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Abstract The three-operator splitting algorithm is a state-of-art algorithm for finding monotone inclu-

sion problems of the sum of maximally monotone operators, where one of the operators is a cocoercive

operator. Since the resolvent operator in the original three-operator splitting algorithm is not available

in a closed form, we propose an inexact three-operator splitting algorithm that combines inertial forward

backward splitting algorithm with the Halpern approximation method to solve monotone inclusion prob-

lem. Under mild assumptions, the theoretical convergence properties of the presented iterative technique

are studied on the iterative parameters in general Hilbert spaces. Furthermore, we extend this algorithm

to solve image inpainting problem. Performance comparisons show that the presented method is com-

petitive, efficient and practical with the compared ones.
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1. Introduction

The image inpainting is a process of restoring damaged areas of an image. This field
of research has been very active, prompted by numerous applications: object removal in
a context of editing, loss concealment in a context of impaired image transmission, dis-
occlusion in image–based rendering (IBR) of viewpoints different from those captured by
the cameras or restoring images from text overlays or scratches. The inpainting problem
appeared in [1] by analogy with a process used in art restoration.

In this article, we consider the following monotone inclusion problem:

find x ∈ H such that 0 ∈ Ax+Bx+ Cx, (1.1)

where H is a real Hilbert space, A,B are maximally monotone operators mapping from H

onto 2H and C : H → H is the inverse strongly monotone operator. The corresponding
convex optimization problem related to the three operator inclusion problem (1.1) is given
by

minimize
x∈H

R(x) + S(x) + P(x), (1.2)

where R, S : H → (−∞,+∞] and P : H → R are proper lower-semicontinuous convex
and a convex continuous differentiable respectively. The gradient ∇P is L−Lipschitz
continuous for some L > 0. Assume that the proximity operators of R and S have an
explicit closed–form solution, the three operator splitting algorithm [2] can be applied to
solve the convex minimization problem (1.2) by setting A = ∂R, B = ∂S and C = ∇P,
where ∂R and ∂S are subdifferentials of R and S respectively. The convex optimization
problem involves several specific problems that have emerged in material sciences, medical,
image processing and signal processing (Refs. [3, 4]).

In special case, since (1.1) if A and B satisfy Rockafellar’s condition in Theorem1 [5]
can be represented by

find x ∈ H such that 0 ∈ Ax+ Cx, (1.3)

where A = A+B
thus, convex optimization problem can be (1.2) represented by

minimize
x∈H

Q(x) + P(x), (1.4)

where Q = R+ S.
It is important to note that the three-operator splitting algorithm [2] is the new algo-

rithm, as such, very few works specifically connected with it exist. In 2018, Cevher et
al. [6] extended the three-operator splitting algorithm [2] from the determinist setting to
the stochastic setting for solving the problem (1.1). Similarly, solving the convex mini-
mization of the sum of three convex functions, Yurtsever et al. [7] introduced a stochastic
three-composite minimization algorithm. In addition, Pedregosa and Gidel [8] developed
a novel adaptive three-operator splitting algorithm, which would update the step-size
without a prior knowledge of the gradient operator’s Lipschitz constant. However, the
Pedregosa and Gidel did not take into account the error.
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Recently, an efficient fixed point equation for solving monotone inclusion problems with
three operator was developed by Davis and Yin [2]. The developed equation employs
resolvent and forward operators. In [2], it was shown that their fixed point equation
extends the Douglas–Rachford and forward–backward equation. The Douglas-Rachford
and forward-backward equation have the following form

T := JA
λ (2JB

λ − Id− λCJB
λ ) + Id− JB

λ

which is average given that λ is properly bounded, and by now, it is the operator for
solving the problem (1.1) without employing lifting techniques. Two special cases are
immediate:

(1) If B = 0, then

T := JA
λ (Id− λC)

which is the forward–backward splitting algorithm.

(2) If C = 0, then

T := JA
λ (2JB

λ − Id) + Id− JB
λ

which is also the Douglas-Rachford splitting algorithm.

Now, by following the standard approach in operator-splitting, that is, the Krasnosel’
skǐi-Mann (KM) iteration [9], we can solve x = Tx. Given xn ∈ H and αn ∈ (0, 1), set

xn+1 = (1− αn)xn + αnTxn.

