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1. Introduction

Suppose Ω is a nonempty, closed and convex subset of Rn, F a continuous function
from Rn to Rn. A constrained nonlinear monotone equation involves finding a point
x ∈ Ω, such that

F (x) = 0. (1.1)

Many algorithms have been proposed in literature to solve nonlinear constrained equa-
tions, some of which are the trust region [3] and the Levenberg-Marquardt method [6].
However, the need for these methods to compute and store matrix in every iteration,
make them unsuitable for solving large-scale nonlinear equations.

Conjugate gradient (CG) methods is an iterative method developed for handling un-
constrained optimization problem [1, 9, 11, 15, 16, 20, 27, 28]. CG methods does not
require matrix storage, which makes it one of the efficient methods for handling large-
scale unconstrained optimization problems. Moreover, generating a descent direction does
not always hold based on the secant conditions. In order to obtain a descent direction,
Narushima et al. [15] and Zhang et al. [28] proposed three term CG methods, which al-
ways generate a descent direction, and established the convergence of the methods under
some suitable conditions. Also in [16], Narushima proposed a smoothing CG algorithm,
which combine the smoothing approach with the Polak–Ribière–Polyak CG methods in
[27], to handle unconstrained non-smooth equations. The convergence of the method was
established under some mild conditions.

Methods for solving unconstrained problems sometimes become less useful, as in many
practical applications, such as equilibrium problems, the solution of the unconstrained
problem may lie outside the constrained set Ω. This reason made researchers shift their
attention to the constrained case (1.1). In the last few years, many kinds of algorithms for
solving nonlinear monotone equations with convex constrained set Ω have been developed
and one of the popular is the projection method. For example, in [23] Wang et al.
proposed a projection method for solving systems of monotone nonlinear equations with
convex constraints. The method was based on the inexact Newton backtracking technique
and the direction was obtained by minimization of a linear system together with the
constrained condition at each iteration. Also, in [22] Wang et al. presented a modification
of the method in [18], and the global convergence as well as the super-linear rate of
convergence were established under same conditions in [23]. However, the direction of the
methods in [18, 22] were determined by minimization of linear equations at each step. In
trying to avoid solving the linear equation to obtain the direction at each step, Xiao and
Zhu [26] proposed a projected CG methods, which combines the CG-DESCENT method
in [10] and the projection technique by Solodov and Svaiter [19]. In [14], a modification
of the method in [26] was proposed by Liu and Li. The advantage of this modification
was that it improves the numerical performance of the method in [26] and still retains
its nice properties. Furthermore, Wang et al. [24] proposed a self-adaptive three-term
CG methods for solving constrained nonlinear monotone equations. The method can be
viewed as combination of the CG methods, the projection method and the self-adaptive
method.

Motivated by the above methods, we propose a modification of the method in [24] for
solving nonlinear monotone equations with convex constraints. The modification improves
the numerical performance of the method in [24] and still inherits its nice properties. The
difference between the two methods is that yk−1 in [24] is replaced by wk−1 (More details
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can be found in the next section). Under appropriate conditions, the global convergence of
the proposed method is established. Numerical results presented show that the proposed
method is efficient and promising compared to some similar existing algorithms.

The remaining part of this paper is organized as follows. In section 2, we state some
preliminaries and then present the algorithm. The global convergence of the proposed
method is proved in section 3. In section 4, we report some numerical experiments to
show its performance in solving nonlinear monotone equations with convex constraints,
and lastly apply it to solve some signal recovery problems.

2. Preliminaries and algorithm

This section gives some basic concepts and properties of the projection mapping as
well as some assumptions. ∥ · ∥ denotes the Euclidean norm throughout the paper.

Definition 2.1. Let Ω ⊂ Rn be a nonempty closed convex set. Then for any x ∈ Rn, its
orthogonal projection onto Ω, denoted by PΩ(x), is defined by

PΩ(x) = argmin{∥x− y∥ : y ∈ Ω}.

The following lemma provides us with some well-known properties of the projection
mapping.

Lemma 2.2. [24] Let Ω ⊂ Rn be a nonempty, closed and convex set. Then the following
statements are true:

1. (x− PΩ(x))
T (PΩ(x)− z) ≥ 0, ∀x ∈ Rn, z ∈ Ω.

2. ∥PΩ(x)− PΩ(y)∥ ≤ ∥x− y∥, ∀x, y ∈ Rn.
3. ∥PΩ(x)− z∥2 ≤ ∥x− z∥2 − ∥x− PΩ(x)∥2, ∀x ∈ Rn, z ∈ Ω.

All through this article, we assume the following

(A1) The solution set of (1.1), denoted by Ω
′
, is nonempty.

(A2) The mapping F is monotone, that is,

(F (x)− F (y))T (x− y) ≥ 0, ∀x, y ∈ Rn.

(A3) The mapping F (.) is Lipschitz continuous, that is there exists a positive con-
stant L such that

∥F (x)− F (y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn.

Algorithm 2.3. Modified Self-adaptive CG method (MSCG)

Step 0. Given an arbitrary initial point x0 ∈ Ω, parameters β > 0, r > 0, 0 < µ < 2,
σ > 0, 0 < ρ < 1, Tol > 0, and set k := 0.

Step 1. If ∥F (xk)∥ ≤ Tol, stop, otherwise go to Step 2.
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Step 2. Compute

dk =

{
−F (xk), if k = 0,

−F (xk) + β
′

kdk−1 − θ
′

kwk−1, if k ≥ 1,
(2.1)

where

β
′

k =
F (xk)

Twk−1

dTk−1wk−1
, θ

′

k =
F (xk)

T dk−1

dTk−1wk−1
(2.2)

yk−1 = F (xk)− F (xk−1) + rsk−1, sk−1 = xk − xk−1, (2.3)

wk−1 = yk−1 + tk−1dk−1, tk−1 = 1 +max

{
0,−

dTk−1yk−1

dTk−1dk−1

}
. (2.4)

Step 3. Compute the step length αk = βρmk and mk is the smallest non-negative
integer m such that

−⟨F (xk + βρmdk), dk⟩ ≥ σβρm∥dk∥2. (2.5)

Step 4. Set zk = xk + αkdk and compute

xk+1 = PΩ[xk − µζkF (zk)]

where

ζk =
F (zk)

T (xk − zk)

∥F (zk)∥2
.

Step 5. Let k = k + 1 and go to Step 1.

It can be observed that the modification made is by replacing βHS
k , θk in [24] with β

′

k,

θ
′

k respectively in the proposed algorithm.

Remark 2.4.

F (xk)
T dk

= −F (xk)
TF (xk) +

F (xk)
T (F (xk)

Twk−1)dk−1 − F (xk)
T (F (xk)

T dk−1)wk−1

dTk−1wk−1

= −∥F (xk)∥2 +
(F (xk)

T dk−1)(F (xk)
Twk−1)− (F (xk)

Twk−1)(F (xk)
T dk−1)

dTk−1wk−1

= −∥F (xk)∥2.
(2.6)

Using Cauchy-Schwartz inequality, we get

∥F (xk)∥ ≤ ∥dk∥. (2.7)

Remark 2.5. From the definition of wk−1, tk−1 and (2.7), we have

dTk−1wk−1 ≥ dTk−1yk−1 + ∥dk−1∥2 − dTk−1yk−1 = ∥dk−1∥2 (2.8)
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3. Convergence analysis

To prove the global convergence of Algorithm 2.3, the following lemmas are needed.
The following lemma shows that Algorithm 2.3 is well-defined.

