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1. Introduction

The development of fixed point theory is based on the generalization of contraction
conditions in one direction or/and generalization of ambient spaces of the operator under
consideration on the other. Let T be a selfmap on a metric space (X, d). If x ∈ X, we
write Tx for the image of x under T . The T−iterates x, Tx, T 2x, . . . define T−orbit at
x ∈ X which we denote it by OT (x). Banach contraction principle plays an important
role in solving nonlinear equations, and it is one of the most useful results in fixed point
theory. Banach contraction principle has been generalized in various ways either by using
contractive conditions or by generalizing the ambient space. In the direction of general-
ization of contraction conditions, in 1976, Jungck [3] established fixed point theorem for
pair of commuting selfmappings.

Theorem 1.1. [3] Let (X, d) be a complete metric space. f, g be commuting selfmaps of
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X. Assume that
(i) f(X) ⊆ g(X)
(ii) there exists k ∈ [0, 1) such that

d(fx, fy) ≤ kd(gx, gy) (1.1.1)
for all x, y ∈ X. If g is continuous, then f and g have a unique common fixed point.

Several researchers generalized Theorem 1.1 either by replacing (1.1.1) by a weaker
contraction condition and/or dropping the continuity of g. The following is one such
result due to Das and Naik [2] .
Theorem 1.2. [2] Let (X, d) be a complete metric space. f, g be commuting selfmaps of
X. Assume that
(i) f(X) ⊆ g(X)
(ii) there exists k ∈ [0, 1) such that

d(fx, fy) ≤ kmax{d(gx, gy), d(gx, fx), d(gy, fy), d(gx, fy), d(gy, fx)} (1.2.1)
for all x, y ∈ X. If g is continuous, then f and g have a unique common fixed point.

We use the following definitions in our subsequent discussion.
Definition 1.3. [4] Let f and g be selfmaps of a metric space (X, d). The pair (f, g) is
said to be a compatible pair on X, if lim

n→∞
d(fgxn, gfxn) = 0 whenever {xn} is a sequence

in X such that lim
n→∞

fxn = lim
n→∞

gxn = t, for some t ∈ X.

Definition 1.4. [5] Let f and g be selfmaps of a metric space (X, d). The pair (f, g) is
said to be weakly compatible, if they commute at their coincidence points. i.e., fgx = gfx
whenever fx = gx, x ∈ X.

Every compatible pair of maps is weakly compatible, but its converse need not true
[5].
Definition 1.5. [6] Let f and g be selfmaps of a metric space (X, d). Then f and g are
said to be reciprocally continuous, if lim

n→∞
fgxn = ft and lim

n→∞
gfxn = gt, whenever {xn}

is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = t, for some t ∈ X.

In 2011, Pant, Bisht and Arora [8] introduced the concept of weakly reciprocally
continuous as follows.
Definition 1.6. [8] Let f and g be selfmaps of a metric space (X, d). Then f and g are
said to be weakly reciprocally continuous, if lim

n→∞
fgxn = ft or lim

n→∞
gfxn = gt, whenever

{xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = t, for some t ∈ X.

Clearly, every reciprocal continuous is weakly reciprocally continuous, but its converse
need not be true [8].

In 1994, Pant [7] introduced the concept of R−weakly commuting maps as follows.
Definition 1.7. [7] Let f and g be selfmaps of a metric space (X, d). Then f and g are
said to be R−weakly commuting, if there exists an R > 0 such that
d(fgx, gfx) ≤ Rd(fx, gx), for all x ∈ X.
Definition 1.8. [9] Let f and g be selfmaps of a metric space (X, d). Then f and g
are said to be R−weakly commuting of type (Ag), if there exists an R > 0 such that
d(ffx, gfx) ≤ Rd(fx, gx), for all x ∈ X.
Definition 1.9. [9] Let f and g be selfmaps of a metric space (X, d). Then f and g
are said to be R−weakly commuting of type (Af ), if there exists an R > 0 such that
d(fgx, ggx) ≤ Rd(fx, gx), for all x ∈ X.

In 2003, Singh and Tomar [11] did a nice comparative study of various weaker forms
of commuting maps. Clearly R−weakly commuting maps of both types (Ag) and (Af )
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commute at their coincidence points. The notations ofR−weakly commuting andR−weakly
commuting of type (Af ) are independent [11].

In 2002, Aamri and Moutawaki [1] introduced the idea of the property (E.A) for a pair
of selfmappings defined on a metric space.
Definition 1.10. [1] Two selfmappings f and g of a metric space (X, d) are said to
satisfy the property (E.A), if there exists a sequence {xn} in X such that
lim
n→∞

fxn = lim
n→∞

gxn = t, for some t ∈ X.

In 2014, Phaneendra and Prasad [10] proved the existence of common fixed points for
a pair of compatible maps as follows.
Theorem 1.11. [10] Let (X, d) be a complete metric space. Let f and g be compatible
selfmaps of X. Assume that
(i) f(X) ⊆ g(X)
(ii) there exists k ∈ [0, 1) such that

d(fx, fy) ≤ kmax{d(gx, gy), d(gx, fx), d(gy, fy), d(gx, fy), d(gy, fx)}, and
(iii) min{d(gx, gy), d(fx, gy), d(y, gy), d(gy, fy)} ≤ d(y, gx) + d(y, fx), for all x, y ∈ X
except for those x, y with gx = fx = y. Then f and g have a unique common fixed point.

In Section 2, we prove the existence of common fixed points of a pair of selfmaps with
reciprocal continuity in a complete metric space by relaxing the inequality (iii) of Theorem
1.11, but by imposing reciprocal continuity. Also, we prove the existence of common fixed
points of two pairs of selfmaps on a metric space in which either one of the pairs satisfies
the property (E.A) and restricting the completeness of X to its subspace. We provide
examples in support of our results.

