



# BEST PROXIMITY POINTS OF GENERALIZED p-CYCLIC WEAK $\varphi$ -CONTRACTIONS



THEMATICAL&

Buraskorn Nuntadilok<sup>1</sup>, Pitchaya Kingkam<sup>2,\*</sup>, Jamnian Nantadilok<sup>3</sup>

<sup>1</sup> Department of Mathematics, Faculty of Science, Maejo University, Chiangmai, Thailand E-mail: burasakorn.nun@gmail.com

<sup>2</sup> Department of Mathematics, Faculty of Science, Lampang Rajabhat University, Lampang, Thailand E-mail: pitchaya.king@gmail.com

<sup>3</sup> Department of Mathematics, Faculty of Science, Lampang Rajabhat University, Lampang, Thailad *E-mail: jamnian2010@gmail.com* 

\*Corresponding author.

Received: 28 March 2022 / Accepted: 25 September 2022

Abstract In this manuscript, we extend the notion of generalized cyclic weak  $\varphi$ -contractions to p sets,  $p \ge 2$ . We investigate the convergence of best proximity points of such maps in p-cyclic complete metric spaces. We also give an example to support our main results. Our works generalize and improve the related results in the literature.

MSC: 47H10; 54H25

**Keywords:** *p*-cyclic contractions; strict contractions; best proximity points; generalized weak  $\varphi$ -contractions; *p*-cyclic metric space

# 1. INTRODUCTION

In 1968, Bryant [1] constructed a remarkable result in fixed point theory and proved that, in a complete metric space, if for some positive integer  $n \ge 2$ , the nth iteration of

Published online: 3 October 2022

Please cite this article as: B. Nuntadilok et al., Best proximity points of generalized *p*-cyclic weak  $\psi$ -contractions, Bangmod J-MCS., Vol. 8 (2022) 1–16.



the given mapping forms a contraction, then it possess a unique fixed point. Another outstanding approach was proposed by Kirk, Srinivasan and Veeramani [13] by introducing the notion of cyclic contraction. More precisely, every cyclic contraction in a complete metric space possess a unique fixed point. This statement is plain but significant when we compare with the results of Bryant. Later, the concept of the cyclic contractions has been investigated immensely by a considerable large number of authors who brought several brilliant notions and derived a number of interesting results (see, e.g.[2–6, 10, 11, 14– 18, 20, 21, 24, 29] and the references therein). Let T be a self-mapping on a metric space  $(X, \rho)$ . Suppose that E and F are non-empty subsets of X such that  $X = E \cup F$ . A self-mapping  $T : E \cup F \to E \cup F$  is called a cyclic contraction [13] if

- 1).  $T(E) \subseteq F$  and  $T(F) \subseteq E$ .
- 2). If there is a  $k \in (0, 1)$  such that the following inequality is satisfied
  - $d(Tx, Ty) \le kd(x, y), \text{ for all } x \in E, y \in F.$

After this initial construction, several extensions of cyclic mappings and cyclic contractions have been introduced. In this paper, we mainly follow the notations defined in [19, 23]. In [19], a notion of *p*-cyclic map was introduced. Let  $D_1, D_2, \ldots, D_p (p \ge 2)$ be non-empty sets. A *p*-cyclic map  $T : \bigcup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$  is defined such that  $T(D_i) \subseteq D_{i+1}, \forall i \in \{1, 2, \ldots, p\}, x = x_0 \in D_i$ , defines a sequence  $\{x_n\} \subset \bigcup_{i=1}^p D_i$  as  $x_n = Tx_{n-1}$ . Then,  $\{x_{pn}\}$  is a subsequence in  $D_i, \{x_{pn+1}\}$  is a subsequence in  $D_{i+1}$  and so on. From the arrangement of such a sequence formed by a *p*-cyclic map, Karapinar et al. in [23] introduced a notion of *p*-cyclic sequence (Definition 2.1(1)). If  $D_is$  are subsets of a metric space  $(X, \rho)$ , then, to obtain a best proximity point of *T* under various contractive conditions (some of them given in the literature), it is enough to prove that: given  $\varepsilon > 0$ , there exists  $N_0 \in \mathbb{N}$  such that

$$\rho(x_{pn}, x_{pm+1}) < dist(D_i, D_{i+1}) + \varepsilon, \forall n, m \ge N_0.$$