Lemma 3.1. Suppose that assumptions (A1)-(A3) hold, then there exists a step-length
αk satisfying the line search (2.5) ∀k ≥ 0.

Proof. Suppose there exists k0 ≥ 0 such that (2.5) does not hold for any non-negative
integer i, i.e.,

−⟨F (xk0
+ βρidk0

), dk0
⟩ < σβρi∥dk0

∥2.

Using assumption (A3) and allowing i → ∞, we get

−⟨F (xk0
), dk0

⟩ ≤ 0. (3.1)

Also from (2.6), we have

−⟨F (xk0), dk0⟩ = ∥F (xk0)∥2 > 0,

which contradicts (3.1). The proof is complete.

Lemma 3.2. Suppose that (A3) hold and the sequences {xk} and {zk} be generated by
Algorithm 2.3. The we have

αk ≥ ρmin

{
β, ρ

∥F (xk)∥2

(L+ σ)∥dk∥2

}
.

Proof. Suppose αk ̸= β, then αk

ρ does not satisfy equation (2.5), that is

−F

(
xk +

αk

ρ
dk

)T

dk < σ
αk

ρ
∥dk∥2.

This combined with (2.6) and the fact that F is Lipschitz continuous yields

∥F (xk)∥2 = −F (xk)
T dk

=

(
F (xk +

αk

ρ
dk)− F (xk)

)T

dk − F

(
xk +

αk

ρ
dk

)T

dk

≤ L
αk

ρ
∥dk∥2 + σ

αk

ρ
∥dk∥2

=
L+ σ

ρ
αk∥dk∥2.

(3.2)

The above equation implies

αk ≥ ρ
∥F (xk)∥2

(L+ σ)∥dk∥2
,

which completes the proof.
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Bangmod Int. J. Math. & Comp. Sci., 2019 ISSN: 2408-154X 6

Lemma 3.3. Suppose that assumptions (A1)-(A3) hold, then the sequences {xk} and
{zk} generated by Algorithm 2.3 are bounded. Moreover, we have

lim
k→∞

∥xk − zk∥ = 0, (3.3)

and

lim
k→∞

∥xk+1 − xk∥ = 0. (3.4)

Proof. We will start by showing that the sequences {xk} and {zk} are bounded. Suppose

x̄ ∈ Ω
′
, then by monotonicity of F , we get

⟨F (zk), xk − x̄⟩ ≥ ⟨F (zk), xk − zk⟩. (3.5)

Also by definition of zk and the line search (2.5), we have

⟨F (zk), xk − zk⟩ ≥ σα2
k∥dk∥2 ≥ 0. (3.6)

So, we have

∥xk+1 − x̄∥2

= ∥PΩ[xk − µζkF (zk)]− x̄∥2

≤ ∥xk − µζkF (zk)− x̄∥2

= ∥xk − x̄∥2 − 2µζk⟨F (zk), xk − x̄⟩+ ∥µζkF (zk)∥2

= ∥xk − x̄∥2 − 2µ
⟨F (zk), xk − zk⟩

∥F (zk)∥2
⟨F (zk), xk − x̄⟩+ µ2

(
⟨F (zk), xk − zk⟩

∥F (zk)∥

)2

≤ ∥xk − x̄∥2 − 2µ
⟨F (zk), xk − zk⟩

∥F (zk)∥2
⟨F (zk), xk − zk⟩+ µ2

(
⟨F (zk), xk − zk⟩

∥F (zk)∥

)2

≤ ∥xk − x̄∥2 − µ(2− µ)

(
⟨F (zk), xk − zk⟩

∥F (zk)∥

)2

= ∥xk − x̄∥2 − µ(2− µ)
σ2∥xk − zk∥4

∥F (zk)∥2
.

(3.7)

Thus the sequence {∥xk − x̄∥} is non increasing and convergent, and hence {xk} is
bounded. Furthermore, from equation (3.7), we have

∥xk+1 − x̄∥2 ≤ ∥xk − x̄∥2, (3.8)

and we can deduce recursively that

∥xk − x̄∥2 ≤ ∥x0 − x̄∥2, ∀k ≥ 0.
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Then from Assumption (A3), we obtain

∥F (xk)∥ = ∥F (xk)− F (x̄)∥ ≤ L∥xk − x̄∥ ≤ L∥x0 − x̄∥.
If we let L∥x0 − x̄∥ = ω, then the sequence {F (xk)} is bounded, that is,

∥F (xk)∥ ≤ ω, ∀k ≥ 0. (3.9)

By the definition of zk, equation (3.6), monotonicity of F and the Cauchy-Schwatz in-
equality, we get

σ∥xk − zk∥ =
σ∥αkdk∥2

∥xk − zk∥
≤ ⟨F (zk), xk − zk⟩

∥xk − zk∥
≤ ⟨F (xk), xk − zk⟩

∥xk − zk∥
≤ ∥F (xk)∥.

(3.10)

The boundedness of the sequence {xk} together with equations (3.9)-(3.10), implies that
the sequence {zk} is bounded.

Since {zk} is bounded, then for any x̄ ∈ Ω
′
, the sequence {zk − x̄} is also bounded,

that is, there exists a positive constant ν > 0 such that

∥zk − x̄∥ ≤ ν, ∀k ≥ 0.

This together with Assumption (A3) yields

∥F (zk)∥ = ∥F (zk)− F (x̄)∥ ≤ L∥zk − x̄∥ ≤ Lν.

Therefore, using equation (3.7), we have

µ(2− µ)
σ2

(Lν)2
∥xk − zk∥4 ≤ ∥xk − x̄∥2 − ∥xk+1 − x̄∥2,

which implies

µ(2− µ)
σ2

(Lν)2

∞∑
k=0

∥xk − zk∥4 ≤
∞∑
k=0

(∥xk − x̄∥2 − ∥xk+1 − x̄∥2) ≤ ∥x0 − x̄∥ < ∞.

(3.11)

Equation (3.11) implies

lim
k→∞

∥xk − zk∥ = 0.

However, using statement 2 of lemma 2.2, the definition of ζk and the Cauchy-Schwatz
inequality, we have

∥xk+1 − xk∥ = ∥PΩ[xk − µζkF (zk)]− xk∥

= ∥xk − µζkF (zk)− xk∥

= ∥µζkF (zk)∥

= µ∥xk − zk∥, ∀k ≥ 0,

(3.12)

which yields

lim
k→∞

∥xk+1 − xk∥ = 0.

