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1. INTRODUCTION
The classical inclusion problem is to find a element z in a Hilbert space H such that
z € (A+B)~ 0. (1.1)

where A is an operator on H and B is a set-valued operator on H. This problem in-
cludes, as special cases, variational inequality problem, convex programming problems,
split feasibility problem, linear inverse problem and minimization problem. The forward-
backward splitting method is a classical method for solving problem (1.1) defined by the

© 2020 By TaCS-CoE, All rights reserve.

centerofixceence ~ Published by Center of Excellence in Theoretical and Computational Science (TaCS-CoE)



72 Nussara Pakdeerat, Kanokwan Sitthithakerngkiet

iteration following: for arbitrarily xzq € H,
Tpy1 = (I +7rB)  (z, — rAx,) Vn > 0. (1.2)
Also, the following splitting iterative methods in a real Hilbert space introduced by Lions

and Mercier [1] which is the nonlinear Peaceman-Rachford algorithm expressed as follows:
for arbitrarily z¢ € H,

Tpi1 = (2J2 = 1)(2JE — D)z, Y0 >0, (1.3)
and the nonlinear Douglas-Rachford algorithm wriiten as,
Tnir = [JAQIE = 1) + (I — JB)|z, Vn > 0. (1.4)

where A is a operter and J# = (I +rA)~! is the resolvent of A with » > 0. Lions and
Mercier [1] show that both algorithms is weakly convergent to a solution. In 2001, Alvarez
and Attouch [2] interoduced the inertial proximal point algorithm of a general maximal
monotone operator which is translated from the heavy ball method in the framework
of the proximal point algorithm. The inertial proximal point algorithm is expressed as
follows: for arbitrarily xg,z; € H,

Yn = Tp+ ¢n(xn - xn—l)
Tpy1 = (I4+r,B)"Yz,) Vn>0, (1.5)

where r,, is non-decreasing and ¢,, € [0,1) with

(o)
Z Gul|Tn — Tp_1|* < o0. (1.6)
n=1

It is shown that under certain conditions (1.6), the algorithm (1.5) is weakly convergent
to a zero point of a maximal monotone operator B. In 2003, Moudafi and Oliny [3]
proposed the inertial proximal point algorithm by adding a Lipschitz continuous operator
A as follows: for arbitrarily xg,z1 € H,
Yn = Tn + ¢n($n - l'nfl)

Zni1 = (I+rB) (yn — rnAzy) ¥n >0, (L.7)

where A is an operator on H and B is a set-valued operator on H. Under the same
2

condition (1.6) and 7, < T this algorithm is weakly convergent to a solution, where L is

the Lipschitz constant of A. Recently, Cholamjiak and Suantai [4] studied a generalized
inertial forward-backward for monotone operators A; for arbitrarily zq, 2, € H,

Yn = Tp+ ¢n(xn - xn—l)
Tpntl = QpUu+ Bnyn + ’YnJP(yn - TnAyn) vYn > 0. (18)
They presented a sequence {z, } generated by the algorithm (1.8) strongly converges to
a zero point of sum of two monotone operators (1.1). Stampacchia [5, 6] initially studied

following a classical variational inequality denoted by VI(C, E) and ever since have been
widely studied that is to find z € C such that

(Ba,y— ) >0, (L9)

with a constant A > 0. For solving a solution of a classical variational inequality, the
projection algorithm is proposed according to the formula:

ZTpi1 = Po(zn — apFxy,) Vn > 1, (1.10)
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with a real sequence {a,} C (0,00). Iiduka, Takahashi and Toyoda [7] presented the
sequence {z,} generated by (1.10) weakly converges to a solution of VI(C, E) where E
is a-inverse strongly monotone. In 2004, Iiduka, Takahashi and Toyoda [7] studied the
following a hybrid projection iterative scheme: for arbitrarily o € H and n > 1,

up = Po(x, — M Exy,),

Cn={veC:lun—v| < lzn —ol},

Qn={vel:(x, vz, —x) <0},

Tpt1 = Pe,nq. (o),

(1.11)

where {\,, } is a positive real sequence. They proved that the sequence {x,} generated by
(1.11) converges strongly to Py r(c,g)(70). In 2012, the modified the set of two variational
inequality problems is proposed by Kangtunyakarn [3] as follows:

VICiaE+(1—a)F)={ze€C:{(z—z,(cE+(1—a)F)z) >0,Vz € C}, (1.12)

where a € (0,1), F and F are the mappings of C into H. He also introduced a
new iterative scheme for finding a solution of two sets of variational inequality prob-
lem VI(C,aFE + (1 — a)F) and proved the strong convergence theorem of two sets of
variational inequality problem, fixed point problems of infinite family of pseudo contrac-
tive mappings and the equilibrium problem. In this paper, insprired by [1, 8, 9] we modify
an algorithm for solving a common solution of two operator monotone inclusions problems
and two variational inequality problems and also prove the strong convergence theorem
of proposed algorithm. Moreover, we provide some numerical experiments for supporting
our main results.