This observation motivated the authors [23] to introduce a concept of *p*-cyclic Cauchy sequence and *p*-cyclic complete metric space (Definition 2.1). In addition, while investigating the behavior of such *p*-cyclic maps, it is often the case that, if  $\rho(x, y) > dist(D_i, D_{i+1})$ , then  $\rho(Tx, Ty) < \rho(x, y)$  and, if  $\rho(x, y) = dist(D_i, D_{i+1})$ , then  $\rho(Tx, Ty) = \rho(x, y), x \in$  $D_i, y \in D_{i+1}$ . They call a *p*-cyclic map with this property as *p*-cyclic strict contraction map (Definition 3.1). Note that, if the distances between the adjacent sets are zero, then a *p*-cyclic strict contraction map is a strict contraction map in the usual sense. All such maps invariably satisfy the condition:  $x, y \in D_i, \rho(T^{pn}x, T^{pn+1}y) \rightarrow dist(D_i, D_{i+1})$  as  $n \to \infty$ . In the paper [23], all *p*-cyclic maps which satisfy the above two properties are said to belong to class  $\Omega$  (Definition 3.4). Finally, the authors proved the existence and convergence of best proximity points of  $\Omega$  class of mappings in a *p*-cyclic complete metric space.

Now we recollect some essential definitions.

**Definition 1.1** (see [4]). A continuous function  $F : [0, \infty)^2 \to \mathbb{R}$  is called a *C*-class function, if for any  $s, t \in [0, \infty)$ , the following conditions hold:

- (1)  $F(s,t) \leq s;$
- (2) F(s,t) = s implies that either s = 0 or t = 0.

**Remark 1.2.** We denote the class of all *C*-class functions as  $\mathbb{C}$ .

**Example 1.3** (see [4]). Following examples show that the class  $\mathbb{C}$  of *C*-class functions is nonempty:

 $\begin{array}{ll} (1) \ F(s,t) = s-t. \\ (2) \ F(s,t) = ms, 0 < m < 1 \\ (3) \ F(s,t) = \frac{s}{(1+t)^r} \ \text{for some } r \in (0,\infty). \\ (4) \ F(s,t) = \log(t+a^s)/(1+t), \ \text{for some } a > 1. \\ (5) \ F(s,t) = \ln(1+a^s)/2, \ \text{for } a > e. \ \text{Indeed } F(s,1) = s \ \text{ implies that } s = 0. \\ (6) \ F(s,t) = (s+t)^{(1/(1+t)^r)} - l, \ l > 1, \ \text{for } r \in (0,\infty). \\ (7) \ F(s,t) = s \log_{t+a} a, \ \text{for } a > 1. \\ (8) \ F(s,t) = s - (\frac{1+s}{2+s})(\frac{t}{1+t}). \\ (9) \ F(s,t) = s\beta(s), \ \text{where } \beta: [0,\infty) \to [0,1). \end{array}$ 

More examples of C-class functions can be found in [4].

**Definition 1.4** (see [22]). A function  $\psi : [0, \infty) \to [0, \infty)$  is called an altering distance function, if the following properties are satisfied:

- (i)  $\psi$  is non-decreasing and continuous,
- (*ii*)  $\psi(t) = 0$  if and only if t = 0.

We denote the class of *altering distance functions* as  $\Psi$ .

**Definition 1.5** (see [4]). An ultra altering distance function is a continuous, non-decreasing mapping  $\varphi : [0, \infty) \to [0, \infty)$  such that  $\varphi(t) > 0, t > 0$  and  $\varphi(0) \ge 0$ 

We denote the class of *ultra altering distance functions* as  $\Psi_u$ .

In what follows, we recollect some definitions and fundamental results which are crucial to prove our main results.