2. Main Results

The following is the main result of this paper.
Theorem 2.1. Let (X, d) be a complete metric space. Let f and g be selfmapings of X.

Assume that
(i) f(X) ⊆ g(X)
(ii) there exists k ∈ [0, 1) such that

d(fx, fy) ≤ kmax{d(gx, gy), d(fx, gx), d(fy, gy), d(fx, gy), d(fy, gx)} (2.1.1)
for all x, y ∈ X and

(iii) the pair (f, g) is reciprocally continuous on X.
If f and g are either R-weakly commuting of type (Ag) (or) R-weakly commuting of type
(Af ) then f and g have a unique common fixed point.

Proof. Let x0 be any point in X.
Since f(X) ⊆ g(X), there exists x1 ∈ X such that y0 = fx0 = gx1.
In general, yn = fxn = gxn+1, n = 0, 1, 2, . . . .
Then {yn} is a Cauchy sequence in X, as shown in [2].
Since X is complete, there exists a point t ∈ X such that lim

n→∞
yn = t.

Moreover, yn = fxn = gxn+1 → t as n → ∞.
Case (i): Suppose that f and g are R-weakly commuting of type (Ag).
Now, reciprocal continuity of f and g implies that fgxn → ft and gfxn → gt as n → ∞.
⇒ lim

n→∞
fgxn = lim

n→∞
ffxn = ft and lim

n→∞
gfxn = lim

n→∞
ggxn+1 = gt

Then R-weakly commuting of type (Ag) of f and g gives that
d(ffxn, gfxn) ≤ Rd(fxn, gxn), R > 0.
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On letting n → ∞, we get d(ft, gt) ≤ 0 which implies that ft = gt.
Again by R-weakly commuting of type (Ag) of f and g, we have
d(fft, gft) ≤ Rd(ft, gt) implies that fft = gft = ggt = fgt.
Now, we show that ft = fft.
Suppose that ft ̸= fft.
Then by the inequality (2.1.1), we obtain

d(ft, fft) ≤ kmax{d(gt, gft), d(ft, gt), d(fft, gft), d(ft, gft), d(fft, gt)}
= kmax{d(ft, fft), 0, 0, d(ft, fft), d(fft, ft)}

implies that d(ft, fft) ≤ kd(ft, fft) < d(ft, fft),
a contradiction.
Therefore d(ft, fft) = 0 and hence ft = fft = gft. Hence ft is a common fixed point of
f and g.
Case (ii): Suppose that f and g are R-weakly commuting of type (Af ).
Now, reciprocal continuity of f and g implies that fgxn → ft and gfxn → gt as n → ∞.
⇒ lim

n→∞
fgxn = lim

n→∞
ffxn = ft and lim

n→∞
gfxn = lim

n→∞
ggxn+1 = gt

Then R-weakly commuting of type (Af ) of f and g gives that
d(fgxn, ggxn) ≤ Rd(fxn, gxn), R > 0.
On letting n → ∞, we get d(ft, gt) ≤ 0 which implies that ft = gt.
Again by R-weakly commuting of type (Af ) of f and g, we have
d(fgt, ggt) ≤ Rd(ft, gt) implies that fgt = ggt = gft = fft.
We now prove that ft = fft.
Suppose that ft ̸= fft.
Using the inequality (2.1.1), we get

d(ft, fft) ≤ kmax{d(gt, gft), d(ft, gt), d(fft, gft), d(ft, gft), d(fft, gt)}
= kmax{d(ft, fft), 0, 0, d(ft, fft), d(fft, ft)}

implies that d(ft, fft) ≤ kd(ft, fft) < d(ft, fft),
a contradiction.

Therefore d(ft, fft) ≤ 0 and hence ft = fft = gft. Hence ft is a common fixed point
of f and g.

Uniqueness of the common fixed point of f and g follows trivially from the inequality
(2.1.1).

Theorem 2.2. Let (X, d) be a complete metric space. Let f and g be selfmapings of X.
Assume that

(i) f(X) ⊆ g(X) and satisfy the inequality (2.1.1)
(ii) the pair (f, g) is weakly reciprocally continuous on X. If f and g are compatible

then f and g have a unique common fixed point.

Proof. Let x0 be any point in X.
Since f(X) ⊆ g(X), there exists x1 ∈ X such that y0 = fx0 = gx1.
In general, yn = fxn = gxn+1, n = 0, 1, 2, . . . .
Then {yn} is a Cauchy sequence in X, as shown in [2].
Since X is complete, there exists a point t ∈ X such that lim

n→∞
yn = t.

Moreover, yn = fxn = gxn+1 → t as n → ∞.
Suppose that f and g are compatible.
By the weakly reciprocal continuity of f and g, we have
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fgxn → ft or gfxn → gt as n → ∞.
Case (i): Suppose that lim

n→∞
gfxn = gt.

Then by the compatibility of f and g, we have lim
n→∞

d(fgxn, gfxn) = 0.

i.e., lim
n→∞

fgxn = lim
n→∞

gfxn.

Therefore lim
n→∞

fgxn = lim
n→∞

gfxn = gt

implies that lim
n→∞

ffxn+1 = gt.