The above scheme can be implemented as follows:

Data: An arbitrary point x0 ∈ H, λ ∈ (0, 2β), and {αn} ∈ (0, 4β−λ
2β ).

Initialization;

for n = 0, 1, 2, · · · , iterate do
compute;

1: yn = JB
λ xn

2: un = JA
λ (2yn − xn − λCyn) // comment : un = JA

λ (2JB
λ − Id− λCJB

λ )xn

3: xn+1 = xn + αn(un − yn) // comment: xn+1 = (1− αn)xn + αnTxn

break when a given stopping criterion is met
end
Result: yn, un and xn+1.

Algorithm 1: A three operator splitting algorithm

We note that provided T has a fixed point, their KM iteration will (weakly) converge
to a fixed point of T with rate ∥Txn − xn∥2 = O((n+ 1)−1).

In this article, our interest is to introduce a Halpern approximation of three operator
splitting algorithm solving the monotone inclusion problem (1.1). The corresponding re-
solvent operators and inverse strongly operator are permitted to be computed. Within
mild conditions with the parameters and errors, we examine the convergence behavior
of the Halpern three-operator splitting algorithm. Moerover, we recover the Halpern
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forward–backward splitting algorithm and the Halpern Douglas–Rachford splitting algo-
rithm as corollaries. Finally, we extend the proposed algorithm to solve image inpainting
problem.

The article is organized as the following. In Section 2 we review background on convex
analysis and monotone operators. In Section 3, we give the Halpern three-operator split-
ting algorithm and its convergence theorem. In Section 4, we discussed the applications
of the the Halpern three-operator splitting algorithm in convex minimization, image in-
painting problems and present a numerical experiment in image inpainting. Finally, we
conclude the paper in section 5.

Data: For arbitrary x0 ∈ H, , choose λ and λn + αn + βn = 1.
Initialization;

for n = 1, 2, 3, · · · , iterate do
compute;

1: yn = JB
λ xn

2: un = JA
λ (2yn − xn − λ(Cyn))

3: xn+1 = αnu+ (βn + λn)xn + λn(un − yn)
break when a given stopping criterion is met

end
Result: xn+1.

Algorithm 2: The Halpern of a three-operator splitting algorithm.

We recall the following bound Young’s Inequality as follow:

ab ≤ a2

2ε + b2ε
2 such that ∀a, b ∈ R and ∀ε < 0.

2. Preliminaries

Assume that H is a real Hilbert space. The inner product and norm of H are denoted
by ⟨·, ·⟩ and ∥ · ∥ respectively. We denote the class of proper lower-semicontinuous and
convex functions from H to (−∞,+∞] by Γ0(H). Fix(T ) is the fixed points set of an
operator T .

Definition 2.1. Assume that A : H → 2H is a set-valued operator, where 2H is the
power set of H. Suppose that Id is the identity operator on H. Then,

(1) A−1(0) := {x ∈ H : 0 ∈ Ax} is the set of zeros of A,
(2) D(A) := {x ∈ H : Ax ̸= ∅} is the domain of A,
(3) R(A) := {y ∈ H : ∃x ∈ H : y ∈ Ax} is the range of A,
(4) G(A) := {(x, y) ∈ H ×H : y ∈ Ax} is the graph of A,
(5) The resolvent of A with parameter λ > 0 is JA

λ = (Id+ λA)−1.

Definition 2.2. Assume that A : H → 2H is a set-valued operator. Then A is called
monotone if

⟨x− y, u− v⟩ ≥ 0, ∀(x, u), (y, v) ∈ G(A). (2.1)

The operator A is called maximally monotone if there is no monotone operator B : H →
2H which the graph of B properly contains G(A).
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Definition 2.3. The operator B : H → H is called β−inverse strongly monotone with
β > 0 if

β∥Bx−By∥2 ≤ ⟨Bx−By, x− y⟩, ∀x, y ∈ H. (2.2)

Definition 2.4. Assume that C : H → 2H is a set-valued operator. Then C is called
cocoercive if there is a constant µ > 0 such that

⟨Cx− Cy, x− y⟩ ≥ µ∥Cx− Cy∥2, ∀x, y ∈ H. (2.3)

Definition 2.5. Assume that T : H → H is an operator. T is called nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ H. (2.4)

Assume that α ∈ (0, 1). The T is called α−averaged if there is a nonexpansive operator
R such that

T = (1− α)Id+ αR.