Bangmod-JMCS−jmcs@kmutt.ac.th c⃝2019 By TaCS Center.
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Remark 3.4. By equation (3.3) and definition of zk, we have

lim
k→∞

αk∥dk∥ = 0. (3.13)

Theorem 3.5. Suppose that assumptions (A1)-(A3) hold and let the sequence {xk} be
generated by Algorithm 2.3, then

lim inf
k→∞

∥F (xk)∥ = 0. (3.14)

Proof. Assume that equation (3.14) is not true, then there exists a constant ϵ > 0 such
that

∥F (xk)∥ ≥ ϵ, ∀k ≥ 0. (3.15)

We will first show that the sequence {dk} is bounded. From the definition of tk−1, we
have

|tk−1| =

∣∣∣∣∣1 +max

{
0,−

dTk−1yk−1

∥dk−1∥2

}∣∣∣∣∣
≤ 1 +

|dTk−1yk−1|
∥dk−1∥2

≤ 1 +
∥dk−1∥∥yk−1∥

∥dk−1∥2

= 1 +
∥yk−1∥
∥dk−1∥

.

(3.16)

Also from definition of yk−1 and assumption (A3), we have

∥yk−1∥ ≤ ∥F (xk)− F (xk−1)∥+ r∥sk−1∥

≤ (L+ r)∥sk−1∥

≤ (L+ r)αk−1∥dk−1∥.

(3.17)

Bangmod-JMCS−jmcs@kmutt.ac.th c⃝2019 By TaCS Center.



Bangmod Int. J. Math. & Comp. Sci., 2019 ISSN: 2408-154X 9

Furthermore by definition of wk−1, (3.16) and (3.17), we obtain

∥wk−1∥ = ∥yk−1 + tk−1dk−1∥

≤ ∥yk−1∥+ |tk−1|∥dk−1∥

≤ (L+ r)αk−1∥dk−1∥+
(
1 +

∥yk−1∥
∥dk−1∥

)
∥dk−1∥

= (L+ r)αk−1∥dk−1∥+ ∥dk−1∥+ ∥yk−1∥

≤ (2(L+ r)αk−1 + 1)∥dk−1∥.

(3.18)

Therefore, by (2.1), (2.8), (3.9), (3.18) and Cauchy-Schwatz inequality, we have

∥dk∥ ≤ ∥F (xk)∥+
∥F (xk)∥∥wk−1∥∥dk−1∥

|dTk−1wk−1|
+

∥F (xk)∥∥dk−1∥∥wk−1∥
|dTk−1wk−1|

≤ ∥F (xk)∥+ (4(L+ r)αk−1 + 2)∥F (xk)∥

= (1 + 4(L+ r)αk−1 + 2)∥F (xk)∥

≤ (1 + 4(L+ r)β + 2)ω.

(3.19)

Letting C = (1 + 4(L+ r)β + 2)ω, then ∥dk∥ ≤ C, ∀k ≥ 0.
Combining (2.7) and (3.15), we have

∥dk∥ ≥ ∥F (xk)∥ ≥ ϵ, ∀k ≥ 0.

As zk = xk + αkdk and limk→∞ ∥xk − zk∥ = 0, we get limk→∞ αk∥dk∥ = 0 and

lim
k→∞

αk = 0. (3.20)

On the other side, lemma 3.2 and (3.19) imply αk∥dk∥ ≥ min
{
βϵ ϵ2

(L+σ)C2

}
, which con-

tradicts with (3.20). Therefore, (3.14) must hold.

4. Some Applications and Numerical examples

This section reports some numerical results to show the efficiency of Algorithm 2.3.
For convenience sake, we denote Algorithm 2.3 by MSCG method. We also divide this
section into two. First we compare MSCG method with PCG method [14] by solving
some monotone nonlinear equations with convex constraints using different initial points
and several dimensions. Secondly, the MSCG method is applied to solve signal recovery
problems. All codes were written in MATLAB R2017a and run on a PC with intel
COREi5 processor with 4GB of RAM and CPU 2.3GHZ.

Bangmod-JMCS−jmcs@kmutt.ac.th c⃝2019 By TaCS Center.



Bangmod Int. J. Math. & Comp. Sci., 2019 ISSN: 2408-154X 10

4.1. Numerical examples on some convex constrained nonlinear mono-

tone equations

Same line search implementation was used for both MSCG and PCG and the specific
parameters used for each method are as follows:

MSCG method: β = 1, µ = 1.8, ρ = 0.6, r = 0.1, σ = 0.0001.

PCG method: All parameters are choosen as in [14].

All runs were stopped whenever

∥F (xk)∥ < 10−6.

We test problems 1 to 9 with dimensions of n = 1000, 5000, 10, 000, 50, 000, 100, 000
and different initial points: x1 = (1, 1, ..., 1)T , x2 = (2, 2, ..., 2)T , x3 = (3, 3, ..., 3)T ,
x4 = (5, 5, ..., 5)T , x5 = (8, 8, ..., 8)T , x6 = (0.5, 0.5, ...0.5)T , x7 = (0.1, 0.1, ..., 0.1)T ,
x8 = (10, 10, ..., 10)T . The numerical results in Tables 1-9 report the number of itera-
tions (ITER), number of function evaluations (FVAL), CPU time in seconds (TIME) and
the norm at the approximate solution (NORM). The symbol ’−’ is used to indicate that
the number of iterations exceeds 1000 and/or the number of function evaluations exceeds
2000.

The problem functions F (x) = (f1(x), f2(x), ..., fn(x))
T , where x = (x1, x2, ..., xn)

T ,
and feasible sets Ω ⊂ Rn tested are listed as follows:

Problem 1 Modified exponential function

F1(x) = ex1 − 1

Fi(x) = exi + xi−1 − 1 for i = 2, 3, ..., n

and Ω = Rn
+.

Problem 2 Logarithmic Function

Fi(x) = ln(|xi|+ 1)− xi

n
, for i = 2, 3, ..., n and Ω = Rn

+.

Problem 3 [29]

Fi(x) = 2xi − sin |xi|, i = 1, 2, 3, ..., n and Ω = Rn
+.

Problem 4 [13]

Fi(x) = min
(
min(|xi|, x2

i ),max(|xi|, x3
i )
)
for i = 2, 3, ..., n and Ω = Rn

+.

Problem 5 Strictly convex function [23]

Fi(x) = exi − 1, for i = 2, 3, ..., n and Ω = Rn
+.

Bangmod-JMCS−jmcs@kmutt.ac.th c⃝2019 By TaCS Center.
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Problem 6 Linear monotone problem

F1(x) = 2.5x1 + x2 − 1

Fi(x) = xi−1 + 2.5xi + xi+1 − 1 for i = 2, 3, ..., n− 1

Fn(x) = xn−1 + 2.5xn − 1

and Ω = Rn
+.

Problem 7 Tridiagonal Exponential Problem [4]

F1(x) = x1 − ecos(h(x1+x2))

Fi(x) = xi − ecos(h(xi−1+xi+xi+1)) for i = 2, 3, ..., n− 1

Fn(x) = xn − ecos(h(xn−1+xn)),

where h =
1

n+ 1
and Ω = Rn

+.

Problem 8

F1(x) = 3x3
1 + 2x2 − 5 + sin(x1 − x2) sin(x1 + x2)

Fi(x) = 3x3
i + 2xi+1 − 5 + sin(xi − xi+1) sin(xi + xi+1) + 4xi − xi−1e

xi−1−xi − 3

for i = 2, 3, ..., n− 1

Fn(x) = xn−1e
xn−1−xn − 4xn − 3,

where h =
1

n+ 1
and Ω = Rn

+.

Problem 9

Fi(x) = xi − sin |xi − 1|, i = 1, 2, 3, ..., n and Ω = Rn
+.