Using the inequality (2.1.1), we get
d(ft, ffxn) ≤ kmax{d(gt, gfxn), d(ft, gt), d(ffxn, gfxn), d(ffxn, gt), d(ft, gfxn)}.
On letting n → ∞, we get
d(ft, gt) ≤ kmax{d(gt, gt), d(ft, gt), d(gt, gt), d(gt, gt), d(ft, gt)}
which implies that ft = gt.
Again compatibility of f and g implies that commute at their coincidence point.
Hence fgt = gft = ggt = fft.
Now, we show that ft = fft.
Suppose that ft ̸= fft.
Then by the inequality (2.1.1), we obtain

d(ft, fft) ≤ kmax{d(gt, gft), d(ft, gt), d(fft, gft), d(ft, gft), d(fft, gt)}
= kmax{d(ft, fft), 0, 0, d(ft, fft), d(fft, ft)},

which implies that d(ft, fft) ≤ kd(ft, fft) < d(ft, fft),
a contradiction.
Therefore d(ft, fft) = 0 and hence ft = fft = gft. Hence ft is a common fixed point of
f and g.
Case (ii): Suppose that lim

n→∞
fgxn = ft.

Since f(X) ⊆ g(X), there exists u ∈ X such that ft = gu.
Therefore lim

n→∞
fgxn = gu ⇒ lim

n→∞
ffxn+1 = gu.

Then by the compatibility of f and g, we have lim
n→∞

d(fgxn, gfxn) = 0.

i.e., lim
n→∞

fgxn = lim
n→∞

gfxn = gu.

Using the inequality (2.1.1), we get
d(fu, ffxn) ≤ kmax{d(gu, gfxn), d(fu, gu), d(ffxn, gfxn), d(ffxn, gu), d(fu, gfxn)}.
On letting n → ∞, we get
d(fu, gu) ≤ kmax{d(gu, gu), d(fu, gu), d(gu, gu), d(gu, gu), d(fu, gu)}
which implies that fu = gu.
Again compatibility of f and g implies that commute at their coincidence point.
Hence fgu = gfu = ggu = ffu.
Now, we show that fu = ffu.
Suppose that fu ̸= ffu.
Then by the inequality (2.1.1), we obtain

d(fu, ffu) ≤ kmax{d(gu, gfu), d(fu, gu), d(ffu, gfu), d(fu, gfu), d(ffu, gu)}
= kmax{d(fu, ffu), 0, 0, d(fu, ffu), d(ffu, fu)}

implies that d(fu, ffu) ≤ kd(fu, ffu) < d(fu, ffu),
a contradiction.

Therefore d(fu, ffu) = 0 and hence fu = ffu = gfu. Hence fu is a common fixed
point of f and g.
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In the following, we prove the existence of common fixed points for four selfmappings.
Theorem 2.3. Let (X, d) be a metric space. Let A,B, S and T be selfmapings of X.
Assume that
(i) A(X) ⊆ T (X), B(X) ⊆ S(X) (ii) there exists k ∈ [0, 1) such that

d(Ax,By) ≤ kmax{d(Sx, Ty), d(Ax, Sx), d(By, Ty), 1
2 [d(Sx,By)+d(Ax, Ty)]} (2.3.1)

for all x, y ∈ X and (iii) the pairs (A,S) and (B, T ) are weakly compatible.
If either (A,S) (or) (B, T ) satisfies the property (E.A) and either S(X) (or) T (X) is a
closed subspace of X, then A,B, S and T have a unique common fixed point.

Proof. First suppose that the pair (B, T ) satisfy the property (E.A) and S(X) is closed.
Then there exists a sequence {xn} in X such that lim

n→∞
Bxn = lim

n→∞
Txn = p, for some

p ∈ X.
Since B(X) ⊆ S(X), there exists a sequence {yn} in X such that Bxn = Syn.
Therefore lim

n→∞
Bxn = lim

n→∞
Txn = lim

n→∞
Syn = p.

Since S(X) is closed, we have p ∈ S(X). Then there exists r ∈ X such that Sr = p.
Hence lim

n→∞
Bxn = lim

n→∞
Syn = lim

n→∞
Txn = p = Sr.

Now, we prove that Ar = Sr.
Suppose that d(Ar, Sr) > 0.
By the inequality (2.3.1), we get
d(Ar,Bxn) ≤ kmax{d(Sr, Txn), d(Ar, Sr), d(Bxn, Txn),

1
2 [d(Sr,Bxn) + d(Ar, Txn)]}.

Letting n → ∞, we obtain
d(Ar,Bxn) ≤ kmax{d(Sr, Sr), d(Ar, Sr), d(Sr, Sr), 1

2 [d(Sr, Sr) + d(Ar, Sr)]}
implies that
d(Ar, Sr) ≤ d(Ar, Sr) < d(Ar, Sr),
a contradiction.
Therefore d(Ar, Sr) ≤ 0 implies that Ar = Sr = p.
Further, since A(X) ⊆ T (X) there exists u ∈ X such that Ar = Tu = p.
Therefore Ar = Sr = Tu = p.
Now, we prove that Bu = Tu.
On the contrary suppose that Bu ̸= Tu.
Using the inequality (2.3.1), we obtain
d(Ar,Bu) ≤ kmax{d(Sr, Tu), d(Ar, Sr), d(Bu, Tu), 1