2. PRELIMINARIES

Let H be a real Hillbert space with inner product (-,-) and induced norm || - ||, and
let C' be a nonempty closed convex subset of H, We write x,, — x to indicate that the
sequence {x,} converge strongly to x. Next we present several properties of operators
and set-valued mappings which will be useful later on. In Hillbert space, it is well known
that,

Az + (1= Nyl = Mz + (1= Dyl = A1 = N)]|z -y,
for all ,y in H and A € [0,1]. For any point € H, there exists a unique nearest
point of C, denoted by Pc(z) such that |z — Pe(z)|| < ||z — y||, for all y € C. The
operator Po denotes the metric projection from H onto C. It is known that Po is a
firmly nonexpansive mapping [10], that is

|Po(@) = Pe(y)lI” < (Pe(x) — Po(y),z —y), for all z,y € H.
Furthermore, for any z € H and z € C, we note that z = Po(x) if and only if

<$—Z,Z—y> Zoa
lz = ylI* = [lz = 2[|* + [ly — 2]|* for all y € C.

Proposition 2.1. Let H be a real Hilbert space and C be a nonempty closed convex subset
of H. Let T : C — H be a mapping.

(1) T is called nonexpansive if

[Tz =Tyl <[z —yll, Yo,y € C (2.1)
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(2) T is firmly nonexpansive if 2T — I is nonexpansive. In other direction, T is
firmly nonexpansive if and only if

(Tx — Ty,x —y) > |Tx — Ty||?* for all z,y € C.

We denote F'(T) by the fixed point set of T, that is F(T) = {x € C : Tx = z}. Tt is
known that T is firmly nonexpansive if and only if I — T is firmly nonexpansive.

Recall that H satisfies Opial’s condition [15],i.e., for any sequence {x,} with =, — x,
the inequality

liminf ||z, — x| < liminf ||z, — y||
n—oo n—oo

holds for every y € Hwith y # x.
Definition 2.2. [9] Let S : C — H be a mapping.

(1) S is called monotone if
(x —y,Sz— Sy) >0, Ve,y € C.

(2) S is said to be a — inverse strongly monotone if there exists a positive real
number « such that

(x —y, Sz — Sy) > a||Sz — Sy||*,Va,y € C.

(3) S is said to be p — strongly monotone if there exists a positive real number p
such that

<S(E - Sy,x—y) 2 p|\$—y|\2,vx,y eC.

(4) S is said to be p — Lipschitz continuous if there exists a nonnegative real
number g > 0 such that

1S5z =Syl < pllz = yl, Yo,y € C.

A set-valued mapping A : H — 2 is called monotone if for all 2,y € H, f € Az and
g € Ay imply (z—y, f—g) > 0. A monotone mapping A : H — 2¥ is maximal if the graph
of G(A) of A is not properly contained in the graph of any other monotone mapping. It
is known that a monotone mapping A is maximal if and only if for (z,f) € H x H,
(x —y, f—g) >0 for every (y,g) € G(A) implies f € Av. Let JA = (I +7r4)"1, r>0
be the resolvent of A. It is well known that JZ is single-valued, D(J2) = H and J2 is
firmly nonexpansive for all » > 0.

Lemma 2.3. [11] Let H be a real Hilbert space and let S : C — C be a nonexpansive
mapping with a fized point. For each fized u € C and every v € (0,1), the unique fized
point x,, € C of the contraction C 3 x — vu+ (1 —v)Sx converges strongly as v — 0 to
a fized point of T.

In what follows, we shall use the following notation:

SAB — JB(I —rA) = (I+rB)~Y(I —rA),r > 0.