The numerical results indicate that the MSCG method is more effective than the PCG
method for the given problems as it solves and win 7 out of 9 of the problems tested
both in terms of number of iterations, number of function evaluations and CPU time (see
Tables 1-7). In particular, the PCG method fails to solve problems 4 completely while
MSCG was able to solve all the problems except for the initial points x6 and x7 (see
Table 4). Therefore, we can conclude that MSCG method is a very effecient tool for
solving nonlinear monotone equations with convex constraints, especially for large-scale
dimensions.

4.2. Experiments on solving some signal recovery problems in com-

pressive sensing

There are many problems in signal processing and statistical inference involving finding
sparse solutions to ill-conditioned linear systems of equations. Among popular approach
is minimizing an objective function which contains quadratic (ℓ2) error term and a sparse
ℓ1−regularization term, i.e.,

min
x

1

2
∥y −Ax∥22 + τ∥x∥1, (4.1)
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Table 1. Numerical Results for MSCG and PCG for Problem 1 with
given initial points and dimensions

MSCG PCG

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 2 9 0.007489 0 52 189 0.110321 8.55E-07
x2 2 10 0.005551 0 56 204 0.035141 8.99E-07
x3 2 11 0.014899 0 56 205 0.033533 8.39E-07
x4 2 14 0.006243 0 65 237 0.041638 8.27E-07
x5 2 19 0.006022 0 78 310 0.05362 9.48E-07
x6 2 9 0.002681 0 54 196 0.035021 6.83E-07
x7 2 9 0.004044 0 49 178 0.042635 7.85E-07
x8 2 23 0.005336 0 69 266 0.043962 8.44E-07

5000

x1 2 9 0.022857 0 50 183 0.09149 9.98E-07
x2 2 10 0.006854 0 56 205 0.103092 6.81E-07
x3 2 11 0.011049 0 54 199 0.104065 9.9E-07
x4 2 14 0.011355 0 64 234 0.115013 9.48E-07
x5 2 19 0.013144 0 70 278 0.131778 8.96E-07
x6 2 9 0.012189 0 53 193 0.09886 7.86E-07
x7 2 9 0.009516 0 47 172 0.095304 9.24E-07
x8 2 23 0.014401 0 70 269 0.128741 6.8E-07

10000

x1 2 9 0.017626 0 51 187 0.173696 6.85E-07
x2 2 10 0.013878 0 55 202 0.242626 7.46E-07
x3 2 11 0.016471 0 55 203 0.181091 6.79E-07
x4 2 14 0.016887 0 64 234 0.207939 9.63E-07
x5 2 19 0.019661 0 87 467 0.370102 9.32E-07
x6 2 9 0.011591 0 52 190 0.166351 8.5E-07
x7 2 9 0.011988 0 46 169 0.15083 1E-06
x8 2 23 0.022006 0 68 262 0.215882 9.85E-07

50000

x1 2 9 0.040326 0 49 181 0.707163 8.25E-07
x2 2 10 0.039481 0 54 199 0.901824 8.74E-07
x3 2 11 0.044192 0 53 197 0.779749 8.21E-07
x4 2 14 0.066019 0 63 232 1.047125 7.61E-07
x5 2 19 0.062454 0 73 293 1.479499 7.54E-07
x6 2 9 0.038738 0 51 187 0.769376 9.74E-07
x7 2 9 0.048211 0 46 170 0.650199 7.66E-07
x8 2 23 0.075239 0 68 262 1.034824 9.43E-07

100000

x1 2 9 0.071954 0 49 181 1.456718 8.7E-07
x2 2 10 0.070337 0 53 196 1.564101 9.51E-07
x3 2 11 0.129537 0 53 197 1.632904 8.69E-07
x4 2 14 0.103765 0 62 229 1.858922 8.28E-07
x5 2 19 0.132033 0 91 394 2.909579 9.4E-07
x6 2 9 0.066613 0 51 188 1.480664 7.13E-07
x7 2 9 0.070007 0 46 170 1.334943 8.04E-07
x8 2 23 0.158984 0 68 262 1.981132 9.39E-07

where x ∈ Rn, y ∈ Rk is an observation, A ∈ Rk×n (k << n) is a linear operator, τ is a
nonnegative parameter, ∥x∥2 denotes the Euclidean norm of x and ∥x∥1 =

∑n
i=1 |xi| is the

ℓ1−norm of x. It is easy to see that problem (4.1) is a convex unconstrained minimization
problem. Due to the fact that if the original signal is sparse or approximately sparse in
some orthogonal basis, problem (4.1) frequently appears in compressive sensing, and hence
an exact restoration can be produced by solving (4.1).
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Table 2. Numerical Results for MSCG and PCG for Problem 2 with
given initial points and dimensions

MSCG PCG

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 2 7 0.002287 0 4 9 0.005149 0
x2 3 10 0.002837 0 5 11 0.005127 0
x3 3 10 0.0042 0 6 13 0.004934 0
x4 3 10 0.004002 0 7 15 0.006266 0
x5 4 13 0.004927 0 9 19 0.009583 0
x6 2 7 0.002839 0 3 7 0.003695 0
x7 2 7 0.003192 0 2 5 0.003077 0
x8 5 16 0.005398 0 10 21 0.008973 0

5000

x1 2 7 0.005581 0 4 9 0.009838 0
x2 3 10 0.012182 0 5 11 0.012215 0
x3 3 10 0.014385 0 6 13 0.016737 0
x4 3 10 0.009594 0 7 15 0.017589 0
x5 4 13 0.011344 0 9 19 0.020153 0
x6 2 7 0.007545 0 3 7 0.010968 0
x7 2 7 0.006425 0 2 5 0.008253 0
x8 5 16 0.018064 0 10 21 0.024443 0

10000

x1 2 7 0.01418 0 4 9 0.018819 0
x2 3 10 0.014155 0 5 11 0.021572 0
x3 3 10 0.014925 0 6 13 0.024532 0
x4 3 10 0.014886 0 7 15 0.028731 0
x5 4 13 0.017717 0 9 19 0.033857 0
x6 2 7 0.010365 0 3 7 0.018178 0
x7 2 7 0.010509 0 2 5 0.012152 0
x8 5 16 0.022966 0 10 21 0.037341 0

50000

x1 2 7 0.032816 0 4 9 0.059874 0
x2 3 10 0.057053 0 5 11 0.080753 0
x3 3 10 0.047544 0 6 13 0.088801 0
x4 3 10 0.045036 0 7 15 0.102315 0
x5 4 13 0.063642 0 9 19 0.129467 0
x6 2 7 0.034852 0 3 7 0.054439 0
x7 2 7 0.035797 0 2 5 0.035327 0
x8 5 16 0.087191 0 10 21 0.143865 0

100000

x1 2 7 0.057021 0 4 9 0.119186 0
x2 3 10 0.091601 0 5 11 0.144375 0
x3 3 10 0.0876 0 6 13 0.176278 0
x4 3 10 0.11867 0 7 15 0.202121 0
x5 4 13 0.122207 0 9 19 0.254424 0
x6 2 7 0.061273 0 3 7 0.092884 0
x7 2 7 0.086732 0 2 5 0.064906 0
x8 5 16 0.137848 0 10 21 0.279527 0