2 [d(Sr,Bu) + d(Ar, Tu)]}
which implies that
d(Ar,Bu) ≤ kmax{0, 0, d(Bu,Ar), 1

2 [d(Ar,Bu) + 0]}
implies that
d(Ar,Bu) ≤ kd(Ar,Bu) < d(Ar,Bu),
a contradiction.
Therefore Ar = Bu = Sr = Tu = p.
Suppose that the pairs (A,S) and (B, T ) are weakly compatible and Ar = Sr = p,
we have ASr = SAr which implies that Ap = Sp. We now show that Ap = p.
Suppose that d(Ap, p) > 0.
By the inequality (2.3.1), we obtain

d(Ap, p) = d(Ap,Bu)
≤ kmax{d(Sp, Tu), d(Ap, Sp), d(Bu, Tu), 1

2 [d(Sp,Bu) + d(Ap, Tu)]}
= kmax{d(Ap, p), 0, 0, 1

2 [d(Ap, p) + d(Ap, p)]}
= kd(Ap, p) < d(Ap, p),

a contradiction.
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Therefore Ap = Sp = p.
Now, weakly compatibility of B and T and Bu = Tu = p, we have
BTu = TBu which implies that Bp = Tp.
We now show that Bp = p.
Suppose that d(Bp, p) > 0.
By the inequality (2.3.1), we obtain

d(p,Bp) = d(Ap,Bp)
≤ kmax{d(Sp, Tp), d(Ap, Sp), d(Bp, Tp), 1

2 [d(Sp,Bp) + d(Ap, Tp)]}
= kmax{d(p,Bp), 0, 0, 1

2 [d(p,Bp) + d(p,Bp)]}
= kd(p,Bp) < d(p,Bp),

a contradiction.
Therefore Ap = Bp = Sp = Tp = p.
Hence p is a common fixed point of A,B, S and T .
Now, we suppose that the pair (A,S) satisfy the property (E.A) and T (X) is closed.
Then there exists a sequence {xn} in X such that lim

n→∞
Axn = lim

n→∞
Sxn = p, for some

p ∈ X.
Since A(X) ⊆ T (X), there exists a sequence {yn} in X such that Axn = Tyn.
Therefore lim

n→∞
Axn = lim

n→∞
Sxn = lim

n→∞
Tyn = p.

Since T (X) is closed, we have p ∈ T (X). Then there exists r ∈ X such that Tr = p.
Hence lim

n→∞
Axn = lim

n→∞
Sxn = lim

n→∞
Tyn = p = Tr.

We now prove that Br = Tr.
Suppose that d(Br, Tr) > 0.
Using the inequality (2.3.1), we obtain
d(Axn, Br) ≤ kmax{d(Sxn, T r), d(Axn, Sxn), d(Br, Tr), 1

2 [d(Sxn, Br) + d(Axn, T r)]}.
On letting n → ∞, we get
d(Tr,Br) ≤ kmax{d(Tr, Tr), d(Tr, Tr), d(Br, Tr), 1

2 [d(Tr,Br) + d(Tr, Tr)]}
which implies that
d(Tr,Br) ≤ kmax{0, 0, d(Tr,Br), 1

2d(Tr,Br)}
implies that
d(Tr,Br) ≤ kd(Tr,Br) < d(Tr,Br),
a contradiction.
Therefore d(Tr,Br) = 0 implies that Br = Tr = p.
Further, since B(X) ⊆ S(X) there exists u ∈ X such that Br = Su = p.
Therefore Br = Su = Tr = p.
We now show that Au = Su.
On the contrary suppose that Au ̸= Su.
By the inequality (2.3.1), we obtain
d(Au, Su) = d(Au,Br) ≤ kmax{d(Su, Tr), d(Au, Su), d(Br, Tr), 1

2 [d(Su,Br)+d(Au, Tr)]}
which implies that
d(Au, Su) ≤ kmax{0, d(Au, Su), 0, 1

2 [0 + d(Au, Su)]}
implies that
d(Au, Su) ≤ kd(Au, Su) < d(Au, Su),
a contradiction.
Therefore Au = Br = Su = Tr = p.
Suppose that the pairs (A,S) and (B, T ) are weakly compatible and Au = Su = p, we
have
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ASu = SAu which implies that Ap = Sp.
We now show that Ap = p.
Suppose that d(Ap, p) > 0.
By the inequality (2.3.1), we obtain

d(Ap, p) = d(Ap,Bu)
≤ kmax{d(Sp, Tu), d(Ap, Sp), d(Bu, Tu), 1

2 [d(Sp,Bu) + d(Ap, Tu)]}
= kmax{d(Ap, p), 0, 0, 1

2 [d(Ap, p) + d(Ap, p)]}
= kd(Ap, p) < d(Ap, p),

a contradiction.
Therefore Ap = Sp = p.
Now, weakly compatibility of B and T and Br = Tr = p, we have
BTr = TBr which implies that Bp = Tp.
We now show that Bp = p.
Suppose that d(Bp, p) > 0.
By the inequality (2.3.1), we obtain

d(p,Bp) = d(Ap,Bp)
≤ kmax{d(Sp, Tp), d(Ap, Sp), d(Bp, Tp), 1

2 [d(Sp,Bp) + d(Ap, Tp)]}
= kmax{d(p,Bp), 0, 0, 1

2 [d(p,Bp) + d(p,Bp)]}
= kd(p,Bp) < d(p,Bp),

a contradiction.
Therefore Ap = Bp = Sp = Tp = p.
Hence p is a common fixed point of A,B, S and T .

Similarly, we can prove the result when the pair (B, T ) satisfies the property (E.A)
and T (X) is closed. Also, it can be proved when the pair (A,S) satisfies the property
(E.A) and S(X) is closed.

Theorem 2.4. Let (X, d) be a metric space. Let A,B, S and T be selfmapings of X
satisfy the inequality (2.3.1). Assume that
(i) A(X) ⊆ T (X), B(X) ⊆ S(X) and
(ii) either (A,S) and (B, T ) are R-weakly commuting of type (Af ) (or) of type (Ag).
If either the pair (A,S) (or) (B, T ) satisfies the property (E.A) and either S(X) (or)
T (X) is a closed subspace of X, then A,B, S and T have a unique common fixed point.

Proof. First suppose that the pair (B, T ) satisfy the property (E.A) and S(X) is closed.
Then there exists a sequence {xn} in X such that lim

n→∞
Bxn = lim

n→∞
Txn = p, for some

p ∈ X.
Since B(X) ⊆ S(X), there exists a sequence {yn} in X such that Bxn = Syn.
Therefore lim

n→∞
Bxn = lim

n→∞
Txn = lim

n→∞
Syn = p.