Lemma 2.4. [12] Let H be a real Hilbert space. Let A: H — H be an o — inverse
strongly monotone operator and B: H — 2 a mazimal monotone operator. Then, we
have

(i) Forr >0, F(SAP) = (A+ B)~1(0);

(i) For0<s<r andz € H, ||z — SABx| < 2|z — SABx|.
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Lemma 2.5. [13] Let H be a real Hilbert space. Then, the following inequality holds:
() llz =yl = llzlI* = lylI> — 2z — y,y), for all z,y € H;
(i) lz +ylI* < llz]l* + 2(y, z + y), for all z,y € H;

Proposition 2.6. [1/] Let H be a real Hilbert space. Let m € N be fized. Let {x;}", C
H andt; >0 for alli=1,2,...,m with Z;L t; < 1. Then, we have

2 P b [EA
| Zt zi||® < S oy (2.2)

Lemma 2.7. [10] Let {s,} be a sequence of nonnegative real numbers satisfying
Snt1 <(1— an)s$n +6ny, Yn >0, (2.3)

where ay, is a sequence in (0,1) and {6,} is a sequence such that
(1) 2onzy an = 00

(i) limsup,, o, a—n <0 or Y7 10, < oo. Then, lim,_,o0 s, = 0.
n

Lemma 2.8. [18] Let {a,} and {c,} be a sequence of nonnegative real numbers such that
ant1 < (1= 0p)an + by + cpyn > 1, (2.4)
where {8,,} is a sequence in (0,1) and {b,} is a real sequence . Assume Y .-

n=1
Then, the following results hold:
(i) It by, < 6,M for some M > 0, then {a,} is a bounded sequence.

Cp < 00.

(ii) It 377, 6, = 0o and limsup,,_, 6—” <0, then lim, o0 an =0

Lemma 2.9. [19] Assume {s,} is a sequence of nonnegative real numbers such that
Snt1 < (1= 0,)8n 4 0nTn, n>1 (2.5)
and
Snt+1 < Sy — M+ Py, 121 (2.6)

where §,, € (0,1), n, € (0,00) and {1} and {p,} are sequence of real numbers such that
(i) 50, 60 = o0,
(ii) limy— 00 pn = 0,
(iil) img_yo0 n,, = 0 implies imsup,_, oo Tn,, < 0 for any subsequence of real numbers

{nk} of {n}.

Then lim,,_yoo 8, = 0.

Remark 2.10. [13] Let H be a Hilbert space, let C' be a nonempty closed convex subset
of H and let E be a mapping of Cinto H. Let = € C'. Then, for A > 0,

x=Po(I-AE)x < 2e€VI(C,E)
where Pg is the metric projection of H onto C.
One can see that the variational inequality (1.9) is equivalent to a fixed point problem.

Lemma 2.11. [§] Let C be a nonempty closed convex subset of a real Hilbert space H
and let E,F : C — H be «a, B- inverse strongly monotone, respectively with «c, 5 > 0
and VI(C,E)NVI(C,F) # 0. Then,

VI(C,AE + (1 — \)F) =VI(C,E)NVI(C,F), YA€ (0,1).
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Furthermore, if 0 < p < min{2a, 28}, then we have I — p(AE + (1 — A\)F) is a nonex-
pansive mapping.

3. MAIN RESULTS

In this section, we prove the strong convergence theorem for solving common solution
of monotone inclusions problems and variational inequality problems that is notation by
the set Q := F(TAPYNVI(C,\E + (1 — \)F).

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hillbert space H.
Suppose that A, E and F are «, B, ~v-inverse strongly monotone operator on H and B :
C — 2" 4 mazimal monotone operator. Assume that € is nonempty set and the sequence
{zn} is generated by,

putting u, g, r1 € H

Zn = Tp + On(Tp — Tn-1),

Un = Ot + Brzn + VB (I — 1mA)zy,

Tnt1 = Po(I — p(AE + (1 — A)F))un, Vn > 1,

(3.1)

where JEB = (I +r,B)™!, 0 <, < 20, 0 < p < min{28,27}, a = [0,00), X €
(0,1), {n} C [0,¢] with ¢ € [0,1) and {an}, {Bn}, {1} are sequences in [0, 1] with
an + Bn + v = 1. Assume that the following conditions hold:

(i) 2;7;1 Oy = 00, limy, 00 atpy = 05
— |

(#) lim, 00 |2 — 2n—1] = 0;

n
(#i) 0 < liminf,, o mp, < limsup,, o ™ < 2a;
Then, the sequence {x,} strongly converges to Pqu.
Proof. To complete the proof, we devide into the five steps.
Step (I): We will show that the sequence {x,} is bounded. Putting T,, = J5Z (I —

rnA) and define the sequnce {sn} by $nt1 = Po(I — pD)(anu + Bnsn + YnTr, Sn)s
where D = AE 4 (1 — A)F. Note that

|Pc(I — pD)u,, — Po(I — pD)(anu + Bnsn + YnTr, $n)ll

||xn+1 - 3n+1||

< un = (@t + Busn + Ty, 80) |l
< Bullzn — snll + Wl T, 20 — Trysnll
< Ballzn = snll +nllzn — sall
(1= an)llzn — snll
(1 —an)llzn + ¢n(Tn — Tn—1) — sall
< (A —ap)llzn = sull + dullzn — 2ol
e P (32)

an
By Lemma 2.7 and the condition (ii), we obtain that

nl;rr;o |z — snll = 0. (3.3)
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Let z € Pqu, then z € VI(C,E) UVI(C, F) and so z = Pc(I — pD)z. Consider,

