator respectively in time t.

dx

dt
= x (r − ax− c1 y − c2z)

dy

dt
= y (−α z − c4 z + c3x− d1)

dz

dt
= z (α y + c5x− c6y − d2) (2.1)

with the initial conditions

x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0

Some basic assumptions are

(1) x denote the population density of the prey, y denote the population density of
the first susceptible predator and z denote the population density of the second
infected predator respectively in time t.

(2) r is the intrinsic growth rate of the prey species.
(3) a is rate of competitive prey species.
(4) c1, c2 are the capture rate of the prey by the susceptible predator and infected
predator, respectively.

(5) c3, c5 are the conversion factors for the susceptible predator and infected preda-
tor due to consumption of the prey.

(6) d1, d2 are the over crowding in the susceptible predator and infected predator
respectively.

(7) c4 is capture rate of the susceptible predator by the infected predator.
(8) c6 is capture rate of the infected predator by the susceptible predator.
(9) α is force of infection between the infected predator and the susceptible preda-
tor.

3. Positiveness and boundedness of theorem

Theorem 3.1. Given system of equations (2.1) is always non–negative. Then all possible
solutions of the system (2.1) are positive.

Consider, the first equations (2.1) of the system

dx

x
= (r − ax− c1 y − c2z) dt

dx

x
= ϕ(x, y, z)dt (3.1)
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where ϕ(x, y, z) = (r − ax− c1 y − c2z)
Taking integration in the region [0, t], we get

x(t) = x(0)e
∫
ϕ(x,y,z)dt > 0, ∀ t as x(0) ≥ 0 (3.2)

Next, consider the second set of equations (2.1) system

dy

y
= (−α z − c4 z + c3x− d1) dt

dy

y
= φ(x, z)dt (3.3)

where φ(x, z) = (−α z − c4 z + c3x− d1)
Taking integration in the region [0, t] we get

y(t) = y(0)e
∫
φ(x,z)dt > 0, ∀ t as y(0) ≥ 0 (3.4)

Next, consider the third set of equations (2.1) system we get

dz

z
= (α y + c5x− c6y − d2) dt

dz

z
= χ(x, y)dt (3.5)

where χ(x, y) = z (α y + c5x− c6y − d2)
Taking integration in the region [0,t] we get

z(t) = z(0)e
∫
χ(x,y)dt > 0, ∀ t as z(0) ≥ 0 (3.6)

Hence it may be concluded that all the solutions of the system (2.1) are always positive.

Theorem 3.1. The trajectories of the system (2.1) are bounded.

Define the function l = x+y+z and take its time derivative along the solution of (2.1)

dl

dt
=

dx

dt
+

dy

dt
+

dz

dt

now dl
dt + ρl ≤ rx− a1x

2 + ρx+ ρy + ρz − zd1 − zd2
where ρ is a positive constant for r1 + ρ − a1x ≥ 0, ρ − d1 ≥ 0, ρ − d2 ≥ 0 given ϵ > 0
there exists t0 such that t ≥ t0.
dl
dt + ρl ≤ m+ ϵ, if m = min{ρ+r1

a1
, ρ− d1, ρ− d2}

Hence d
dt (le

ρt) ≤ (m+ ϵ)eρt

⇒ l(t) ≤ l(t0)e
−ρ(t−t0) + (m+t)

ρ (1− e−ρ(t−t0)).

Letting t −→ 0 then letting ϵ −→ 0

lim sup
t−→∞

l(t) ≤ m

ρ

On the initial conditions, the system (2.1) is bounded.
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4. Analytical solution of critical points

The equilibrium point of the parametric model (2.1) is given by steady state equations
dx
dt = dy

dt = dz
dt = 0. After algebraic calculation we get the trivial and non trivial equilib-

rium points.
(1) The trivial equilibrium point {x = 0, y = 0, z = 0} this all prey–predator absents equi-
librium always exists.
(2) Both susceptible–infected predator equilibrium point

{
x = r

a , y = 0, z = 0
}
this equi-

librium point prey is present, susceptible predator is absent and infected predator is
absent.

(3) Infected predator–free equilibrium point
{
x = d1

c3
, y = rc3−ad1

c1 c3
, z = 0

}
this equilibrium

prey is present, susceptible predator is present and infected predator is absent.