**Definition 1.6.** ([19], Definitions 3.1). For a non-empty set X, suppose  $\rho : X \times X \rightarrow [0, \infty)$  forms a metric and  $D_1, D_2, \ldots, D_p, (p \ge 2)$  are non-empty subsets of X. Define  $D_{p+i} := D_i$ , for all  $i \in \{1, 2, \ldots, p\}$ . A map  $T : \bigcup_{i=1}^p D_i \rightarrow \bigcup_{i=1}^p D_i$  is called a *p*-cyclic map, if  $T(D_i) \subseteq D_{i+1}, \forall i \in \{1, 2, \ldots, p\}$ . If p = 2, then T is called a cyclic map. A point  $x \in D_i$  is said to be a best proximity point of T in  $D_i$ , if  $\rho(x, Tx) = dist(D_i, D_{i+1})$ , where  $dist(D_i, D_{i+1}) := \inf\{\rho(x, y) : x \in D_i, y \in D_{i+1}\}$ .

In [23], the authors introduced the conditions for the underlying space and for the subsets of the space, to have a unique best proximity point under a p-cyclic map, if it exists, irrespective of the contraction condition imposed on the map.

**Proposition 1.7** ([23]). Let  $D_1, D_2, \ldots, D_p, (p \ge 2)$  be non-empty convex subsets of a strictly convex norm linear space X such that  $dist(D_i, D_{i+1}) > 0, i \in \{1, 2, \ldots, p\}$ . Let  $T : \bigcup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$  be a p-cyclic map. Then, T has at most one best proximity point in  $D_i, 1 \le i \le p$ .

Let T be a p-cyclic map as given in Definition 1.6. T is said to be p-cyclic non expansive map if for all  $x \in D_i, y \in D_{i+1}$ , the following holds:

 $\rho(Tx, Ty) \le \rho(x, y), \forall i \in \{1, 2, \dots, p\}.$ 

The following lemma naturally follows for a *p*-cyclic non-expansive map.

**Lemma 1.8.** ([19], Lemma 3.3). For a non-empty set X, suppose  $\rho : X \times X \to [0, \infty)$ forms a metric and  $D_1, D_2, \ldots, D_p, (p \ge 2)$  are non-empty subsets of X. If  $T : \bigcup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$  is a p-cyclic non-expansive map, then

$$dist(D_i, D_{i+1}) = dist(D_{i+1}, D_{i+2}) = dist(D_1, D_2), \forall i \in \{1, 2, \dots, p\}.$$
(1.1)



In addition, if  $\nu \in D_i \cap \mathbf{D}(T)_i \neq \emptyset$ , then  $T^j \nu \in D_{i+1} \cap \mathbf{D}(T)_{i+j} \neq \emptyset$ , for all j = 1, 2, ..., (p-1), where  $\mathbf{D}(T)_k$  is the set of best proximity point of the mapping T in  $D_k$ .

The following lemma (see [11, 23]) is essential to prove that a given sequence is Cauchy.

**Lemma 1.9.** ([11], Lemma 3.7). For a uniformly convex Banach space (X, ||.||), we suppose that E, F are non-empty closed subsets of X and  $\{a_n\}, \{b_n\} \subset E$  and  $\{d_n\} \subset F$ . If E is convex such that

- (i)  $||b_n d_n|| \rightarrow dist(E, F);$  and
- (ii) for every  $\varepsilon > 0$  there exists  $N \in \mathbb{N}$  such that for all m > n > N,  $\|a_m - d_n\| \le dist(E, F) + \varepsilon$ ,

then for all  $\varepsilon > 0$ , there exists  $N_1 \in \mathbb{N}$  such that for all  $m > n > N_1$ ,  $||a_m - b_n|| \le \varepsilon$ .

Next, we recall a few *p*-cyclic maps with some contraction conditions imposed on them, which are defined in [2, 3, 9, 12, 19].

**Definition 1.10.** ([2], Definition 3.1). For a non-empty set X, suppose  $\rho: X \times X \to [0, \infty)$  forms a metric and  $D_1, D_2, \ldots, D_p, (p \ge 2)$  are non-empty subsets of X. Let  $T: \cup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$  be a *p*-cyclic map, T is said to be a *p*-cyclic contraction, if there exists  $k \in (0, 1)$  such that for all  $x \in D_i$  and  $y \in D_{i+1}$ , we have

$$\rho(Tx, Ty) \le k\rho(x, y) + (1 - k)dist(D_i, D_{i+1}), \forall i \in \{1, 2, \dots, p\}.$$

**Definition 1.11.** ([3], Definition 2.1). For a non-empty set X, suppose  $\rho : X \times X \to [0, \infty)$  forms a metric, E and F are non-empty subsets of X. A cyclic map  $T : E \cup F \to E \cup F$  is said to be a cyclic  $\varphi$ -contraction if

$$\rho(Tx,Ty) \le \rho(x,y) - \varphi(\rho(x,y)) + \varphi(dist(E,F)), \forall x \in E, y \in F,$$

where  $\varphi : [0, \infty) \to [0, \infty)$  is a strictly increasing map.