[sns1 — 2 = [Pl — pD)(anti+ Bnsn + Ty, sn) — 2|
< anllu =zl + Ballsn — 2l + vl Ty, 50 — 2|l
< anflu =zl + (1 —an)llsn — 2. (34)
By lemma 2.7, we obtain that
nh_{r;o |sn, — 2| = 0. (3.5)

This implies that {s,} is bounded and also {z,}, {u,} and {z,} are bounded.
Step (II): In this step, we will show that lim, o ||Zn+1 — 2n|| = 0.
Note that

l€nsi — @l = IPe(I = pDYuy — Po(I = pDyu,_i|
[E—} (3.6)

IN

By the definition of {u, }, we have

llanu + Brzn + YTy, 2n — zH2
lom(u = 2) + Bn(zn — 2) + (T, 20 — 2)|I°
|8n (2n — 2) + Y (Tr, 20 — Z)H2 + 20, (u — z,u, — 2). (3.7

= 2|2

IN

By using Proposition 2.6, we conclude that

Brllzn — Z||2 ""Yn”TrnZn - ZH2

_ T, zn—2)|? <
Hﬁn(zn Z)+7n( nen Z)H = 2_(5n+7n)
S S P B L, R N TE
].+Oén ]-+05n
ﬁn 2 ’V’ﬂ ( 2
- 3 _
< 1+%Ilzn | e 2 — 2||

—rn(2a — 1) || Az — Az|?
(= I = rad)za = (I = JE)(T =10 4)2]?)

B
T +nozn lon = 21 + 1 —Znan (”Z” — 2l

—rn (20 — 7)) || Azn — Az|”
—|N2n — Arpzn — JB (I —rpA)z, + rnAzHZ)

Tn

]-_ n n'n 2 —I'n
ek TP

14+ a, 1+ ay,

1 —Zna |z — Arpzn — Tp 2n + rpAz||?. (3.8)
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Sudstitute (3.8) into (3.7), we have

1—a, nTn (200 — 1,
fun =2l < G0z, o e Ty e
1 zn llzn — Arnzy — Ty, 20 4+ 0 AZ||* 4 200 (u — 2, u, — 2)
Qp
(1—ay)

IN

(”mn - 2”2 + 2¢n<xn — Tp—1,%n — Z>)

(3.9)

1+ a,
YnTn (200 — 11)
1 —Zn ll2n — Arnzn — Ty, 20 4 TnAZ|)* 4 200 (u — 2, u, — 2)
Qp
2 2
= 1- i n — 2 1-—- i 2 n\Ln — Ln— n —
(1= 2222 = 2l + (= 22200 = 01,20~ )
(20 — )| Az, — Az
1 _Zn llzn — Arnzy — Ty, 20 — Tn AZ||* 4 200, (u — 2, u, — 2)
an
2 2 11—«
= 1- i n — 2 771[ i n\Ln — Ln— n —
(1= 222 = 2l 20 () = 1,20~ 2)
+H(1+ ap){u— 2z, up — z)} - lzinanrn@a —rp)|| Az, — Az|?
~7 _Zn |z, — Arpzn — Ty, 2p — rnAz||2.
an

Then, using (3.9), we get that

ln = 2P < (1= T e = 2l o ()b — 20
+(1 4 an){u—z,u, — z)]
Also, we conclude that
ln =2l < flan = 2 = (2 = )| Az — Ac]?
—0 l2n — Arpzy — Ty, 20 — T Az||?
14+ a, '
201 — a,
+2an<u — Z,Up — Z> + (1+70?n)¢n<$n — Tp—1,%n — Z>
By the definition of {z,}, we note that
len =2l = [[Pc(I = p(AE + (1 = M) F))un—1 — 2||

< lun—1— 2.