Iterative methods for solving (4.1) have been presented in many literatures, (see [2,
5, 7, 8, 12, 21]). The most popular method among these methods is the gradient based
method and the earliest gradient projection method for sparse reconstruction (GPRS)
was proposed by Figueiredo et al. [8]. The first step of the GPRS method is to express
(4.1) as a quadratic problem using the following process.
Let x ∈ Rn and splitting it into its positive and negative parts. Then x can be formulated
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Table 3. Numerical Results for MSCG and PCG for Problem 3 with
given initial points and dimensions

MSCG PCG

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 2 8 0.002131 0 11 29 0.007647 5.91E-07
x2 2 8 0.002618 0 11 29 0.006415 9.95E-07
x3 2 9 0.003474 0 11 30 0.007009 7.4E-07
x4 2 9 0.003267 0 13 36 0.010125 5.86E-07
x5 2 9 0.002792 0 12 34 0.006802 1.45E-07
x6 2 8 0.003134 0 11 29 0.008319 6.19E-07
x7 2 8 0.00293 0 10 26 0.008698 3.51E-07
x8 2 9 0.003217 0 12 34 0.011399 1.02E-07

5000

x1 2 8 0.004982 0 12 31 0.023695 1.23E-07
x2 2 8 0.007135 0 12 32 0.024907 9.71E-07
x3 2 9 0.009629 0 12 33 0.024784 7.22E-07
x4 2 9 0.009662 0 14 38 0.028132 1.22E-07
x5 2 9 0.007819 0 12 34 0.025162 3.25E-07
x6 2 8 0.006236 0 12 31 0.022688 1.28E-07
x7 2 8 0.00624 0 10 26 0.019349 7.85E-07
x8 2 9 0.006238 0 12 34 0.026113 2.27E-07

10000

x1 2 8 0.008726 0 12 31 0.042552 1.73E-07
x2 2 8 0.012242 0 13 34 0.04396 1.27E-07
x3 2 9 0.012729 0 13 35 0.041531 9.47E-08
x4 2 9 0.012833 0 14 38 0.043616 1.72E-07
x5 2 9 0.008266 0 12 34 0.040575 4.59E-07
x6 2 8 0.018599 0 12 31 0.037381 1.81E-07
x7 2 8 0.009012 0 11 29 0.034501 4.84E-07
x8 2 9 0.009328 0 12 34 0.042223 3.21E-07

50000

x1 2 8 0.032446 0 12 31 0.139558 3.88E-07
x2 2 8 0.04508 0 13 34 0.153158 2.85E-07
x3 2 9 0.035499 0 13 35 0.154392 2.12E-07
x4 2 9 0.043984 0 14 38 0.165244 3.85E-07
x5 2 9 0.037903 0 13 37 0.162555 4.48E-07
x6 2 8 0.03081 0 12 31 0.135904 4.06E-07
x7 2 8 0.031101 0 12 31 0.133471 1.01E-07
x8 2 9 0.034806 0 12 34 0.148058 7.18E-07

100000

x1 2 8 0.063409 0 12 31 0.272996 5.48E-07
x2 2 8 0.064054 0 13 34 0.298372 4.03E-07
x3 2 9 0.085457 0 13 35 0.303707 2.99E-07
x4 2 9 0.065247 0 14 38 0.329149 5.44E-07
x5 2 9 0.070299 0 13 37 0.324363 6.34E-07
x6 2 8 0.058418 0 12 31 0.272816 5.74E-07
x7 2 8 0.056572 0 12 31 0.274954 1.42E-07
x8 2 9 0.092306 0 13 37 0.357351 4.43E-07

as

x = u− v, u ≥ 0, v ≥ 0,

where ui = (xi)+, vi = (−xi)+ for all i = 1, 2, ..., n, and (.)+ = max{0, .}. By definition
of ℓ1-norm, we have ∥x∥1 = eTnu+ eTnv, where en = (1, 1, ..., 1)T ∈ Rn. Now (4.1) can be
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Table 4. Numerical Results for MSCG and PCG for Problem 4 with
given initial points and dimensions

MSCG PCG

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 2 8 0.002519 0 - - - -
x2 2 8 0.004286 0 - - - -
x3 2 8 0.003714 0 - - - -
x4 2 8 0.004556 0 - - - -
x5 2 8 0.005003 0 - - - -
x6 - - - - - - - -
x7 - - - - - - - -
x8 2 8 0.002868 0 - - - -

5000

x1 2 8 0.012432 0 - - - -
x2 2 8 0.011534 0 - - - -
x3 2 8 0.009014 0 - - - -
x4 2 8 0.008944 0 - - - -
x5 2 8 0.009143 0 - - - -
x6 - - - - - - - -
x7 - - - - - - - -
x8 2 8 0.010586 0 - - - -

10000

x1 2 8 0.013601 0 - - - -
x2 2 8 0.017482 0 - - - -
x3 2 8 0.020485 0 - - - -
x4 2 8 0.016717 0 - - - -
x5 2 8 0.016828 0 - - - -
x6 - - - - - - - -
x7 - - - - - - - -
x8 2 8 0.014088 0 - - - -

50000

x1 2 8 0.059616 0 - - - -
x2 2 8 0.068817 0 - - - -
x3 2 8 0.064686 0 - - - -
x4 2 8 0.061062 0 - - - -
x5 2 8 0.067814 0 - - - -
x6 - - - - - - - -
x7 - - - - - - - -
x8 2 8 0.064979 0 - - - -

100000

x1 2 8 0.115326 0 - - - -
x2 2 8 0.120746 0 - - - -
x3 2 8 0.135422 0 - - - -
x4 2 8 0.138436 0 - - - -
x5 2 8 0.129448 0 - - - -
x6 - - - - - - - -
x7 - - - - - - - -
x8 2 8 0.120702 0 - - - -

written as

min
u,v

1

2
∥y −A(u− v)∥22 + τeTnu+ τeTnv, u ≥ 0, v ≥ 0, (4.2)
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Table 5. Numerical Results for MSCG and PCG for Problem 5 with
given initial points and dimensions

MSCG PCG

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 2 9 0.00237 0 11 29 0.006732 1.54E-07
x2 2 10 0.002475 0 11 30 0.007149 1.79E-07
x3 2 11 0.002987 0 13 39 0.009395 2.64E-07
x4 2 14 0.003295 0 12 37 0.008608 2.18E-07
x5 2 19 0.00434 0 12 41 0.009546 2.64E-07
x6 2 8 0.00273 0 11 29 0.00746 2.65E-07
x7 2 8 0.003503 0 10 26 0.009129 2.28E-07
x8 2 23 0.004658 0 1 14 0.003566 0

5000

x1 2 9 0.009611 0 11 29 0.01907 3.45E-07
x2 2 10 0.006664 0 11 30 0.019865 4E-07
x3 2 11 0.006446 0 13 39 0.02496 5.9E-07
x4 2 14 0.008092 0 12 37 0.024694 4.88E-07
x5 2 19 0.012408 0 12 41 0.02616 5.9E-07
x6 2 8 0.009391 0 11 29 0.020571 5.91E-07
x7 2 8 0.005317 0 10 26 0.019593 5.1E-07
x8 2 23 0.02448 0 1 14 0.010907 0