We now prove that lim
n→∞

Ayn = p.

Suppose that lim
n→∞

Ayn = q ̸= p.

Using the inequality (2.3.1), we obtain
d(Ayn, Bxn) ≤ kmax{d(Syn, Txn), d(Ayn, Syn), d(Bxn, Txn),

1
2 [d(Syn, Bxn)+d(Ayn, Txn)]}.

On letting n → ∞, we get
d(q, p) ≤ kmax{d(p, p), d(q, p), d(p, p), 1

2 [d(p, p) + d(q, p)]}
which implies that d(q, p) ≤ kd(q, p) < d(q.p),
a contradiction.
Therefore lim

n→∞
Ayn = lim

n→∞
Bxn = lim

n→∞
Syn = lim

n→∞
Txn = p.
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Since S(X) is closed, we have p ∈ S(X). Then there exists r ∈ X such that Sr = p.
Hence lim

n→∞
Ayn = lim

n→∞
Bxn = lim

n→∞
Syn = lim

n→∞
Txn = p = Sr.

Now, we prove that Ar = Sr.
Suppose that d(Ar, Sr) > 0.
By the inequality (2.3.1), we get
d(Ar,Bxn) ≤ kmax{d(Sr, Txn), d(Ar, Sr), d(Bxn, Txn),

1
2 [d(Sr,Bxn) + d(Ar, Txn)]}.

Letting n → ∞, we obtain
d(Ar,Bxn) ≤ kmax{d(Sr, Sr), d(Ar, Sr), d(Sr, Sr), 1

2 [d(Sr, Sr) + d(Ar, Sr)]}
implies that
d(Ar, Sr) ≤ d(Ar, Sr) < d(Ar, Sr),
a contradiction.
Therefore d(Ar, Sr) ≤ 0 implies that Ar = Sr = p.
Further, since A(X) ⊆ T (X) there exists u ∈ X such that Ar = Tu = p.
Therefore Ar = Sr = Tu = p.
Now, we prove that Bu = Tu.
On the contrary suppose that Bu ̸= Tu.
Using the inequality (2.3.1), we obtain
d(Ar,Bu) ≤ kmax{d(Sr, Tu), d(Ar, Sr), d(Bu, Tu), 1

2 [d(Sr,Bu) + d(Ar, Tu)]}
which implies that
d(Ar,Bu) ≤ kmax{0, 0, d(Bu,Ar), 1

2 [d(Ar,Bu) + 0]}
implies that
d(Ar,Bu) ≤ kd(Ar,Bu) < d(Ar,Bu),
a contradiction.
Therefore Ar = Bu = Sr = Tu = p.
Suppose that the pairs (A,S) and (B, T ) are R-weakly commuting of type (Af ).
Then d(ASr, SSr) ≤ Rd(Ar, Sr)
which implies that
d(ASr, SSr) = 0
implies that ASr = SSr which implies that Ap = Sp.
We now show that Ap = p.
Suppose that d(Ap, p) > 0.
By the inequality (2.3.1), we obtain

d(Ap, p) = d(Ap,Bu)
≤ kmax{d(Sp, Tu), d(Ap, Sp), d(Bu, Tu), 1

2 [d(Sp,Bu) + d(Ap, Tu)]}
= kmax{d(Ap, p), 0, 0, 1

2 [d(Ap, p) + d(Ap, p)]}
= kd(Ap, p) < d(Ap, p),

a contradiction.
Therefore Ap = Sp = p.
Since the pair (B, T ) is an R−weakly commuting of type (Af ), we have
d(BTu, TTu) ≤ Rd(Bu, Tu)
which implies that
d(BTu, TTu) = 0
implies that BTu = TTu which implies that Bp = Tp.
We now show that Bp = p.
Suppose that d(Bp, p) > 0.
By the inequality (2.3.1), we obtain

d(p,Bp) = d(Ap,Bp)
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≤ kmax{d(Sp, Tp), d(Ap, Sp), d(Bp, Tp), 1
2 [d(Sp,Bp) + d(Ap, Tp)]}

= kmax{d(p,Bp), 0, 0, 1
2 [d(p,Bp) + d(p,Bp)]}

= kd(p,Bp) < d(p,Bp),
a contradiction.
Therefore Ap = Bp = Sp = Tp = p.
Hence p is a common fixed point of A,B, S and T .
Similarly we can prove that the pairs (A,S) and (B, T ) are R-weakly commuting of type
(Ag).
Now, suppose that the pair (A,S) satisfy the property (E.A) and T (X) is closed.
Then there exists a sequence {xn} in X such that lim

n→∞
Axn = lim

n→∞
Sxn = p, for some

p ∈ X.
Since A(X) ⊆ T (X), there exists a sequence {yn} in X such that Axn = Tyn.
Therefore lim

n→∞
Axn = lim

n→∞
Sxn = lim

n→∞
Tyn = p.

We now prove that lim
n→∞

Byn = p.

Suppose that lim
n→∞

Byn = q ̸= p.

Using the inequality (2.3.1), we obtain
d(Axn, Byn) ≤ kmax{d(Sxn, T yn), d(Axn, Sxn), d(Byn, T yn),

1
2 [d(Sxn, Byn)+d(Axn, T yn)]}.

Letting n → ∞, we get
d(p, q) ≤ kmax{d(p, p), d(p, q), d(p, p), 1

2 [d(p, p) + d(p, q)]}
which implies that d(p, q) ≤ kd(p, q) < d(p.q),
a contradiction.
Therefore lim

n→∞
Axn = lim

n→∞
Byn = lim

n→∞
Sxn = lim

n→∞
Tyn = p.