J ! Bangmod Int. J. Math. & Comp. Sci., 2020

z)

(3.10)

(3.11)

(3.12)



APPROXIMATIING METHODS FOR MONOTONE INCLUSION 79

From (3.11) and (3.12), we get that

YnTn (200 — 1)

14z, — Az|]?
14+ a,

e e

- ::"a |z — rnAzy — Tp z2n + Tn Az
2(1 — ay,
2, (u— z,u, — 2) + (1—|—70(;)¢n<xn — Tp_1,2n —2). (3.13)
For each n > 1, we set fice following sequences as:
sn = |lup—1— Z||2
2
8y = _on
1+ a,
1—a,
T = (I4+ap){u—zu, —z)+ Oy — Tp—1, 2n — 2)
n'n 2 —I'n n
e = PO 2 O e Asy — Tz A
14+ ap, 14+ a, '
201 — o,
and p, = 2ap(u—z,u, —2)+ %(ﬁn(xn — Tp—1,%n — Z). (3.14)
For n > 1, the inequalities (3.11) and (3.12) are reduced to the following;:
Sn+1 S (1 - 5n)8n + 5n7—n7 (315)
and
Sn+1 < Sp — Nn T+ Pn, (316)

Next, we will show all conditions in Lemma 2.9 hold. Since Zzo:l o, = oo and lim, o a, =
0, it follows that >~ , 6, = co and lim, o0 pp = 0.

Finally, we will show that the condition (iii) in Lemma 2.9 holds. Let {n,,} of {nn}
such that limy_, 0 7, = 0, we can deduce that

M 200 —
i 2 O )y e (3.17)
k—o0 1+ ap,
This implies that
lim ||Az,, — Az|| =0 (3.18)
k—o0
and
. Tn
klglgo T O)an |2n, — Tny Azn, — Ty, #ny + Ty, AZ||. (3.19)
Also, we have
im ||z, — rn,A2n, — Tr, 2Zn, + T Az|| = 0. (3.20)
k—o00 k
Note that,
120, — Trnk Zng |l < zny — Ty A2y, — Trnk Zng T Az || + (|7, (Az — Az, )| (3.21)
By (3.18), (3.20) and (3.21), we have
lim ||zp, — T, zn, || = 0. (3.22)
k—o0 k
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Since liminf,,_, 7, > 0, there is a real number r > 0 such that r,, > r for alln > 1. In
particular, r,, > r for all £ > 1. By Lemma 2.4, (i) yields that

”val)ank — Rny ” < 2||T7ii)sznk — Rny ” (323)

From (3.22) and (3.23), we have

liin sup | TAB2,, — zn, | = 0, (3.24)
— 00
which implies that,

lim [Tz, = 2, || = 0. (3.25)

By the condition (ii) and (3.25), we obtain that

||T7:4’ank - znk” = ||T;4’ank — Znyg + Zny — z"k”

IN

HT:"BZWC - an” + Hznk - xnk”
||T’ri47ank = Zng | + |70y, + Ony (Tny, — Tny—1) — T, ||
”TTA,B’ZTLI« - an” + ||¢nk (Ink - xnkfl)H

Pn

= ”T;Ll,Ban - an” + aik”xnk - wnk—ln' (326)
Nk
Hence,
Jim (| TPz, — ] =0. (3.27)

Let z, = vu+ (1 —v)TAB2,, v € (0,1). Employing Lemma 2.3, we have z, — Pqu = 2
as v — 0. So, we obtain
2 — Zn, ”2 = [ru+(1- V)T;q’BZV - xnk”2

= |wlu—zn,)+ 10 =) (T2, — 2|

= (1-v)YTABz, —TAB2,, + TPz, — a0 |?
F2lu — 2,2, — Tn, ) + 20|20 — 20, ||

2
(1 =v)% (2 = 2n, | + 1T 20y, — 2, )
F2(u — 2y, 2 — T, ) + 20]|2y — xnkHz
2

= (1- V)2 (||z,, = T || + OnllTn, — 2, 1]l + ”T:LBZM - xnk”)

F2{u — 2y, 2, — Ty, ) + 2V 20 —xnkHz. (3.28)

IN

Form (3.28), we have
—2wlu =z, —2n) < (=02 (l2 = ol + dulln, = Tn -l

2
HITA P20, =)+ (20 = Dl =2, (3:29)

which implies that,

1—-v)?
e o e e

2v
(2v—1)
2v

<ZV — U, 2y — xnk> <

2
HITAE 20, = ) + 2 = el (330)
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From condition (ii) and (3.30), we obtain

1—v)? 2v—1
lilillsotip<zyfu,zyfxnk> < ( ZVV) C2+( V2y )