10000

x1 2 9 0.007472 0 11 29 0.029425 4.87E-07
x2 2 10 0.012876 0 11 30 0.030602 5.65E-07
x3 2 11 0.011031 0 13 39 0.039 8.34E-07
x4 2 14 0.011727 0 12 37 0.03542 6.9E-07
x5 2 19 0.025132 0 12 41 0.035758 8.34E-07
x6 2 8 0.006515 0 11 29 0.028215 8.36E-07
x7 2 8 0.008092 0 10 26 0.03742 7.21E-07
x8 2 23 0.019344 0 1 14 0.012921 0

50000

x1 2 9 0.028692 0 12 32 0.114236 4.75E-07
x2 2 10 0.030939 0 12 33 0.128343 5.51E-07
x3 2 11 0.03574 0 14 42 0.145184 8.13E-07
x4 2 14 0.042175 0 13 40 0.134906 6.73E-07
x5 2 19 0.051753 0 13 44 0.151662 8.14E-07
x6 2 8 0.030385 0 12 32 0.112251 8.16E-07
x7 2 8 0.025703 0 11 29 0.236718 7.04E-07
x8 2 23 0.074049 0 1 14 0.072093 0

100000

x1 2 9 0.051896 0 12 32 0.379062 6.72E-07
x2 2 10 0.057322 0 12 33 0.296027 7.8E-07
x3 2 11 0.074678 0 15 44 0.420986 1.07E-07
x4 2 14 0.073831 0 13 40 0.37295 9.52E-07
x5 2 19 0.112341 0 14 46 0.371747 1.07E-07
x6 2 8 0.044526 0 13 34 0.3338 1.07E-07
x7 2 8 0.050034 0 11 29 0.274607 9.95E-07
x8 2 23 0.105816 0 1 14 0.079056 0

which is a bound-constrained quadratic program. However, from [8], equation (4.2) can
be written in standard form as

min
z

1

2
zTDz + cT z, such that z ≥ 0, (4.3)
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Table 6. Numerical Results for MSCG and PCG for Problem 6 with
given initial points and dimensions

MSCG PCG

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 38 243 0.026874 4.9E-07 80 366 0.04524 8.69E-07
x2 58 367 0.045364 5.9E-07 64 295 0.04116 9.27E-07
x3 58 365 0.040542 6.6E-07 81 371 0.04937 9.38E-07
x4 45 288 0.035103 9.3E-07 92 420 0.0599 9.21E-07
x5 43 276 0.036887 4.9E-07 98 447 0.06313 9.72E-07
x6 55 348 0.046344 8.2E-07 88 401 0.05872 8.89E-07
x7 48 304 0.037347 6.5E-07 93 423 0.05981 8.67E-07
x8 39 251 0.032886 7.3E-07 102 465 0.0686 8.53E-07

5000

x1 39 250 0.095043 9E-07 77 353 0.16437 9.81E-07
x2 55 348 0.154642 6.3E-07 63 291 0.14918 8.23E-07
x3 43 275 0.1028 4.9E-07 80 367 0.17072 8.51E-07
x4 34 223 0.080845 4.9E-07 91 416 0.20171 8.36E-07
x5 51 322 0.122567 9.5E-07 97 443 0.24548 8.84E-07
x6 39 252 0.121755 8.1E-07 85 388 0.18099 9.98E-07
x7 35 226 0.119903 7.1E-07 90 410 0.19088 9.71E-07
x8 53 335 0.116079 4.8E-07 99 452 0.20959 9.56E-07

10000

x1 42 270 0.247204 9.4E-07 76 349 0.33826 9.6E-07
x2 42 271 0.195421 7.3E-07 61 282 0.26813 9.8E-07
x3 39 252 0.227771 1E-06 80 367 0.3535 8.11E-07
x4 55 346 0.253661 7.8E-07 88 403 0.40217 9.94E-07
x5 39 252 0.215484 4.2E-07 96 439 0.42976 8.6E-07
x6 40 257 0.193518 6.3E-07 84 384 0.36918 9.64E-07
x7 40 259 0.1937 8.9E-07 90 410 0.39508 9.38E-07
x8 44 284 0.234578 4.8E-07 98 448 0.44134 9.32E-07

50000

x1 66 417 1.357417 8.7E-07 76 349 1.42871 8.74E-07
x2 57 362 1.174249 5.3E-07 60 278 1.11554 8.73E-07
x3 53 338 1.175447 8.1E-07 77 354 1.47994 9.12E-07
x4 54 343 1.148698 5.3E-07 87 399 1.64205 9.08E-07
x5 64 403 1.332901 5.5E-07 93 426 1.76483 9.69E-07
x6 57 361 1.156373 9.7E-07 83 380 1.58523 8.85E-07
x7 56 356 1.183557 6.7E-07 89 406 1.65191 8.53E-07
x8 69 434 1.42208 6.9E-07 98 448 1.84774 8.45E-07

100000

x1 57 363 2.595996 7.4E-07 75 345 3.36307 8.42E-07
x2 48 309 2.27289 9.2E-07 60 278 2.64065 8.38E-07
x3 56 359 2.542895 5.3E-07 76 350 3.48779 8.89E-07
x4 65 412 2.914784 9.9E-07 87 399 3.83986 8.66E-07
x5 59 376 2.674455 7.6E-07 93 426 4.06354 9.21E-07
x6 61 386 2.776046 7.1E-07 83 380 3.60289 8.44E-07
x7 52 333 2.472388 4.6E-07 88 402 3.86873 8.22E-07
x8 51 327 2.367317 8.5E-07 95 435 4.3091 9.98E-07

where z =

(
u
v

)
, c = τe2n +

(
−b
b

)
, b = AT y, D =

(
ATA −ATA
−ATA ATA

)
.

Clearly, D is a positive semi-definite matrix, which implies that equation (4.3) is a convex
quadratic problem.

Xiao et al. [26] translated (4.3) into a linear variable inequality problem which is
equivalent to a linear complementarity problem. Furthermore, they pointed out that z
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Table 7. Numerical Results for MSCG and PCG for Problem 7 with
given initial points and dimensions

MSCG PCG

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 9 37 0.012528 9.18E-08 12 31 0.010964 2.45E-07
x2 8 33 0.008634 4.79E-07 12 31 0.014242 1.02E-07
x3 8 33 0.012001 1.88E-07 10 26 0.007035 9.94E-07
x4 9 37 0.012042 1.22E-07 12 31 0.012585 3.25E-07
x5 9 37 0.011777 2.82E-07 12 31 0.016446 7.53E-07
x6 9 37 0.007588 1.18E-07 12 31 0.013752 3.17E-07
x7 9 37 0.011852 1.4E-07 12 31 0.014276 3.74E-07
x8 9 37 0.012123 3.9E-07 13 34 0.017765 4.53E-07

5000

x1 9 37 0.036716 2.04E-07 12 31 0.048108 5.51E-07
x2 9 37 0.03521 8.52E-08 12 31 0.044947 2.3E-07
x3 8 33 0.036131 4.18E-07 11 29 0.03674 9.73E-07
x4 9 37 0.034892 2.71E-07 12 31 0.057287 7.31E-07
x5 9 37 0.032141 6.27E-07 13 34 0.03866 7.39E-07
x6 9 37 0.033881 2.63E-07 12 31 0.041563 7.11E-07
x7 9 37 0.033572 3.11E-07 12 31 0.045607 8.39E-07
x8 9 37 0.036109 8.64E-07 14 36 0.049345 9.45E-08