**Definition 1.12.** ([9], Definition 2.1). Let E and F be nonempty subsets of a metric space  $(X, \rho)$ . Suppose that  $\varphi : [0, \infty) \to [0, \infty)$  is a strictly increasing map. A cyclic map  $T : E \cup F \to E \cup F$  is said to be a generalized cyclic weak  $\varphi$ -contraction, if for any  $x \in E, y \in F$ 

$$\rho(Tx, Ty) \le m(x, y) - \varphi(m(x, y)) + \varphi(dist(E, F))$$
(1.2)

where  $m(x, y) = \max\{\rho(x, y), \rho(x, Tx), \rho(y, Ty), \frac{1}{2}[\rho(x, Ty) + \rho(y, Tx)]\}.$ 

**Definition 1.13.** ([6], Definition 2.1). Let E and F be nonempty subsets of a metric space $(X, \rho)$ . Suppose that  $\varphi, \psi : [0, \infty) \to [0, \infty)$  and  $\varphi$  is a strictly increasing map. A cyclic map  $T : E \bigcup F \to E \bigcup F$  is called a generalized cyclic weak  $(F, \psi, \varphi)$ -contraction, if for any  $x \in E$  and  $y \in F$ ,

$$\psi(\rho(Tx,Ty)) \le F\Big(\psi(m(x,y)) - \psi(dist(E,F)), \varphi(m(x,y)) - \varphi(dist(E,F))\Big) + \psi(dist(E,F))$$
(1.3)

where  $F \in \mathbb{C}, \psi \in \Psi$  with  $\psi(s+t) \leq \psi(s) + \psi(t), \varphi \in \Psi_u$  and

$$m(x,y) = \max\{\rho(x,y), \rho(x,Tx), \rho(y,Ty), \frac{1}{2}[\rho(x,Ty) + \rho(y,Tx)]\}.$$

**Remark 1.14.** If we take F(s,t) = s - t and  $\psi(t) = t$  in Definition 1.13, the we obtain Definition 1.12 above.



#### 2. *p*-Cyclic Sequences and *p*-Cyclic Complete Metric Spaces

Throughout this article, let  $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ . In [23], Karapinar et al. introduced the notion of *p*-cyclic sequence as follows:

**Definition 2.1** ([23]). For a non-empty set X, suppose  $\rho : X \times X \to [0, \infty)$  forms a metric and  $D_1, D_2, \ldots, D_p, (p \ge 2)$  are non-empty subsets of X.

- 1. A sequence  $\{x_n\}_{n=1}^{\infty} \subset \bigcup_{i=1}^{p} D_i$  is called a *p*-cyclic sequence if  $x_{pn+i} \in D_i$ , for all  $n \in \mathbb{N}_0$  and  $i = 1, 2, \dots, p$ .
- 2. We say that  $\{x_n\}_{n=1}^{\infty}$  is a *p*-cyclic Cauchy sequence, if for given  $\varepsilon > 0$  there exists an  $N_0 \in \mathbb{N}$  such that for some  $i \in \{1, 2, \ldots, p\}$ , we have

$$\rho(x_{pn+i}, x_{pm+i+1}) < dist(D_i, D_{i+1}) + \varepsilon, \forall m, n \ge N_0.$$