If α = 1/2, then T is said to be the firmly nonexpansive operator.

Lemma 2.6. [10] Assume that T : H → H is an operator. The following statement are
equivalent:

(1) 2T − Id is nonexpansive.
(2) T is firmly nonexpansive.
(3) ∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩, ∀x, y ∈ H.

Lemma 2.7. [10] Assume that T : H → H is a nonexpansive operator, and give α ∈
(0, 1). The following are equivalent:

(1) (1− 1
α )Id+

1
αT is nonexpansive.

(2) T is α−averaged.
(3) ∥Tx− Ty∥2 ≤ ∥x− y∥2 − 1−α

α ∥(Id− T )x− (Id− T )y∥2, ∀x, y ∈ H.

Lemma 2.8. [10] Assume that A : H → 2H is a maximally monotone operator and
λ ∈ (0,+∞). Then JA

λ : H → H and Id − JA
λ : H → H are maximally monotone and

firmly nonexpansive.

Lemma 2.9. [11] [12] Assume that {αn} is a sequence of nonnegative real numbers
satisfying the property

αn+1 ≤ (1− γn)αn + γnσn,

where {γn} ⊂ (0, 1) and {σn} such that
(i) limn→∞ γn = 0 and

∑∞
n=0 γn = ∞

(ii) either lim supn→∞ σn ≤ 0 or
∑∞

n=0 |γnσn| < ∞.
Then {αn} converges to zero.

Lemma 2.10. [13] Assume that X is a real inner product space. Then:

(i) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀ x, y ∈ X.
(ii) ∥αx+βy∥2 = α(α+β)∥x∥2+β(α+β)∥y∥2−αβ∥x−y∥2, ∀ x, y ∈ X, ∀ α, β ∈
R.

Lemma 2.11. [2] Let S := U + T1 ◦ V, where U, T1 : H → H are firmly nonexpansive.
Let W = Id− (2U + V ). So we have ∀x, y ∈ H :

∥Sx− Sy∥2 ≤∥x− y∥2 − ∥(Id− S)x− (Id− S)y∥2

− 2⟨T1 ◦ V x− T1 ◦ V y, Wx−Wy⟩.
(2.5)
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3. Main Result

Lemma 3.1. The following set equality holds

(A+B + C)−1(0) = JB
λ (Fix(T )).

In addition,

Fix(T ) = {x+ λu : 0 ∈ (A+B + C)x, u ∈ Bx ∩ (−Ax− Cx)}.

Proof. We start by showing that (A+B + C)−1(0) ⊆ JB
λ (Fix(T )).

For the spacial case where (A+B+C)−1(0) = ϕ, it is obvious that (A+B+C)−1(0) ⊆
JB
λ (Fix(T )). Now, suppose x ∈ (A+B+C)−1(0) then we have 0 ∈ Ax+Bx+Cx. Also,

let uA, uB be two identities such that uA + uB +Cx = 0, where uA ∈ Ax, uB ∈ Bx and
z = x + λuB , then by using two identities, we will present that z is a fixed point of T .
First,

JB
λ (z) = x and 2JB

λ (z)− z − λCJB
λ (z) = 2x− z − λCx

= x− λCx− λuB

= x+ λuA.

Second,

x = JA
λ (x+ λuA) = JA

λ (2JB
λ (z)− z − λCJB

λ (z)).

Combining the uA and uB identity, we have
Tz = T (x+λuB) = JA

λ (x+λuA) = JA
λ (2JB

λ (z)−z−λCJB
λ (z))+(I−JB

λ )(z) = x+z−x = z.

We next show that JB
λ (Fix(T )) ⊆ (A+B + C)−1(0).

Suppose z ∈ Fix(T ). Then there is uB ∈ B(JB
λ (z)) and uA ∈ A(JA

λ (2JB
λ (z) − z −

λCJB
λ (z))) such that

z = Tz = z + JA
λ (2JB

λ (z)− z − λCJB
λ (z))− JB

λ (z) = z − λ(uA + uB + CJB
λ (z)).