(4) Susceptible predator–free equilibrium point
{
x = d2

c5
, y = 0, z = rc5−ad2

c2c5

}
this equilib-

rium prey is present, susceptible predator is absent and infected predator is present.
(5) Interior equilibrium point {x = x∗, y = y∗, z = z∗}
x = α2r−α c1 d2+α c4 r−α rc6+α c2d1−c1 c4 d2−c4 rc6−c2c6d1

aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6
,

y = aα d2+ac4 d2−α rc5−c4 rc5+c2c3d2−c2c5d1

aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6
,

z = ac6d1−aα d1+α rc3−c1 c3d2+c1 c5d1−rc3c6
aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6

this equilibrium prey is present, sus-
ceptible predator is present and infected predator is present.

The system of the nonlinear differential equation (2.1) of Jacobian matrix is J(x, y, z) = −2 ax− c1 y − c2z + r −xc1 −xc2

yc3 −α z − c4 z + c3x− d1 y (−α− c4)

zc5 z (α− c6) α y + c5x− c6y − d2


5. Stability analysis of the system

Theorem 5.1. The trivial equilibrium point (0, 0, 0) of the system (2.1) is a saddle
point.

Proof. The Jacobian matrix of (0,0,0) is given by

J1 =

 r 0 0

0 −d1 0

0 0 −d2


Here the eigenvalues are λ1 = r > 0, λ2 = −d1 < 0, λ3 = −d2 < 0. The one eigenvalue
is positive and two eigenvalues is negative with the conditions r > 0, d1 > 0, d2 > 0.
Therefore the equilibrium point (0,0,0) is a saddle point.

Theorem 5.2. Both Susceptible–infected predator–free equilibrium point
{
x = r

a , y = 0, z = 0
}

of the system (2.1) is stable, provided that ad1 > c3r, ad2 > c5r.

Proof. The Jacobian matrix of
{
x = r

a , y = 0, z = 0
}
is

J2 =

 −r − rc1
a − rc2

a

0 c3r
a − d1 0

0 0 c5r
a − d2
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The eigenvalues are
λ1 = −r < 0,
λ2 = c3r−ad1

a < 0,

λ3 = c5r−ad2

a < 0.
only if r > 0, ad1 > c3r, ad2 > c5r. Therefore given equilibrium point is stable.

Theorem 5.3. The infected predator–free equilibrium point
{
x = d1

c3
, y = rc3−ad1

c1 c3
, z = 0

}
of the system (2.1) is locally asymptotically stable, provided that aαd1 + c1c3d2 + rc3c6 >
ac6d1 + αrc3 + c1c5d1.

Proof. The Jacobian matrix is

J3 =


−2 ad1

c3
+ ad1−c3r

c3
+ r −d1c1

c3
−d1c2

c3

−ad1−c3r
c1

0 − (ad1−c3r)(−α−c4)
c1 c3

0 0 −α (ad1−c3r)
c1 c3

+ c5d1

c3
+ c6(ad1−c3r)

c1 c3
− d2


The corresponding eigenvalues are

λ1 = 1/2
−ad1+

√
a2d1

2+4 ac3d1
2−4 rc32d1

c3
< 0,

λ2 = −1/2
ad1+

√
a2d1

2+4 ac3d1
2−4 rc32d1

c3
< 0,

λ3 = ac6d1−aα d1+α rc3−c1 c3d2+c1 c5d1−rc3c6
c1 c3

< 0.
Here λ1, λ2 have negative real parts λ3 < 0 with the conditions aαd1 + c1c3d2 + rc3c6 >
ac6d1 +αrc3 + c1c5d1. Hence the given equilibrium point is locally asymptotically stable.

Theorem 5.4. The susceptible predator–free equilibrium point
{
x = d2

c5
, y = 0, z = rc5−ad2

c2c5

}
is locally asymptotically stable, provided that aαd2+ac4d2+c2c3d2 < αrc5+c4rc5+c2c5d1.

Proof. The variation of the Jacobian matrix is

J4 =


−2 ad2

c5
+ ad2−c5r

c5
+ r −d2c1

c5
−d2c2

c5

0 α (ad2−c5r)
c2c5

+ c4 (ad2−c5r)
c2c5

+ c3d2

c5
− d1 0

−ad2−c5r
c2

− (ad2−c5r)(α−c6)
c2c5

0


The corresponding eigenvalues are
λ1 = aα d2+ac4 d2−α rc5−c4 rc5+c2c3d2−c2c5d1

c2c5
< 0,

λ2 = 1/2
−ad2+

√
a2d2

2+4 ac5d2
2−4 rc52d2

c5
< 0,

λ3 = −1/2
ad2+

√
a2d2

2+4 ac5d2
2−4 rc52d2

c5
< 0.