Since T (X) is closed, we have p ∈ T (X).
Then there exists r ∈ X such that Tr = p.
Hence lim

n→∞
Axn = lim

n→∞
Byn = lim

n→∞
Sxn = lim

n→∞
Tyn = p = Tr.

We now prove that Br = Tr.
Suppose that d(Br, Tr) > 0.
Using the inequality (2.3.1), we obtain
d(Axn, Br) ≤ kmax{d(Sxn, T r), d(Axn, Sxn), d(Br, Tr), 1

2 [d(Sxn, Br) + d(Axn, T r)]}.
On letting n → ∞, we get
d(Tr,Br) ≤ kmax{d(Tr, Tr), d(Tr, Tr), d(Br, Tr), 1

2 [d(Tr,Br) + d(Tr, Tr)]}
which implies that
d(Tr,Br) ≤ kmax{0, 0, d(Tr,Br), 1

2d(Tr,Br)}
implies that
d(Tr,Br) ≤ kd(Tr,Br) < d(Tr,Br),
a contradiction.
Therefore d(Tr,Br) = 0 implies that Br = Tr = p.
Further, since B(X) ⊆ S(X) there exists u ∈ X such that Br = Su = p.
Therefore Br = Su = Tr = p.
We now show that Au = Su.
On the contrary, suppose that Au ̸= Su.
By the inequality (2.3.1), we obtain
d(Au, Su) = d(Au,Br) ≤ kmax{d(Su, Tr), d(Au, Su), d(Br, Tr), 1

2 [d(Su,Br)+d(Au, Tr)]}
which implies that
d(Au, Su) ≤ kmax{0, d(Au, Su), 0, 1

2 [0 + d(Au, Su)]}
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implies that
d(Au, Su) ≤ kd(Au, Su) < d(Au, Su),
a contradiction.
Therefore Au = Br = Su = Tr = p.
Now, we suppose that the pairs (A,S) and (B, T ) are R-weakly commuting of type (Ag).
Then d(AAu, SAu) ≤ Rd(Au, Su) ⇒ d(AAu, SAu) ≤ 0
implies that AAu = SAu which implies that Ap = Sp.
We now prove that Ap = p. Suppose that d(Ap, p) > 0.
Using the inequality (2.3.1), we get

d(Ap, p) = d(Ap,Br)
≤ kmax{d(Sp, Tr), d(Ap, Sp), d(Br, Tr), 1

2 [d(Sp,Br) + d(Ap, Tr)]}
= kmax{d(Ap, p), 0, 0, 1

2 [d(Ap, p) + d(Ap, p)]}
= kd(Ap, p) < d(Ap, p),

a contradiction.
Therefore Ap = Sp = p.
By R−weakly commuting of type (Ag) of B and T , we have
d(BBr, TBr) ≤ Rd(Br, Tr) ⇒ d(BBr, TBr) ≤ 0
implies that BBr = TBr which implies that Bp = Tp.
We prove now that Bp = p.
Suppose that d(Bp, p) > 0.
By the inequality (2.3.1), we obtain

d(p,Bp) = d(Ap,Bp)
≤ kmax{d(Sp, Tp), d(Ap, Sp), d(Bp, Tp), 1

2 [d(Sp,Bp) + d(Ap, Tp)]}
= kmax{d(p,Bp), 0, 0, 1

2 [d(p,Bp) + d(p,Bp)]}
= kd(p,Bp) < d(p,Bp),

a contradiction.
Therefore Ap = Bp = Sp = Tp = p.
Hence p is a common fixed point of A,B, S and T .

Similarly, we can prove the result when the pairs (A,S) and (B, T ) are R-weakly
commuting of type (Af ).

3. Corollaries and Examples

In this section, we draw some corollaries from the main results of Section 2 and provide
examples in support of our results.

The following is an example in support of Theorem 2.1.

Example 3.1. Let X = [0, 2] with the usual metric. We define selfmaps f, g on X by

f(x) =

{
2
3 if 0 ≤ x ≤ 1
1
2 if 1 < x ≤ 2,

g(x) =

{
4
3 − x if 0 ≤ x ≤ 1
0 if 1 < x ≤ 2.

Let {xn} ⊆ [0, 1].
Then lim

n→∞
fxn = lim

n→∞
gxn.

⇒ 2
3 = lim

n→∞
( 43 − xn).

⇒ lim
n→∞

xn = 2
3 .

Therefore for any {xn} ⊆ [0, 1] with lim
n→∞

xn = 2
3 , we have

lim
n→∞

fxn = lim
n→∞

gxn = 2
3 .
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Now, lim
n→∞

gfxn = lim
n→∞

g( 23 ) =
2
3 = g( 23 )

and lim
n→∞

fgxn = lim
n→∞

f( 43 − xn), 0 ≤ xn ≤ 1.

Case (i): 1
3 ≤ 4

3 − xn ≤ 1.

In this case, f( 43 − xn) =
2
3 .

Therefore lim
n→∞

fgxn = lim
n→∞

f( 43 − xn) =
2
3 = f( 23 ).

Case (ii): 1 ≤ xn ≤ 4
3 .

This case doesn’t arise, since we are considering the sequence {xn} with lim
n→∞

xn = 2
3 .