$$(2.1)$$

- 3. A *p*-cyclic sequence  $\{x_n\}_{n=1}^{\infty}$  in  $\bigcup_{i=1}^{p} D_i$  is said to be *p*-cyclic bounded, if  $\{x_{pn+i}\}_{n=1}^{\infty}$  is bounded in  $D_i$  for some  $i \in \{1, 2, ..., p\}$ .
- 4. Let  $\{x_n\}_{n=1}^{\infty}$  be a *p*-cyclic sequence in  $\cup_{i=1}^{p} D_i$ . If for some  $j \in \{1, 2, ..., p\}$  the subsequence  $\{x_{pn+j}\}$  of  $\{x_n\}_{n=1}^{\infty}$  converges in  $D_j$ , then we say that  $\{x_n\}_{n=1}^{\infty}$  is *p*-cyclic convergent.
- 5 . Under the assumption that  $D_1, D_2, \ldots, D_p, (p \ge 2)$  are non-empty closed subsets of a metric space  $(X, \rho)$ , we say that  $\cup_{i=1}^p D_i$  is *p*-cyclic complete if every *p*-cyclic Cauchy sequence in  $\cup_{i=1}^p D_i$  is *p*-cyclic convergent.
- 6. If there are subsets  $D_1, D_2, \ldots, D_p, (p \ge 2)$  of  $(X, \rho)$  such that  $X = \bigcup_{i=1}^p D_i$  and  $\bigcup_{i=1}^p D_i$  is *p*-cyclic complete, then we call  $(X, \rho)$  a *p*-cyclic complete metric space.

**Remark 2.2.** Note that a *p*-cyclic sequence which is a Cauchy sequence in the usual sense is a *p*-cyclic Cauchy sequence. On the other hand, *p*-cyclic Cauchy sequences need not be Cauchy sequences in the usual sense, even if  $dist(D_i, D_{i+1}) = 0, \forall i \in \{1, 2, ..., p\}$ .

Examples which illustrate the notion of *p*-cyclic sequence and *p*-cyclic Cauchy sequence can be found in ([23], Example 1 and 2). And a complete metric space need not be *p*-cyclic complete, (see [23], Remark 2, for example).

The following proposition shows that a *p*-cyclic Cauchy sequence is *p*-cyclic bounded.

**Proposition 2.3** ([23]). For a non-empty set X, suppose  $\rho : X \times X \to [0, \infty)$  forms a metric and  $D_1, D_2, \ldots, D_p, (p \ge 2)$  are non-empty subsets of X. Then, every p-cyclic Cauchy sequence in  $\cup_{i=1}^p D_i$  is p-cyclic bounded.

The following proposition is an example of two-cyclic complete metric space.

**Proposition 2.4** ([23]). Let E and F be subsets of a uniformly convex Banach space X, which are non-empty and closed. If either E or F is convex, then  $E \cup F$  is two-cyclic complete.

#### 3. p-Cyclic Strict Contraction Maps

In [23], Karapinar et al. introduced a notion of p-cyclic strict contraction, which is a generalization of strict contraction in the usual sense.

**Definition 3.1** ([23]). For a non-empty set X, suppose  $\rho : X \times X \to [0, \infty)$  forms a metric and  $D_1, D_2, \ldots, D_p, (p \ge 2)$  are non-empty subsets of X. A p-cyclic map T is said to be p-cyclic strict contraction if, for all  $x \in D_i, y \in D_{i+1}, 1 \le i \le p$ :

(i)  $\rho(x,y) > dist(D_i, D_{i+1}) \Rightarrow \rho(Tx, Ty) < \rho(x, y)$ , and



(ii) 
$$\rho(x, y) = dist(D_i, D_{i+1}) \Rightarrow \rho(Tx, Ty) = \rho(x, y).$$

**Remark 3.2.** Note that, if  $D_i = A$ , for all i = 1, 2, ..., p, then p-cyclic strict contraction is a strict contraction in the usual sense. It is clear that the *p*-cyclic strict contraction also forms a *p*-cyclic non-expansive map.

The following proposition proves an important property of *p*-cyclic strict contraction map

**Proposition 3.3** ([23]). For a non-empty set X, suppose  $\rho: X \times X \to [0, \infty)$  forms a metric and  $D_1, D_2, \ldots, D_p, (p \ge 2)$  are non-empty subsets of X. Let  $x \in D_i (1 \le i \le p)$ . Suppose that  $T: \bigcup_{i=1}^{p} D_i \to \bigcup_{i=1}^{p} D_i$  is a p-cyclic strict contraction map and if for all  $\varepsilon > 0$ , there exists an  $n_0 \in \mathbb{N}$  such that

$$\rho(T^{pn}x, T^{pm+1}x) < dist(D_i, D_{i+1}) + \varepsilon, n, m \ge n_0, \tag{3.1}$$

then for a given  $\varepsilon > 0$ , there exists an  $n_1 \in \mathbb{N}$  such that

$$\rho(T^{pn+k}x, T^{pm+k+1}x) < dist(D_{i+k}, D_{i+k+1}) + \varepsilon, n, m \ge n_1, k \in \{1, 2, \dots, p\}$$