Here λ1, λ2 have negative real parts λ3 < 0 with the conditions aαd2 + ac4d2 + c2c3d2 <
αrc5 + c4rc5 + c2c5d1. Hence this system is locally asymptotically stable.

Theorem 5.5. The interior equilibrium point {x = x∗, y = y∗, z = z∗} is locally asymp-
totically stable.

Proof. The variation of the Jacobian matrix is
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Figure 1. The infected predator population.

Figure 2. The susceptible predator population.

J5 =

 m11 m12 m13

m21 m22 m23

m31 m32 m33


where

m11 = −2
a(α2r−α c1 d2+α c4 r−α rc6+α c2d1−c1 c4 d2−c4 rc6−c2c6d1)

aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6

− c1 (aα d2+ac4 d2−α rc5−c4 rc5+c2c3d2−c2c5d1)
aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6

+ c2(aα d1−ac6d1−α rc3+c1 c3d2−c1 c5d1+rc3c6)
aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6

+ r,

m12 = − (α2r−α c1 d2+α c4 r−α rc6+α c2d1−c1 c4 d2−c4 rc6−c2c6d1)c1
aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6

,
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Figure 3. Interaction of prey population.

Figure 4. Interaction of susceptible predator and infected predator population.

m13 = − (α2r−α c1 d2+α c4 r−α rc6+α c2d1−c1 c4 d2−c4 rc6−c2c6d1)c2
aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6

,

m21 = (aα d2+ac4 d2−α rc5−c4 rc5+c2c3d2−c2c5d1)c3
aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6

,

m22 = α (aα d1−ac6d1−α rc3+c1 c3d2−c1 c5d1+rc3c6)
aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6

+ c4 (aα d1−ac6d1−α rc3+c1 c3d2−c1 c5d1+rc3c6)
aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6

+
c3(α2r−α c1 d2+α c4 r−α rc6+α c2d1−c1 c4 d2−c4 rc6−c2c6d1)

aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6
− d1,

m23 = (aα d2+ac4 d2−α rc5−c4 rc5+c2c3d2−c2c5d1)(−α−c4)
aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6

,

m31 = − (aα d1−ac6d1−α rc3+c1 c3d2−c1 c5d1+rc3c6)c5
aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6

,

m32 = − (aα d1−ac6d1−α rc3+c1 c3d2−c1 c5d1+rc3c6)(α−c6)
aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6

,
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Figure 5. The interaction of prey and susceptible predator population.

Figure 6. The interaction of prey and infected predator population.

m33 = α (aα d2+ac4 d2−α rc5−c4 rc5+c2c3d2−c2c5d1)
aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6

+
c5(α2r−α c1 d2+α c4 r−α rc6+α c2d1−c1 c4 d2−c4 rc6−c2c6d1)

aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6

− c6(aα d2+ac4 d2−α rc5−c4 rc5+c2c3d2−c2c5d1)
aα2+aα c4−aα c6−ac4 c6−α c1 c5+α c2c3−c1 c4 c5−c2c3c6

− d2.

The characteristic equation is Λ1(λ) = B1λ
3 +B2λ

2 +B3λ+B4

where
B1 = 1,
B2 = − (m33 +m22 +m11) ,
B3 = −(−m11m22 −m11m33 +m12m21 +m13m31 −m22m33 +m23m32),
B4 = m11m22m33+m11m23m32+m12m21m33−m12m23m31−m13m21m32+m13m22m31.
By Routh Hurwitzs criterion, all the eigenvalues of J5 have negative real parts if (i)B1 > 0,
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Figure 7. The interaction of prey and susceptible–infected predator population.

Figure 8. The interaction of prey and susceptible–infected predator population.

(ii)B3 > 0,
(iii)B1B2B3 > B2

3 +B2
1B4.

Therefore given system of the nonlinear differential equation (2.1) is locally asymptoti-
cally stable around non–trivial equilibrium point {x = x∗, y = y∗, z = z∗} if the conditions
stated in the theorem holds.