C? = gcz (3.31)

for some the positive real number C' large enough. Taking v — 0 in (3.31), we have

limsup(z —u,z — x,,) < 0. (3.32)
k—o0
On the other hand, we get
Hunk — Ty ” = ||anku + Brizni + Yni I (I - TnkA)an = Tny ”

oyt + Bry Zny + Yo Trg Znie — (g + By, + Yy, )T |

< Ay, Hu — Ty, ” + 5'”}9 ”an — Ty, ” + Yrg, HTnkznk = Tny, H
= O‘nkHu — Ty, ” + (1 — Qpy, — rY'ka)”Z'flk — Tny ” + fynkHT"kZ"k - xnk”
< ankHu = Tny || + (1 - ank)llznk = Tny ” + 7nkHTnkZ7lk = Ly, H
(1—an,)
< Ay, Hu — Ty, ” + 7)«”(257% (wnk - xnk,1)|‘ + Yny, ||Tnkznk — Ty, ”
n
(3.33)
By condition (i), (ii) and (3.27), we see that
lim ||up, — zn, || = 0. (3.34)
k—o0
Combining (3.32) and (3.34), we have
limsup(z —u,z — uy,,) < 0. (3.35)

k—o0

It also follows that lim sup,,_, . 7, < 0. By using Lemma 2.9, we conclude that lim,,_, s,
= 0 by Lemma 2.9. Therefore,

lim |lup—1 — 2| =0. (3.36)
n—,oo
Since
it =t | <l — 21+ 12 = 0, (3.37)
so we have
nh_{rgo lten, — up—1]| = 0 and nh_)ngo |znt1 — x| = 0. (3.38)

Step (III): we will show that lim,,_, o ||Dun, —Dz|| = 0, limy, o0 ||t —Pe(I—pDuy,)|| =0
and limy, o || — un|| = 0. Consider,
o — 22 = [IPo(I = pD)un — 2|
= ||Po(I = pD)u, — Po(I — pD)z|?
I(Z = pD)un — (I = pD)z|?
|un — 2 — p(Duy — DZ)H2
lwn — 2||* = 2p{up, — 2, Duy, — Dz) + p*||Du,, — Dz||?, (3.39)

IN
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and

lu — 2|2 lants + Bzn +ynd2 (I = 1nA)zn — 2|
lan(u = 2) + Bn(zn = 2) + V(T 20 — 2)|1?
lan (u = 2) + (1 = an) (20 = 2)|I?
anlu— 2] + (1 = o) zn — 2|
anllu— 2% + |20 — 2% (3.40)
by the notation D := AE + (1 — A\)F, we have
(Dup — Dzyup —2z) = (AE+ (1 =NF)up — (AE+ (1= X)F)z,u, — 2)
= (MEPu, — Ez)+ (1 =X (Fu, — Fz),u, — 2)
= MEBu, — Ez,up — 2) + (1 = \){(Fuy, — Fz,u, — z)
> Aa||Eu, — Ez||* + (1 — \)B||Fu, — Fz|?. (3.41)

ININ A

Substitute (3.40) and (3.41) into (3.39), we conclude that

lon = 2lI* < anllu—2|* + llzn — 2]1* = 20Aa|| Buy, — E2|?
—2p(1 = Nl Fun — F2| + p* | Du, — D32

= anllu— 2l + 2 — 212 + 2600 |2n — 201120 — 2]
—2pXal||Eu, — Ez||* — 2p(1 — \)B|| Fu,, — Fz||?
+p%INBu, — Ez) 4+ (1 — \)(Fu, — Fz)|?
anllu— 2| + llon — 217 + 20nlzn — 2n_lllzn — 2|
—2pXa||Bu,, — Ez|]? — 2p(1 — N)B|| Fu,, — Fz||* + p*\||Bu,, — Ez|)?
P21 = M|y — F2?
= anllu— 22+ o — 21 + 200 2n — 201120 — 2]

—pA2a — )| By — B2 — p(1 = \)(26 — p)[Fun — F2l2.  (3.42)

IA

By using (3.42) and condition (i) we have,

PA20 = p)|Bup — Ez|* < anllu—2|* + llzn = 2I* + 26020 — 2]z — ]
|41 — 2
< anllu = 2]+ 2¢n |z — n-alll2n — 2|
+(llzn = 20 = llznss = 1) (o = 201 + llznsr = 2I1)
2¢n
< apllu— 2l + == g — zaallllzn - 2l
(lzn = 21+ lenss = 201) (lonsa = zall). (3.43)
From condition (i) and (3.38), it implies that
lim ||Eu, — Ez|| =0. (3.44)
n—oo
By using the same method as (3.43), we have
lim ||Fu, — Fz|| = 0. (3.45)
n— 00
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Note that

|Dw, — Dz|| < M|EBu,— Ez||+ (1 —\)||Fu, — Fz||, (3.46)

then, from (3.44) and (3.45), we have

Since

lim ||Du, — Dz|| = 0. (3.47)
n—oo
[twss — 22 = [Pl — pOE + (L= N — 2|
= |[Po(I = pD)u, — 2|2, (3.48)

and by the properties of Po(I — pD), we have

IPo(I — pD)uy — 2|

Note that

lun — 2|2

ININ A

IN

= HPC(I_pD)un_PC(I_/OD)ZH2
(I = pD)un, — (I = pD)z, Po(I = pD)un, — 2)