Thus

x = JA
λ (2JB

λ (z)− z − λCJB
λ (z)) = JB

λ (z) and uA + uB + Cx = 0.

Thus, the identity for Fix(T ) immediately following the fixed-point construction process,
that is, Fix(T ) is {x+ λu : 0 ∈ (A+B + C)x, u ∈ Bx ∩ (−Ax− Cx)}.

Proposition 3.2. Assume that JA
λ , JB

λ : H → H are firmly nonexpansive and C is
β−cocoercive operator, ∃β > 0. Give λ ∈ (0, 2β). Then

T := Id− JB
λ + JA

λ (2JB
λ − Id− λCJB

λ )

is α−averaged with coefficient α := 2β
4β−λ < 1. In additional, the following inequality

holds ∀x, y ∈ H

∥Tx− Ty∥2 ≤ ∥x− y∥2 − 1− α

α
∥(Id− T )x− (Id− T )y∥2. (3.1)
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Proof. Let U := Id − JB
λ , V := 2JB

λ − Id − λC ◦ JB
λ , and W := λC ◦ JB

λ . By (2.5),U is
firmly nonexpansive. Therefore, we get W = Id−(2U+V ) and S := T = Id−JB

λ +JA
λ ◦V.

Thus, We assess the inner product in Lemma 2.11 as follows:

−2⟨JA
λ ◦ V x− JA

λ ◦V y,Wx−Wy⟩
=2⟨(Id− T )x− (Id− T )y, λC ◦ JB

λ x− λC ◦ JB
λ y⟩

− 2⟨JB
λ x− JB

λ y, λC ◦ JB
λ x− λC ◦ JB

λ y⟩

≤ϵ∥(Id− T )x− (Id− T )y∥2 + λ2

ϵ
∥C ◦ JB

λ x− C ◦ JB
λ y∥2

− 2λβ∥C ◦ JB
λ x− C ◦ JB

λ y∥2

=ϵ∥(Id− T )x− (Id− T )y∥2 − λ(2β − λ

ϵ
)∥C ◦ JB

λ x− C ◦ JB
λ y∥2,

where ϵ > 0 and C is β−cocoercive. For the coefficient of λ(2β − λ
ϵ ) ≥ 0, we set 0 < ϵ ≤

λ
2β < 1. By Lemma 2.11 and setting S = T, we have

∥Tx− Ty∥2 ≤∥x− y∥2 − (1− ϵ)∥(Id− T )x− (Id− T )y∥2

− λ(2β − λ

ϵ
)∥C ◦ JB

λ x− C ◦ JB
λ y∥2,

where ϵ = λ
2β .

Theorem 3.3. Suppose that A : H → 2H and B : H → 2H are maximally monotone
operators. Suppose that C : H → 2H is a β-cocoercive operator and

Ω := (A+B + C)−1(0) ̸= ∅.

Let λ > 0 and T : H → H as following,

T := Id− JB
λ + JA

λ (2JB
λ − Id− λCJB

λ ).

Assume that λ ∈ (0, 2β) and αn + βn + λn = 1 such that

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) 0 < lim inf βn < lim supn→∞ βn < 1.

Then the {xn} in Algorithm 2 converges strongly to a point w ∈ Fix(T ). Moreover {xn}
converge strongly to PΩ(u)

Proof. The iterative sequence {xn+1} of Algorithm 2 can be written as follows

xn+1 = αnu+ (βn + λn)xn + λn(un − yn)

= αnu+ βnxn + λnxn + λn(J
A
λ (2yn − xn − λ(Cyn))− JB

λ xn)

= αnu+ βnxn + λn

[
xn − JB

λ xn + JA
λ (2JB

λ xn − xn − λ(CJB
λ xn))

]
= αnu+ βnxn + λnTxn.

(3.2)

Next, we will to show the {xn} converges strongly to w ∈ Fix(T ), we will divide the

proof into four steps.
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Step 1: We will show that the {xn} is bounded.

∥xn+1 − w∥ = ∥αnu+ βnxn + λnTxn − w∥
≤ αn∥u− w∥+ βn∥xn − w∥+ λn∥Txn − Tw∥
≤ (1− αn)∥xn − w∥+ αn∥u− w∥

≤ max
{
∥u− w∥, ∥xn − w∥

}
...