10000

x1 9 37 0.057811 2.88E-07 12 31 0.070204 7.79E-07
x2 9 37 0.057191 1.21E-07 12 31 0.070029 3.26E-07
x3 8 33 0.07548 5.91E-07 12 31 0.065584 1.28E-07
x4 9 37 0.052442 3.83E-07 13 34 0.072424 4.51E-07
x5 9 37 0.076822 8.86E-07 14 36 0.074676 9.69E-08
x6 9 37 0.063751 3.72E-07 13 34 0.085115 4.39E-07
x7 9 37 0.055204 4.39E-07 13 34 0.073913 5.18E-07
x7 10 41 0.083553 9.77E-08 14 36 0.087317 1.34E-07

50000

x1 9 37 0.208485 6.45E-07 13 34 0.302189 7.6E-07
x2 9 37 0.231584 2.69E-07 12 31 0.272796 7.28E-07
x3 9 37 0.215684 1.06E-07 12 31 0.338126 2.86E-07
x4 9 37 0.233193 8.56E-07 14 36 0.425249 9.36E-08
x5 10 41 0.238034 1.59E-07 14 36 0.435261 2.17E-07
x6 9 37 0.284085 8.32E-07 13 34 0.591563 9.81E-07
x7 9 37 0.223528 9.82E-07 14 36 0.401554 1.07E-07
x8 10 41 0.244065 2.19E-07 14 36 0.474472 2.99E-07

100000

x1 9 37 0.45449 9.12E-07 14 36 0.753856 9.97E-08
x2 9 37 0.504209 3.81E-07 13 34 0.692957 4.49E-07
x3 9 37 0.598617 1.49E-07 12 31 0.606275 4.04E-07
x4 10 41 0.494593 9.68E-08 14 36 0.767606 1.32E-07
x5 10 41 0.577411 2.24E-07 14 36 0.744496 3.06E-07
x6 10 41 0.561866 9.42E-08 14 36 0.75663 1.29E-07
x7 10 41 0.55687 1.11E-07 14 36 0.728991 1.52E-07
x8 10 41 0.562773 3.09E-07 14 36 0.703906 4.23E-07

is a solution of the linear complementarity problem if and only if it is a solution of the
nonlinear equation:

F (z) = min{z,Dz + c} = 0. (4.4)

It was proved in [17, 25] that F (z) is continuous and monotone. Therefore problem (4.1)
can be translated into problem (1.1) and thus MSCG method can be applied to solve
(4.1).
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Table 8. Numerical Results for MSCG and PCG for Problem 8 with
given initial points and dimensions

MSCG PCG

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 0 1 0.001779 0 0 1 0.001328 0
x2 41 356 0.180046 9.5E-07 18 128 0.072022 5.55E-07
x3 40 352 0.166179 9.02E-07 19 137 0.082537 8.24E-07
x4 53 473 0.213444 7.73E-07 19 138 0.081841 4.96E-07
x5 31 284 0.142613 5.81E-07 45 313 0.167576 9.2E-07
x6 40 360 0.156393 8.3E-07 46 314 0.171545 7.72E-07
x7 31 279 0.123888 7.98E-07 32 219 0.125863 7.83E-07
x8 35 283 0.127523 9.52E-07 - - - -

5000

x1 0 1 0.001711 0 0 1 0.001672 0
x2 56 489 0.865066 8.21E-07 19 135 0.278625 4.25E-07
x3 44 383 0.655966 8E-07 20 144 0.304117 6.27E-07
x4 42 381 0.687588 7.45E-07 20 145 0.31177 3.73E-07
x5 28 257 0.438179 8.43E-07 48 331 0.665478 9.68E-07
x6 37 333 0.578789 7.75E-07 20 141 0.276562 4.24E-07
x7 30 270 0.4597 7.02E-07 29 199 0.384523 8.46E-07
x8 53 453 0.770932 8.01E-07 48 295 0.585834 7.16E-07

10000

x1 0 1 0.003212 0 0 1 0.004846 0
x2 30 252 0.827242 7.1E-07 19 135 0.502917 6.37E-07
x3 52 445 1.444882 9.42E-07 20 144 0.544719 9.58E-07
x4 39 354 1.164713 7.61E-07 20 145 0.542192 5.52E-07
x5 27 248 0.825987 9.85E-07 48 331 1.314858 7.51E-07
x6 36 324 1.102443 7.47E-07 20 141 0.524563 3.81E-07
x7 30 270 0.88172 7.45E-07 27 187 0.696947 6.15E-07
x8 59 504 1.628672 7.67E-07 32 220 0.830439 6.31E-07

50000

x1 0 1 0.01418 0 0 1 0.009638 0
x2 29 255 3.750516 8.09E-07 20 142 2.473295 5.46E-07
x3 46 398 5.801909 9.64E-07 21 151 2.648615 8.04E-07
x4 38 345 4.969609 9.49E-07 21 152 2.619938 4.6E-07
x5 26 239 3.471028 8.45E-07 42 293 5.07355 8.25E-07
x6 34 306 4.479681 7.04E-07 20 141 2.425991 7.18E-07
x7 28 252 3.612033 8.54E-07 24 167 2.9087 8.62E-07
x8 51 443 6.361079 9.55E-07 21 154 2.627603 4.8E-07

100000

x1 0 1 0.027051 0 0 1 0.024137 0
x2 29 255 7.270722 9.08E-07 20 142 5.192622 8.61E-07
x3 44 368 10.87012 7.71E-07 22 158 5.5671 3.91E-07
x4 37 336 9.77921 9.4E-07 21 152 5.24037 7.3E-07
x5 26 239 7.044853 9.27E-07 43 299 10.94874 6.69E-07
x6 33 297 8.681605 8.44E-07 22 156 5.462871 5.41E-07
x7 27 243 7.180561 8.73E-07 23 161 5.708924 6.57E-07
x8 47 416 12.17001 7.77E-07 21 154 5.476608 6.48E-07

In this experiment, we consider a simple compressive sensing possible situation, where
our goal is to reconstruct a sparse signal of length n from k observations. The quality of
restoration is assessed by mean of squared error (MSE) to the original signal x̃,

MSE = 1
n∥x̃− x∗∥2,

where x∗ is the recovered or restored signal. The signal size is chosen as n = 212, k = 210
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Table 9. Numerical Results for MSCG and PCG for Problem 9 with
given initial points and dimensions

MSCG PCG

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 13 66 0.007835 3.04E-07 10 36 0.008142 3.03E-07
x2 13 64 0.012285 6.68E-07 10 34 0.011219 6.61E-07
x3 13 64 0.012086 6.68E-07 10 34 0.011537 7.04E-08
x4 13 65 0.019151 6.68E-07 11 37 0.009902 3.94E-07
x5 13 64 0.009038 6.68E-07 11 38 0.012195 1.5E-07
x6 10 51 0.011598 5.96E-07 8 29 0.010377 4.31E-07
x7 12 61 0.012959 6.38E-07 9 32 0.008083 5.32E-07
x8 13 65 0.016145 6.68E-07 12 40 0.011124 9.64E-07