1
5 (1 = pD)un = (I = pD)2|1* + | Po (L = pD)uy —

IN

(I = pDYun — (I — pD)z — Pe(I — pD)un, + z||2)

IN

1
5 ([lun = 212 + | P (I = pD)un = 21

—un — Po(I — pD)up — p(Duy — Dz)||2>. (3.49)

llont + Brzn + YTy, 2n — 2|2

llan(u—2) + Bn(2n — 2) + (L, 20 — Z)HQ

o [lu — ZH2 + Bullzn — Z||2 + Yol T 20 — Z||2

o |u — ZH2 + Bullzn — Z”2 + Ynllzn — Z||2

anllu— 2l + (1 + an)l|zn — 22

anllu = z|* + (1 + an)llzn + dn(zn — 2n1) — 2|12

anllu— 2| + (1 + an)l[(zn — 2) + ¢n(an — zn—1)|
+ )

anllu = 2| + (1 = )| llzn — 2

260 (0 — 230 — Tn-1) + 02 |2n — 201 7]

anllu =zl + ||lzn = 2l* + 200 (20 — 2,20 — Tp1)
ol en — xn—1 . (3.50)
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Sutstitute (3.50) into (3.49), we have
1
2
+ o[ 2n — 2p-1|? +[|[Pe(I = pD)u, — z||?
~tn = Po(I = pD)uy — p(Dun — D2)|*}
1
= 5{”% —2|® + anllu = 2] + 2¢n |20 — 2llzn — 2l
+82llzn — 2P+ Pl — pDJuy — 2|
—|[un — Pe(I = pD)un || = ||p(Du, — Dz)||?

+2p(un, — Po(I — pD)uy, Du, — Dz}}

[Pc(I = pD)u, — z||* < {”xn — 2|2 + anllu = 2|1 + 2¢n|lzn — zll|l2n — 20

< %{Hxn — 2| + anllu — 2||* 4 20 l|Tn — 2|0 — Tp_1]|
4022 — xp||? + |Po(I = pD)uy, — 2|2
~|[un = Pe(I = pD)un|* — || p(Duy — Dz)||* +
2pljtn = Po(I = pDYun ||| D — Dz }

< lan = 2l + anllu = 2l|* + 26|20 — 2|2 — 20

+¢i”$n - $n71||2 — [Jup — Pe(I - PD>un||2
~llp(Duy, — Dz)|*
+2plltn — Po(I = pD)uy || Din — D2 (3.51)
Sutstitute (3.51) into (3.48), we obtain that
lzns1 =2l < llon = 2l + anllu = 2l* + 26nllzn — 2lllon — @1l + G5 llzn — 2n-l?
~llun — Po(I = pD)uy||* — |lp(Duy, — D2)||?
+2plluy, — Po(I — pD)uy||||Dun — Dz, (3.52)
it follows from (3.52) that

Jun = Po(I = pDYunl? < llzw = 202 = llens1 — 21 + anlu — 2
+2¢ullzn — 2|20 — Tp1]]
+62 @0 = 1|2 = | p(Duy — D2)]?
+2pllun — Pc(I = pD)un ||| Dun — Dz||
< (lwn = 2l + lznsr = 20) 2t = @al + anllu - 2|

L 20
n
2

+ ol = zn|? = llp(Duy — D2)|?
n

+2p||un, — Po(I — pD)uy||||Duyn, — Dz||. (3.53)

len = zlll|lzn — zn-1ll

By using condition (i) and (3.47), it implies that
ILm llun, — Po(I — pD)uy,]|| = 0. (3.54)
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Consider,

|z — Po(I — pD)uy + Po(I — pD)uyn — uy|
< lzn = Po(I = pD)un || + [[Po(I = pD)tn — un||
= llon = znpill + [|1Po( = pD)un — unl, (3.55)

[Zn — unl|

A

it follows from (3.38) and (3.54), we have

nh_{rgo |xn — unl = 0. (3.56)
Step (IV): Now, we will show that limsup,,_, . {(u — v*, 2, — v*) < 0, where v* = Pqu
so we this take a subsequence {z,, } of {z,} such that

limsup(u — v*, z, —v*) = lim (u —v*, x,, —v*), (3.57)
n—oo k—o00
without loss of generality, we may assume that x,, — w as k — oo where w € C. Since
limy o0 ||tin,, — @n, || = 0, we have u,, — w as k — oo. Assume that w # Po(I — pD)w,
by the nonexpansiveness of Po(I — pD) and opial’s property, we have

likminf llun, —w| < liminf ||u,, — Pc(I — pD)w||
— 00 k—o0
< liminf [un, — Po(I = pD)up, ||+ [[Po(! = pD)un, = Po(I = pD)e]
< timinf [lfun, = Po(I = pD)un, | + llun, - |
< liminf ||up, —w]. (3.58)
k—o0