In [23], Karapinar et al. introduced the notion of p-cyclic maps with various contractive conditions and possed some common properties. They also introduced a notion of class  $\Omega$ , a certain class of mappings.

**Definition 3.4** ([23]). For a non-empty set X, suppose  $\rho: X \times X \to [0,\infty)$  forms a metric and  $D_1, D_2, \ldots, D_p, (p \ge 2)$  are non-empty subsets of X. A p-cyclic map T :  $\cup_{i=1}^{p} D_i \to \bigcup_{i=1}^{p} D_i$  is said to belong to the class  $\Omega$  if

- (1) T is p-cyclic strict contraction.
- (2) If  $x, y \in D_i$ , then  $\lim_{n \to \infty} \rho(T^{pn}x, T^{pn+1}y) = dist(D_i, D_{i+1}), 1 \le i \le p$ .

In this manuscript, we list some p-cyclic maps different from those given in [23] which belong to the class  $\Omega$ . First, we prove that a p-cyclic contraction map, which is defined via the notion of C-class functions, belongs to the class  $\Omega$ . We give the following new definition via C-class functions.

**Definition 3.5.** Let  $D_1, D_2, \ldots, D_p$  be non-empty subsets of a metric space  $(X, \rho)$ . Let  $T: \bigcup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$  is called a *p*-cyclic  $(F, \psi, \varphi)$ -contraction map, if it satisfies

$$\psi(\rho(Tx,Ty)) \leq F(\psi(\rho(x,y)) - \psi(dist(D_i,D_{i+1})),\varphi(\rho(x,y)) - \varphi(dist(D_i,D_{i+1}))) + \psi(dist(D_i,D_{i+1})),$$

for all  $i \in \{1, 2, \dots, p\}$ , where  $F \in \mathbb{C}, \psi \in \Psi$  and  $\varphi : [0, \infty) \to [0, \infty)$  is a strictly increasing map.

**Remark 3.6.** If we take F(s,t) = s - t,  $\psi(t) = t$  and p = 2 in Definion 3.5, then we obtain Definition 1.11 (Definition 2.1, defined in [3]).

Next we prove that a *p*-cyclic  $(F, \psi, \varphi)$ -contraction map belongs to the class  $\Omega$ .

**Example 3.7.** Let  $D_1, D_2, \ldots, D_p$  be non-empty subsets of a metric space  $(X, \rho)$ . Let  $T: \bigcup_{i=1}^{p} D_i \to \bigcup_{i=1}^{p} D_i$  be a *p*-cyclic  $(F, \psi, \varphi)$ -contraction map. Then,  $T \in \Omega$ .



*Proof.* We first show that T is a p-cyclic strict contraction. Because the map T is a p-cyclic  $(F, \psi, \varphi)$ -contraction, we have

$$\psi(\rho(Tx,Ty)) \leq F(\psi(\rho(x,y)) - \psi(dist(D_i,D_{i+1})),\varphi(\rho(x,y)) - \varphi(dist(D_i,D_{i+1}))),$$
  
+  $\psi(dist(D_i,D_{i+1})),$ 

for all  $i \in \{1, 2, ..., p\}$ , where  $F \in \mathbb{C}$ ,  $\psi \in \Psi$ . Taking F(s, t) = s - t, we have

 $\psi\big(\rho(Tx,Ty)\big) \le \psi\big(\rho(x,y)\big) - \varphi(\rho(x,y)) + \varphi\big(dist(D_i,D_{i+1})\big).$ 