≤ max
{
∥u− w∥, ∥x0 − w∥

}
.

(3.3)

Therefore, the {xn} is bounded and also {yn} and {un} are bounded.

Step 2: We will show that limn→∞ ∥xn − Txn∥ = 0. Combining Lemma 2.10 (i) and
(3.2), we have

∥xn+1 − w∥2 = ∥αnu+ βnxn + λnTxn − w∥2

≤ ∥βn(xn − w) + λn(Txn − w)∥2 + 2αn⟨u− w, xn+1 − w⟩.
(3.4)

On the other hand, by Lemma 2.10 (ii) , bound Young’s Inequality and the Cauchy-
schwartz inequality, we obtain

∥βn(xn − w) + λn(Txn − w)∥2

= βn(βn + λn)∥xn − w∥2 + λn(βn + λn)∥Txn − w∥2

− βnλn∥Txn − xn∥2

≤ βn(1− αn)∥xn − w∥2 + λn(1− αn)
[
∥xn − w∥2

− 1− α

α
∥Txn − xn∥2 − γ(2β − γ

ϵ
)∥CJB

λ xn − CJB
λ w∥2

]
− βnλn∥Txn − xn∥2

≤ (1− αn)∥xn − w∥2 − λn(1− αn)(1− α) + αβnλn

α
∥Txn − xn∥2

− λn(1− αn)γ(2β − γ

ϵ
)∥CJB

λ xn − CJB
λ w∥2.

(3.5)

Substituting (3.5) into (3.4), we have

∥xn+1 − w∥2 ≤ (1− αn)∥xn − w∥2 − λn(1− αn)(1− α) + αβnλn

α
∥Txn − xn∥2

− λn(1− αn)γ(2β − γ

ϵ
)∥CJB

λ xn − CJB
λ w∥2

+ 2αn⟨U − w, xn+1 − w⟩
(3.6)
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and also

∥xn+1 − w∥2 ≤ ∥xn − w∥2 − λn(1− αn)(1− α) + αβnλn

α
∥Txn − xn∥2

− λn(1− αn)γ(2β − γ

ϵ
)∥CJB

λ xn − CJB
λ w∥2 + αnM,

(3.7)

where M = supn∈N{2⟨u− w, xn+1 − w⟩} and hence

∥xn+1 − w∥2 ≤ ∥xn − w∥2 − λn(1− αn)γ(2β − γ

ϵ
)∥CJB

λ xn − CJB
λ w∥2 + αnM.

(3.8)

Then we have

λn(1− αn)γ(2β − γ

ϵ
)∥CJB

λ xn − CJB
λ w∥2 ≤ ∥xn − w∥2 − ∥xn+1 − w∥2 + αnM.

(3.9)

From (3.7), we obtain

λn(1− αn)(1− α) + αβnλn

α
∥Txn − xn∥2 ≤ ∥xn − w∥2 − ∥xn+1 − w∥2 + αnM,

(3.10)

for some M > 0. In fact, by condition (ii) we can assume that there is ϵ > 0 such that
βnλn ≥ ϵ for n ∈ N. Therefore, we obtain from (3.10) and conditions (i),(ii) that

lim
n→∞

∥xn − Txn∥ = 0 (3.11)

and

lim
n→∞

∥CJB
λ xn − CJB

λ w∥2 = 0. (3.12)

Step 3: We will show that w ∈ Ω.

Let uB
n :=

1

λ
(wn − yn) ∈ Byn and uA

n :=
1

λ
(2yn − wn − λ(Cyn)− un) ∈ Aun.

It follows from the nonexpansiveness of JB
λ , that

∥yn − JB
λ w∥ = ∥JB

λ xn − JB
λ w∥

≤ ∥xn − w∥.
(3.13)

Notice that if lim
n→∞

∥xn − w∥ exists, then {yn} is bounded. Let z be a sequential weak

cluster point of {yn}. There is the {ynk
} such that ynk

⇀ z as nk → ∞. Let w∗ = JB
λ w.

Then w∗ ∈ Ω. By (3.12), we have Cyn → Cw∗. Notice that ynk
⇀ z, since C is maximally

monotone, it following the weak-to-strong sequential closedness of C that, Cz = Cw∗.
Then Cyn → Cz.