This is a contradiction, then we have w € (Po(I—pD)). Since, by Remark 2.10 and Lemma
2.11 we get that w € VI(C, E)NVI(C, F). Next, we will show that w € F(TA?), we may
assume that x,, — w € C. Since limy_,c0 ||2n, — Tn, || = 0, we have z,, — w as k — oco.
Assume that w # TA-Bw, By opial’s property, we have

lim inf ||2,, — TBw||
k—o0

liminf ||z, —w| <

k—oc0

< lim inf ”Z”k - T:LBZT%” + ||T7:4’ank - Tq;A7BUJ||
k—o0

<

liminf ||z, —w|. (3.59)

This is a contradiction, then we have w € F(TAF), and so w € Q. Since z,,, — w and
w € ), we have

limsup(u — v*,z, —v*) = lim (u—v*, z,, —v")
n—>00 k—oo
= (u—v*w—10")

< 0. (3.60)
It implies that.

limsup(u — v*,z, —v*) < 0. (3.61)

n—oo
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Finally, we will show that lim,,_~ z,, = v*, where v* = Pyu. Note that,

[€n1 = 0> = ||[Pc(I = pD)uy, —v*||?
< lun _U*”2
= HOénU, + 6nzn + 'YnT’,nZn — U*H2

o (u —v*) + Bn(2n — v*) + 'Yn(Trn,Zn - U*)||2

< lan(u—v) + Balzn = v*) + 020 — )|
= Jlen(u—v") + (1 = an)(zn — 0|
< (1 =)z — 08|12 + 200 (T — v, u— 0", (3.62)
and
20 =" = llzn + dn(zn — 2n-1) — |
= |lon — 0" + ¢n(@n — 2n)|?
< lwn = 12 4+ 200 (20 — Tp1, 20 — V). (3.63)

Substitute (3.63) into (3.62), we have
|Zn41 — U*”2 < (1-on) [”xn - U*HQ + 2¢n(Tn — Tn-1,2n — V")

+20, (X1 — 0 u — V")

< (1 —ap)||zn — v |]? + 200 (T — v, u—v")
+(1 = 0n)2¢n||zn—1 — n|l[|2n — v7||
¢
< (L= am)llzn — 0" + = anot — zallllzn — o]

F2an(Tnt1 — v u—v > (3.64)

By Lemma 2.8, condition(i) and (3.61), we can conclude that {x,} converges strongly to
v* = Pou This completes the proof of Theorem 3.1.

4. NUMERICAL EXAMPLE

Example 4.1. Let R be the set of real number and let the mappings A,B,F and F :
R — R defined by A(z) = 251, B(z) =2(z — 1), E(z) = 5! and F(z) =

Algorithm 1. we choose A € (0,1), 0 <71, <2, 0< p <min{28,2v}, {¢.} C[0,1).

Step 1: Let u,zg,z1 € H. Set n:=1. -
Step 2: Compute

Zn =Xy -+ ¢n($n - xn—l)a
Step 3: Compute
U, = Zu+ 33y, + =278 (1_p A)z,,

Step 4: Compute
Tapr = un— pA(220) + (1 A)(2).

where

¢ _ mln{m, 05} if In 7é Tn—1,
0.5 otherwise.
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Step 5:. Set n =n+ 1, and go to Step 2.

It is easy to see that the sequences {ay,}, {8n}, {7n} satisfy all conditions in Theorem
3.1. We can conclude that the sequences {x, } converge strongly to {1}.

In figure 1, we choose three difference initial points zy and z1 with the same parameters
and observe a behavior of the sequence {x,,}. We see that even if we choose the difference
initial point, the sequence {z,} always converges to the solution, in this case is {1}.

Next figure 2, we take initial points random fixed same point. For the conparison three

parameter p = 0.01,0.50,0.99. We see that the sequence {x,} always converges fastest
to a solution, where p = 0.99.
2 2
Finally, we test the to rate of convergence by choosing 7, = 0.99 37, .37, 7577

whene the initial point g = 7, 1 = 5, the parameter p = 0.99 and v = 2 are fixed. In
this test, the result is shown in figure 3.

Muimed of nerad o

F1GURE 1. The comparison of convergent rate form 3 initial points.

il 800
1

FIGURE 2. The comparison of convergent rate form 3 the parameter p.
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FIGURE 3. The comparition of convergent rate form 3 different sequences {r, }.
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