Therefore the pair (f, g) is reciprocally continuous. Clearly the pair (f, g) is weakly
compatible.
We now show that the maps f and g are R−weakly commuting of type (Af ) and type
(Ag).
Let x ∈ [0, 1].
Then d(fgx, ggx) = d(f( 43 − x), g( 43 − x))

If x ∈ [ 13 , 1],
4
3 − x ∈ [ 13 , 1]

then d(f( 43 − x), g( 43 − x)) = d( 23 ,
4
3 − x) = | 23 − 4

3 + x| = | − 2
3 + x|

and d(fx, gx) = | − 2
3 + x|. Clearly d(fgx, ggx) ≤ Rd(fx, gx)

If x ∈ [0, 1
3 ),

4
3 − x ∈ (1, 4

3 ] then d(f( 43 − x), g( 43 − x)) = d( 12 , 0) = 1
2 and d(fx, gx) =

| − 2
3 + x|. Clearly d(fgx, ggx) ≤ Rd(fx, gx)

Suppose x ∈ (1, 2]
Then d(fgx, ggx) = d(f(0), g(0)) = d( 23 ,

4
3 − x) = | − 2

3 + x| and d(fx, gx) = 1
2 .

In this case, d(fgx, ggx) ≤ Rd(fx, gx).
Therefore f and g are R−weakly commuting of type (Af ) with R = 3.
Let x ∈ [0, 1].
Then d(ffx, gfx) = d(f( 23 ), g(

2
3 )) = 0 ≤ Rd(fx, gx)

Suppose x ∈ (1, 2]
Then d(ffx, gfx) = d(f( 12 ), g(

1
2 )) = d( 23 ,

5
6 ) =

1
6 and d(fx, gx) = d( 12 , 0) =

1
2 .

Clearly d(ffx, gfx) ≤ Rd(fx, gx)
Therefore f and g are R−weakly commuting of type (Ag) with R = 3.
We now verify the inequality (2.1.1).
Case (i): x, y ∈ [0, 1]

d(fx, fy) = 0 ≤ kmax{d(gx, gy), d(fx, gx), d(fy, gy), d(fx, gy), d(fy, gx)}
In this case, the inequality (2.1.1) trivially holds.
Case (ii): x, y ∈ (1, 2]

d(fx, fy) = 0 ≤ kmax{d(gx, gy), d(fx, gx), d(fy, gy), d(fx, gy), d(fy, gx)}
In this case the inequality (2.1.1) trivially holds.
Case (iii): x ∈ [0, 1], y ∈ (1, 2]

d(fx, fy) = 1
6 , d(gx, gy) =

4
3 − x, d(fx, gx) = | − 2

3 + x|, d(fy, gy) = 1
2 , d(fx, gy) =

2
3

and d(fy, gx) = | − 5
6 + x|

d(fx, fy) =
1

6
≤ 1

2

1

2
=

1

2
d(fy, gx)

≤ 1

2
max{d(gx, gy), d(fx, gx), d(fy, gy), d(fx, gy), d(fy, gx)}

Case (iv): x ∈ (1, 2], y ∈ [0, 1]

d(fx, fy) = 1
6 , d(gx, gy) =

4
3−y, d(fx, gx) = 1

2 , d(fy, gy) = |− 2
3+y|, d(fx, gy) = |− 5

6+y|
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and d(fy, gx) = 2
3

d(fx, fy) =
1

6
≤ 1

2

1

2
=

1

2
d(fx, gx)

≤ 1

2
max{d(gx, gy), d(fx, gx), d(fy, gy), d(fx, gy), d(fy, gx)}

Hence from the above cases we choose k = 1
2 and inequality (2.1.1) holds with k = 1

2 .

Therefore f and g satisfy all the hypotheses of Theorem 2.1 and 2
3 is a unique common

fixed point of f and g.
In the following, we observe that condition (iii) of Theorem 1.11 fails to hold.
Let x ∈ [0, 1], y ∈ (1, 2].
d(gx, gy) = 4

3 − x, d(fy, gy) = 1
2 , d(fx, gy) =

2
3 , d(y, gy) = y

and d(y, gx) + d(y, fx) = |(x+ y)− 4
3 |+ (y − 2

3 )

If (x+ y) < 4
3 then d(y, gx) + d(y, fx) = 2

3 − x.

Thus by choosing x = 1
5 , y = 16

15 , we have x+ y < 4
3 and

d(gx, gy) = 17
15 , d(fy, gy) =

1
2 , d(fx, gy) =

2
3 , d(y, gy) = y

and d(y, gx) + d(y, fx) = 7
15 .

Therefore
min{d(gx, gy), d(fx, gy), d(y, gy), d(gy, fy)} = min{ 17

15 ,
2
3 , y,

1
2}

= 1
2

≰ 7
15 = d(y, gx) + d(y, fx).

Hence condition (iii) of Theorem 1.11 does not hold.

Remark 3.2. Theorem 2.1 and Example 3.1 suggest that condition (iii) of Theorem 1.11
is redundant in proving Theorem 1.11.

Example 3.3. Let X = [1, 35] with the usual metric. We define selfmaps f, g on X by

f(x) =

{
6 if 1 < x ≤ 5
1 if otherwise,

g(x) =

 1 if x = 1
14 if 1 < x ≤ 5
1+x
6 if 5 < x ≤ 35.

Here f(X) ⊆ g(X). The pair (f, g) satisfies all the hypotheses of Theorem 2.2 and 1 is
the unique common fixed point of f and g in X.

Example 3.4. Let X = [0, 1] with the usual metric. We define selfmaps A,B, S, T on
X by

A(x) =

{
x2

2 if 0 ≤ x ≤ 1
2

0 if 1
2 < x ≤ 1,

B(x) =

{
x2

4 if 0 ≤ x ≤ 1
2

0 if 1
2 < x ≤ 1,

S(x) =

{
x2 if 0 ≤ x ≤ 1

2
1 if 1

2 < x ≤ 1
and T (x) =

{
x2

2 if 0 ≤ x ≤ 1
2

0 if 1
2 < x ≤ 1.