Step 4: We will prove that limn→∞ ∥xn − w∥ = 0.
Since {xn} is bounded, we have {xnk

} such that

lim sup
n→∞

⟨u− w, xn − w⟩ = lim
k→∞

⟨u− w, xnk
− w⟩
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and {xnk
} converges weakly to some element p. Hence, we obtain

lim sup
n→∞

⟨u− w, xn+1 − w⟩ = lim sup
n→∞

⟨u− w, xn − w⟩

= lim
k→∞

⟨u− w, xnk
− w⟩

= ⟨u− w, p− w⟩ ≤ 0.

Now, we have from (3.6) that

∥xn+1 − w∥2 ≤ (1− αn)∥xn − w∥2 − λn(1− αn)(1− α) + αβnλn

α
∥Txn − xn∥2

− λn(1− αn)γ(2β − γ

ϵ
)∥CJB

λ xn − CJB
λ w∥2 + αnM

(3.14)

By using conditions (i), (ii) and Lemma 2.9 in (3.14), we obtain that

lim
n→∞

∥xn − w∥ = 0. (3.15)

4. Applications

4.1. General Convex Problems

Here, we interest the problem

minimize
x∈H

S(x) + R(x) + P(x), (4.1)

where S,R : H → (−∞,∞] are closed proper convex functions, P : H → (−∞,∞) is
convex and differentiable, and ∇P is 1

β−Lipschitz continuous. Obviously, we meet the

conditions of problems (1.1) with A := ∂S, B := ∂R, and C := ∇P. We make the following
technical assumption:

Assumption 4.1. The set zer(∂S+ ∂R+∇P) is nonempty.

Note that the above assumption is guaranteed if 0 ∈ sri(D(S) −D(R)). With no doubt,
any zero of ∂S+∂R+∇P is a solution of (4.1). Specialized to (4.1), Algorithm 2 becomes.

Data: For arbitrary z0 ∈ H, choose λ and λn + αn + βn = 1.
Initialization;

for n = 0, 1, 2, · · · , iterate do
compute;
1: yn = proxλR xn

2: un = proxλS(2yn − xn − λ∇Pyn)
3: xn+1 = αnu+ (βn + λn)xn + λn(un − yn)
break when a given stopping criterion is met

end
Result: xn+1.

Algorithm 3: The halpern approximation of three operator splitting algorithm for
minimization problem
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4.2. The Inpainting Problem

Image inpainting is an ill–posed inverse problem because it does not well–defined unique
solution. It is necessary to introduce image priors. Many methods are guided by the
assumption that pixels in the unknown and known parts of the image share the same
geometrical structures or statistical properties. This assumption translates into different
local or global priors, with the goal of having an inpainted image as physically plausible
and as visually pleasing as possible.

The image I mathematically defined as

I : Ω ⊂ Rn → Rm,

where x represents a vector indicating spatial coordinates of a pixel px. There are two
case of image. In the case of a gray scale image where by the image is two-dimensional
(2-D), x is defined as x = (x, y) such that x is row and y is column. In the case of a color
image where by the image is three-dimensional (3-D), x is defined as x = (x, y, z)such
that x is row, y is column and z is color channal.

The image inpainting problem for gray scale image is formulated as follows

minimize
x

ω∥x(1)∥∗ + ω∥x(2)∥∗ +
1

2
∥PΩx− PΩy∥2, (4.2)

where x(1) is the matrix [x(:, :)], x(2) is the matrix [x(:, :)T ], y is the gray scale texture
image represented also, where [y(:, :)] represents the gray scale channel of the image. The
linear operator PΩ selects the set of known entries of y (PΩy), ∥ · ∥∗ denotes the matrix
nuclear norm, and ω is a penalty parameter.

The image inpainting problem for color image is formulated as follows

minimize
x

ω∥x(1)∥∗ + ω∥x(2)∥∗ +
1

2
∥PΩx− PΩy∥2, (4.3)

where x is the 3-way tensor variable, x(1) is the matrix [x(:, :, 1)x(:, :, 2)x(:, :, 3)], x(2) is

the matrix [x(:, :, 1)Tx(:, :, 2)Tx(:, :, 3)T ], y is the color texture image represented also in a
3-way tensor, where y(:, :, 1), y(:, :, 2), y(:, :, 3) represents the red, green, and blue channels
of the image respectively. The linear operator PΩ selects the set of known entries of y
(PΩy), ∥ · ∥∗ denotes the matrix nuclear norm, and ω is a penalty parameter.