6. Numerical solution

The system of the nonlinear differential equation (2.1) for the numerical solution

(1) First we take the parameters of the system as ρ1 = (α = 1, r = 10, a =
1, c1 = 1, c2 = 1, c3 = 12, c4 = 1, c5 = 10, c6 = 1, d1 = 1, d2 = 1). Then the
initial conditions satisfied (x(0) = 0, y(0) = 0, z(0) = 10), the infected predator
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Figure 9. The interaction of prey and susceptible–infected predator population.

Figure 10. The interaction of prey and susceptible–infected predator population.

population only available (see Figure 1) is periodic at 3.67879350770605 and the
infected predator population is decreasing due to absence of prey population.

(2) If we take the parameter ρ1 of the system as mentioned above. Then the
initial conditions satisfied with (x(0) = 0, y(0) = 1, z(0) = 0), the suscepti-
ble predator population is available (see Figure 2) which is a periodic point at
0.367879356307219 and susceptible predator population is decreasing due to ab-
sence of prey population.

(3) If we take the parameter ρ1 of the system as mentioned above. Then the initial
conditions satisfies with (x(0) = 1, y(0) = 0, z(0) = 0) the prey population (see
Figure 3) is periodic at 9.99591738061742 and prey population is increasing due
to absence of predator population.
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Figure 11. The interaction of prey and susceptible–infected predator population.

Figure 12. The interaction of prey and susceptible–infected predator population.

(4) Now we take the parameter ρ1 of the system as mentioned above. Then the
initial conditions satisfies with (x(0) = 0, y(0) = 0.2, z(0) = 0.5), the susceptible–
infected predator population (see Figure 4) is decreasing due to absence of prey
population.

(5) Now we take the parameter ρ1 of the system as mentioned above. Then the
initial conditions satisfies (x(0) = 1.0, y(0) = .1, z(0) = 0), from Figure 5, we can
see that the interaction takes place for prey and susceptible predator species.

(6) Now we take the parameter ρ1 of the system as mentioned above. Then the
initial conditions satisfies (x(0) = 0.1, y(0) = 0, z(0) = 1), from Figure 6, we can
see that the interaction takes place for prey and infected predator species.
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Figure 13. The interaction of prey and susceptible–infected predator population.

Figure 14. The interaction of prey and susceptible–infected predator population.

(7) Now we take the parameters of the system as ρ1. Then the initial conditions
satisfies (x(0) = 0.15, y(0) = 0.15, z(0) = 0.15), from Figure 7 we can see that the
interaction takes place for prey and both susceptible–infected predator species.

(8) If we take the parameters of the system as ρ2 = (α = 1, 0.8, 0.2, 0, r = 5, a =
1, c1 = 1, c2 = 1, c3 = 5, c4 = 1, c5 = 5, c6 = 1, d1 = 1, d2 = 1). Then the
initial conditions satisfies with [x(0) = .3, y(0) = .3, z(0) = .3], [x(0) = 1, y(0) =
1, z(0) = 1] for both susceptible–infected predator and prey population of the
time series ( see in figure 8, 9, 10, 11, 12, 13, 14.)

(9) If we take the parameters of the system as ρ3 = (α = 0, 0.5, 1, r = 5, a =
1, c1 = 1, c2 = 1, c3 = 5, c4 = 1, c5 = 5, c6 = 1, d1 = 1, d2 = 1). Then the initial
conditions satisfies with [x(0) = .25, y(0) = .5, z(0) = 2.5], [x(0) = .5, y(0) =
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Figure 15. The phase plot is asymptotically stable at α = 0.

Figure 16. The phase plot is asymptotically stable at α = 0.5.

.5, z(0) = 2], [x(0) = 1, y(0) = .5, z(0) = 1.5], [x(0) = 1.7, y(0) = .5, z(0) = 1.2],
here both susceptible–infected predator and prey population of the phase plot as
shown in figure 15,16,17.

7. Discussion and conclusions

An eco–epidemiological model consisting of prey–predator model with SI-type of dis-
ease in prey population and susceptible–infected predator population was proposed and
analyzed. It is observed that the system is positive and bounded has at most five trivial,
disease–free, non–trivial equilibrium points. It is observed that the diseased predator
population decreases due to absence of prey as shown in figures 1, 2, 4. and with out
predator population, the prey population increases as shown in figure due to 3, also we
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Figure 17. The phase plot is asymptotically stable at α = 1.

can see that the interaction takes place for prey and susceptible–infected predator species
in figures 7 to 14.
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