Here A(X) = [0, 1
8 ], B(X) = [0, 1

16 ], S(X) = [0, 1
4 ] ∪ {1} and T (X) = [0, 1

8 ].
Clearly A(X) ⊆ T (X) and B(X) ⊆ S(X).
Let {xn} = 1

2n , n ≥ 1.
Then lim

n→∞
Axn = lim

n→∞
Sxn = 0 and lim

n→∞
Bxn = lim

n→∞
Txn = 0.

Therefore the pairs (A,S) and (B, T ) satisfy the property (E.A). Clearly the pairs (A,S) and (B, T )
are weakly compatible and R−weakly commuting pair of type Ag with R = 1

2 .
Therefore A,B, S and T satisfy all the hypotheses of Theorem 2.3 and 0 is the unique
common fixed point of A,B, S and T .
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Corollary 3.5. Let A,S and T be selfmaps on X satisfying the inequality
d(Ax, Ty) ≤ qmax{d(Sx, Sy), d(Ax, Sx), d(Ty, Sy), 1

2 [d(Ax, Sy) + d(Ty, Sx)]}, for all
x, y ∈ X, where 0 ≤ q < 1. Suppose either (A,S) (or) (T, S) satisfies the property
(E.A) and S(X) is a closed subspace of X. If either (A,S) (or) (T, S) is an R−weakly
commuting pair of type (Af ) (or) of type (Ag), then A, T and S have a unique common
fixed point.

Proof. By choosing B = T and T = S in Theorem 2.4, the conclusion follows.

Corollary 3.6. Let (X, d) be a metric space. Let A and S be selfmaps of X. Assume
that A(X) ⊆ S(X) and there exists k ∈ [0, 1) such that
d(Ax,Ay) ≤ kmax{d(Sx, Sy), d(Ax, Sx), d(Ay, Sy), 1

2 [d(Sx,Ay)+d(Ax, Sy)]} (3.6.1)
for all x, y ∈ X. Assume that the pair (A,S) is weakly compatible and satisfies property
(E.A). If S(X) is closed in X then A and S have a unique common fixed point in X.

Proof. By choosing B = A and T = S in Theorem 2.3, the conclusion follows.

The following is an example in support of Corollary 3.5.

Example 3.7. Let X = [0, 1] with the usual metric. We define selfmaps A,S on X by

A(x) =

{
1
2 if 0 ≤ x ≤ 1

2
2
3 if 1

2 < x ≤ 1
, S(x) =

{
1− x if 0 ≤ x ≤ 1

2
1
3 if 1

2 < x ≤ 1.

Clearly A and S satisfy all the hypotheses of Corollary 3.5 and 1
2 is the unique common

fixed point.

Remark 3.8. In Corollary 3.5, if we relax the condition ‘S(X) is closed’ then A and S
may not have a common fixed point in X.

Example 3.9. Let X = (0, 1] with the usual metric. We define selfmaps A,S on X by

A(x) =


1
2 if 0 < x < 1

2
2
3 if x = 1

2
3
4 if 1

2 < x ≤ 1
, S(x) =

 1− x if 0 < x < 1
2

8
9 if x = 1

2
1
3 if 1

2 < x ≤ 1.
Clearly S(X) is not closed, the pair (A,S) satisfies all the hypotheses of Corollary 3.5
but A,S have no common fixed points in X.

Remark 3.10. In Corollary 3.5, if we relax the condition ‘the pair (A,S) satisfies
property (E.A)’ then A and S may not have a common fixed point in X.

Example 3.11. Let X = [0, 1] with the usual metric. We define selfmaps A,S on X by

A(x) =

{
2
3 if 0 ≤ x ≤ 2

3
1
2 if 2

3 ≤ x ≤ 1,
S(x) =

 1 if 0 ≤ x < 2
3

1
2 if 2

3 = x
2
3 if 2

3 < x ≤ 1.
Here the pair (A,S) satisfies all the hypotheses of Corollary 3.5 but fails to satisfies
property (E.A) and A,S have no common fixed points in X.

Corollary 3.12. Let (X, d) be a metric space. Let A and S be selfmaps of X. Assume
that A(X) ⊆ S(X) and satisfy the inequality (3.6.1). Assume that the pair (A,S) is R-
weakly commuting of type (Af ) (or) of type (Ag) and satisfies (E.A) property. If S(X) is
closed in X then A and S have a unique common fixed point in X.

Proof. By choosing B = A and T = S in Theorem 2.4, the conclusion follows.

The following is an example in support of Corollary 3.12.
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Example 3.13. Let X = [0, 1] with the usual metric. We define selfmaps A,S on X by

A(x) =

{
x2

4 if 0 ≤ x ≤ 1
2

0 if 1
2 < x ≤ 1,

S(x) =

{
x2 if 0 ≤ x ≤ 1

2
1 if 1

2 < x ≤ 1.
Clearly A and S satisfy all the hypotheses of Corollary 3.12 and 0 is the unique common
fixed point.

If we relax the condition pair (A,S) is R−weakly commuting of type (Af ) (or) of type
(Ag) in Corollary 3.12 then the conclusion may fails to hold due to the following example.

Example 3.14. Let X = [0, 1] with the usual metric. We define selfmaps A,S on X by

A(x) =

{
3
4 if 0 ≤ x ≤ 1

2
2
3 if 1

2 < x ≤ 1,
S(x) =


3
4 if 0 ≤ x < 1

2
2
3 if x = 1

2
1
3 if 1

2 < x ≤ 1.
Clearly the pair (A,S) is neither R−weakly commuting of type (Af ) nor R−weakly
commuting of type (Ag), but A and S satisfy all the remaining hypotheses of Corollary
3.12 and have no common fixed points in X.
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