Problem (4.3) can be formulated to problem (1.1), so it can be solved. The proximal
mapping of the term ∥ · ∥∗ can be computed using singular value soft-thresholding and
PΩ for gray scale image is defined by

PΩ(x) =

{
xij , (i, j) ∈ Ω

0, otherwise.

Similarly, PΩ for color image is defined by

PΩ(x) =

{
xijk, (i, j, k) ∈ Ω

0, otherwise.

It is obvious that optimization problem (4.3) is a special case of the optimization
problem of the sum of three convex functions (4.1) Actually, let P(x) = 1

2∥PΩx−PΩy∥2F ,
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R(x) = ω∥x(1)∥∗ and S(x) = ω∥x(2)∥∗. Then P(x) is convex differentiable and ∇P(x) =
PΩx−PΩy with 1−Lipschitz continuous. The proximity operators of R(x) and S(x) can be
computed by the singular value decomposition (SVD). Thus, the three operator splitting
algorithm and the Halpern approximation of three operator splitting algorithm can be
employed to solve convex minimization problem (1.2). To evaluate the performance of
our method Algorithm 3, we test it against the averger filter and Davis and Yin algorithm
[2]. See Figure 1 and 2.

4.3. Evaluation and parameters setting

Evaluating the quality of the restored images, we use the signal-to-noise ratio (SNR)
and the structural similarity index method (SSIM), which are assigned by

SNR = 20 log
∥x∗∥

∥x∗ − xn∥
, and SSIM =

(2ux∗uxn
+ c1)(2σx∗xn

+ c2)

(u2
x∗ + u2

xn
+ c1)(σ2

x∗ + σ2
xn

+ c2)
,

where x∗ is the original image, xn is the restored image, ux∗ and uxn are the mean
values of the original image x∗ and restored image xn respectively. The variances of the
original and restored images are σ2

x∗ and σ2
xn

while σ2
x∗xn

is the covariance of two images,

c1 = (K1L)
2 and c2 = (K2L)

2 with K1 = 0.01, K2 = 0.03 and L is the dynamic range of
pixel values. The value for the SSIM ranges from 0 to 1, and a SSIM value of 1 means
perfect recovery.

The iterative process stops when the relative change between successive iterates falls
below stopping criterion, that is

∥xn+1 − xn∥
∥xn∥

≤ ϵ, where ϵ is a given small constant.

5. Conclusions

We have presented an algorithm that combines inertial forward backward splitting
algorithm with the Halpern approximation method for finding a solution of the sum of
three monotone operators. We show that the proposed algorithm generate the sequence
that is strong convergence to solution in problem. Numerical experiments in solving
image inpainting problem show that the proposed algorithm is competitive, practical and
efficient with the compared ones.
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(a) original image (b) SSIM=0.5001,