5000

x1 13 66 0.039759 6.79E-07 10 36 0.029266 6.77E-07
x2 14 69 0.039939 3.18E-07 11 38 0.031945 6.23E-07
x3 14 69 0.036569 3.18E-07 10 34 0.028428 1.57E-07
x4 14 70 0.044959 3.18E-07 11 37 0.02743 8.81E-07
x5 14 69 0.04045 3.18E-07 11 38 0.029214 3.36E-07
x6 11 56 0.029751 2.84E-07 8 29 0.026799 9.65E-07
x7 13 66 0.036743 3.04E-07 10 36 0.025915 5.02E-07
x8 14 70 0.03723 3.18E-07 13 44 0.035078 9.09E-07

10000

x1 13 66 0.093164 9.61E-07 10 36 0.042408 9.57E-07
x2 14 69 0.080892 4.5E-07 11 38 0.066548 8.82E-07
x3 14 69 0.055136 4.5E-07 10 34 0.049121 2.23E-07
x4 14 70 0.080006 4.5E-07 12 41 0.051811 5.26E-07
x5 14 69 0.084106 4.5E-07 11 38 0.052024 4.75E-07
x6 11 56 0.04438 4.02E-07 9 33 0.042029 5.75E-07
x7 13 66 0.074654 4.3E-07 10 36 0.048007 7.1E-07
x8 14 70 0.072395 4.5E-07 14 47 0.066632 8.67E-08

50000

x1 14 71 0.222734 4.58E-07 11 40 0.165454 9.02E-07
x2 15 74 0.259981 2.15E-07 12 41 0.187299 1.33E-07
x3 15 74 0.218328 2.15E-07 10 34 0.148232 4.98E-07
x4 15 75 0.222071 2.15E-07 13 44 0.203704 7.93E-08
x5 15 74 0.230332 2.15E-07 12 42 0.1771 4.48E-07
x6 11 56 0.168722 8.99E-07 10 36 0.158327 8.68E-08
x7 13 66 0.190625 9.62E-07 11 39 0.175721 1.07E-07
x8 15 75 0.253142 2.15E-07 14 47 0.22066 1.94E-07

100000

x1 14 71 0.462082 6.48E-07 12 43 0.381488 8.61E-08
x2 15 74 0.552861 3.04E-07 12 41 0.365063 1.88E-07
x3 15 74 0.538822 3.04E-07 10 34 0.295517 7.04E-07
x4 15 75 0.595913 3.04E-07 13 44 0.379492 1.12E-07
x5 15 74 0.51213 3.04E-07 12 42 0.359235 6.34E-07
x6 12 61 0.461306 2.71E-07 10 36 0.305215 1.23E-07
x7 14 71 0.507379 2.9E-07 11 39 0.373767 1.51E-07
x8 15 75 0.525749 3.04E-07 14 47 0.42366 2.74E-07

and the original signal contains 27 randomly nonzero elements. A is the Gaussian matrix
generated by the command rand(m,n) in MATLAB. In addition, the measurement y is
distributed with noise, that is, y = Ax̃ + η, where η is the Gaussian noise distributed
normally with mean 0 and variance 10−4 (N(0, 10−4)).

To show the performance of the MSCG method in compressive sensing, we com-
pare it with the PCG method. The parameters in both MSCG and PCG methods
are chosen as β = 1, σ = 10−4, ρ = 0.8, and r = 0.1 and the merit function used is
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f(x) = 1
2∥y − Ax∥22 + τ∥x∥1. To achieve fairness in comparison, each code was run from

same initial point, same continuation technique on the parameter τ , and observed only
the behaviour of the convergence of each method to have a similar accurate solution. The
experiment is initialized by x0 = AT y and terminates when

∥fk−fk−1∥
∥fk−1∥ < 10−5,

where fk is the function evaluation at xk.
In Fig. 1, MSCG and PCG methods recovered the disturbed signal almost exactly.

In order to show visually the performance of both methods, four figures were plotted to
demonstrate their convergence behaviour based on MSE, objective function values, num-
ber of iterations and CPU time (see Fig. 2-5). Furthermore, the experiment was repeated
for 25 different noise samples (see Table 10). From the Table, it can be observed that the
MSCG is more efficient in terms of iterations and CPU time than PCG method in most
cases.

0 500 1000 1500 2000 2500 3000 3500 4000

-2
0
2

Original (n = 4096, number of nonzeros = 128)

0 200 400 600 800 1000

-0.5
0

0.5

Measurement

0 500 1000 1500 2000 2500 3000 3500 4000

-2
0
2

PCG (MSE = 1.48e-05, Iter=145, Time=5.50s)

0 500 1000 1500 2000 2500 3000 3500 4000

-2
0
2

MSCG (MSE = 9.90e-04, Iter=101, Time=3.97s)

Figure 1. From top to bottom: the original image, the measurement,
and the recovered signals by PCG and MSCG methods.
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5. Conclusions

In this paper, a modified three-term conjugate gradient method for solving monotone
nonlinear equations with convex constraints was presented. The proposed algorithm is
suitable for solving non-smooth equations because it requires no Jacobian information
of the nonlinear equations. Under some assumptions, global convergence properties of
the proposed method was proved. Numerical experiments presented clearly shows how
effective the MSCG algorithm is compared to the PCG algorithm of [14] for the given
constrained problems. In addition, the MSCG algorithm was also shown to be effective
in signal recovery problems.
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Table 10. Twenty five experiment results of ℓ1−norm regularization
problem for MSCG and PCG methods

MSCG PCG

MSE ITER CPU(s) MSE ITER CPU(s)

r=0.1

9.90E-04 101 3.97 1.48E-05 145 5.5
1.58E-03 103 3.31 1.63E-05 140 4.5
7.68E-04 113 3.17 1.30E-05 133 3.47
1.07E-03 128 3.45 1.70E-05 145 3.95
1.23E-03 122 3.2 1.38E-05 143 3.77
1.62E-03 88 2.34 1.48E-05 139 3.72
1.66E-03 114 3.19 1.84E-05 132 3.59
2.63E-03 95 2.75 1.83E-05 123 3.41
1.16E-03 99 2.67 1.22E-05 113 2.92
1.91E-03 107 2.84 1.79E-05 114 2.92
2.18E-03 106 2.69 2.09E-05 110 2.81
8.60E-04 107 2.77 1.63E-05 131 3.38
1.33E-03 102 2.78 1.27E-05 143 3.78
1.03E-03 119 4.53 1.06E-05 140 5.34
1.15E-03 110 3.03 1.48E-05 135 3.61
1.77E-03 110 4.27 1.69E-05 148 5.75
1.36E-03 103 3.83 1.47E-05 114 4.34
1.67E-03 112 3.42 1.78E-05 120 3.88
1.21E-03 107 4.38 1.47E-05 114 4.91
9.99E-04 101 3.86 1.47E-05 145 5.55
1.58E-03 103 2.78 1.63E-05 140 3.7
7.68E-04 113 3.16 1.30E-05 133 3.92
1.07E-03 128 4.77 1.70E-05 145 5.59
1.23E-03 122 3.23 1.38E-05 143 3.91
1.62E-03 88 2.41 1.48E-05 139 3.81
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