PSNR=14.6186,

SNR=12.2773

(c) SSIM=0.7005,

PSNR=20.7961,

SNR=18.5260,
time=0.4004s

(d) SSIM=0.9917,

PSNR=38.5180,

SNR=36.2479,
ter=125,

time=36.5129s

(e) SSIM=0.9918,

PSNR=38.5276,

SNR=36.2574,
ter=125,

time=37.4431s

(f) original image (g) SSIM=0.6720,

PSNR=15.0868,
SNR=12.1699

(h) SSIM=0.9144,

PSNR=22.2323,
SNR=19.3269,
time=0.5062s

(i) SSIM=0.9966,

PSNR=37.5200,
SNR=34.6146,
ter=160,

time=42.8769s

(j) SSIM=0.9966,

PSNR=37.5422,
SNR=34.6367,
ter=175,

time=50.7544s

(k) original image (l) SSIM=0.5405,

PSNR=15.0321,
SNR=8.3605

(m) SSIM=0.7723,

PSNR=21.8970,
SNR=14.5402,

time=0.6084s

(n) SSIM=0.9966,

PSNR=40.4832,
SNR=33.1263,

ter=110,

time=27.2598s

(o) SSIM=0.9967,

PSNR=40.5013,
SNR=33.1445,

ter=105,

time=28.2685s

(p) original image (q) SSIM=0.2796,

PSNR=15.1709,

SNR=12.8282

(r) SSIM=0.4397,

PSNR=22.4756,

SNR=20.1993,
time=0.3187s

(s) SSIM=0.9979,

PSNR=45.5473,

SNR=43.2710,
ter=160,

time=46.4510s

(t) SSIM=0.9979,

PSNR=45.5542,

SNR=43.2779,
ter=145,

time=41.3087s

Figure 1. Figure (a), (f), (k), (p) are the original images (Left Column),
figure (b), (g), (l), (q) (Middle left column) are the blur images, figure
(c), (h), (m), (r) (Middle) are the inpainting images via Averger Filter,
figure (d), (i), (n), (s) (Middle right) are the inpainting images via Davis
and Vin algorithm and figure (e), (j), (o), (t), (Right) are the inpainting
image via our Algorithm .
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(a) original image (b) SSIM=0.2805,

PSNR=15.2942,

SNR=9.8174

(c) SSIM=0.4337,

PSNR=22.7553,

SNR=16.8945,
time=0.2751s

(d) SSIM=0.9992,

PSNR=50.0282,

SNR=44.1673,
ter=195,

time=54.9499s

(e) SSIM=0.9992,

PSNR=50.0339,

SNR=44.1731,
ter=190,

time=57.0489s

(f) original image (g) SSIM=0.2635,
PSNR=15.5148,
SNR=12.2842

(h) SSIM=0.4184,
PSNR=23.1662,
SNR=19.9103,
time=0.2643s

(i) SSIM=0.9991,
PSNR=52.6563,
SNR=49.4004,
ter=160,
time=35.8549s

(j) SSIM=0.9991,
PSNR=52.6725,
SNR=49.4166,
ter=155,
time=36.4337s

(k) original image (l) SSIM=0.3392,

PSNR=15.4393,

SNR=11.5434

(m) SSIM=0.5336,

PSNR=22.0742,

SNR=18.0666,
time=0.2900s

(n) SSIM=0.9992,

PSNR=51.9985,

SNR=47.9909,
ter=150,

time=34.3021s

(o) SSIM=0.9992,

PSNR=52.0104,

SNR=48.0029,
ter=140,

time=33.0843s

(p) original image (q) SSIM=0.2388,

PSNR=15.1836,
SNR=11.4240

(r) SSIM=0.3262,

PSNR=22.3627,
SNR=18.5101,

time=0.3421s

(s) SSIM=0.9890,

PSNR=37.3092,
SNR=33.4566,

ter=240,
time=63.9005s

(t) SSIM=0.9891,

PSNR=37.3275,
SNR=33.4749,

ter=255,
time=71.0848s

Figure 2. Figure (a), (f), (k), (p) are the original images (Left Column),
figure (b), (g), (l), (q) (Middle left column) are the blur images, figure
(c), (h), (m), (r) (Middle) are the inpainting images via Averger Filter,
figure (d), (i), (n), (s) (Middle right) are the inpainting images via Davis
and Vin algorithm and figure (e), (j), (o), (t), (Right) are the inpainting
image via our Algorithm .
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(a) original image (b) blur image (c) Averger Filter (d) Davis and Yin (e) our algorithm

(f) singnal of original & restoration

(g) singnal of original & restoration

(h) singnal of original & restoration

Figure 3. Figure (a), (b), (c), (d), (e) shows the original, blur, Averger
Filter, Davis and Yin and our algorithm image respectively, figures (f),
(g), (h) shows the signal of original and restoration are the blue, green
and red channels of the image, respectively .
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(a) original image (b) blur image (c) Averger Filter (d) Davis and Yin (e) our algorithm

(f) singnal of original & restoration

(g) singnal of original & restoration

(h) singnal of original & restoration

Figure 4. Figure (a), (b), (c), (d), (e) shows the original, blur, Averger
Filter, Davis and Yin and our algorithm image respectively, figures (f),
(g), (h) shows the signal of original and restoration are the blue, green
and red channels of the image, respectively .
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