If  $\rho(x, y) = dist(D_i, D_{i+1})$ , we have

$$\rho(Tx, Ty) \le \rho(x, y).$$

Since  $\rho(x, y) = dist(D_i, D_{i+1}) \le \rho(Tx, Ty)$ , we then have

$$\rho(Tx, Ty) = \rho(x, y).$$

In addition, if  $\rho(x, y) > dist(D_i, D_{i+1})$ , then

$$\begin{split} \psi\big(\rho(Tx,Ty)\big) &\leq F\big(\psi(\rho(x,y)) - \psi(dist(D_i,D_{i+1})),\varphi(\rho(x,y)) - \varphi(dist(D_i,D_{i+1}))\big) \\ &+ \psi(dist(D_i,D_{i+1})), \\ &\leq \psi(\rho(x,y) - \varphi(\rho(x,y)) + \varphi(dist(D_i,D_{i+1})) \\ &< \psi(\rho(x,y)) - \varphi(\rho(x,y)) + \varphi(\rho(x,y)). \end{split}$$

Therefore

$$\rho(Tx, Ty) < \rho(x, y).$$

Therefore, T is a p-cyclic strict contraction. The second condition of Definition 3.4 follows from Lemma 3.3 in [2]. Hence,  $T \in \Omega$ .

**Remark 3.8.** Karapinar et al.[23] showed that the *p*-cyclic Meir-Keeler map (*p*-cyclic MK-map) introduced in [19] belongs to the class  $\Omega$ . See Example 4 in [23].

Next, we establish an example of *p*-cyclic map satisfying a contraction condition of Geraghtys type [7] and show that it belongs to the class  $\Omega$ . Here, we use the notion of *C*-class functions introduced in [4] combining with a class of functions *S* introduced by Geraghty [7], where *S* is the class of all functions  $\vartheta : [0, \infty) \to [0, 1)$  that satisfies  $\vartheta(t_n) \to 1$ , then  $t_n \to 0, t_n \in [0, \infty)$  for  $n \in \mathbb{N}$ .

**Example 3.9.** For a non-empty set X, suppose  $\rho: X \times X \to [0, \infty)$  forms a metric and  $D_1, D_2, \ldots, D_p, (p \ge 2)$  are non-empty subsets of X. Let  $T: \bigcup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$  be a *p*-cyclic  $(F, \psi, \varphi, \vartheta)$ -map such that

$$\begin{split} \rho(Tx,Ty) &\leq F\Big(\psi\big(\vartheta(\rho(x,y))\big)\rho(x,y) - \psi\big(\vartheta(\rho(x,y))\big)dist(D_i,D_{i+1}),\\ &\varphi\big(\vartheta(\rho(x,y))\rho(x,y)\big) - \varphi\big(\vartheta(\rho(x,y))\big)dist(D_i,D_{i+1})\Big)\\ &+\psi\big(\vartheta(\rho(x,y))\big)dist(D_i,D_{i+1}), \end{split}$$

for all  $i \in \{1, 2, ..., p\}$ , where  $F \in \mathbb{C}$ ,  $\psi \in \Psi$  where  $\psi(t) < t$  and  $\vartheta \in S$ . Then

- (a) T is a p-cyclic strict contraction.
- (b)  $\lim_{n \to \infty} \rho(T^{pn}x, T^{pn+1}y) = dist(D_i, D_{i+1}), x \in D_i, y \in D_{i+1}.$



*Proof.* (a) Let  $x \in D_i, y \in D_{i+1}$ .

**Case (1)**: If  $\rho(x, y) > dist(D_i, D_{i+1})$ , by the definition of F, we have

$$\begin{split} \rho(Tx,Ty) &\leq F\Big(\psi\big(\vartheta(\rho(x,y))\big)\rho(x,y) - \psi\big(\vartheta(\rho(x,y))\big)dist(D_i,D_{i+1}),\\ &\varphi\big(\vartheta(\rho(x,y))\big)\rho(x,y) - \varphi\big(\vartheta(\rho(x,y))\big)dist(D_i,D_{i+1})\Big),\\ &+ \psi\big(\vartheta(\rho(x,y))\big)dist(D_i,D_{i+1})\\ &\leq \psi\big(\vartheta(\rho(x,y))\big)\Big[\rho(x,y) - dist(D_i,D_{i+1}) + dist(D_i,D_{i+1})\Big](*)\\ &\leq \psi\big(\vartheta(\rho(x,y))\big)\rho(x,y). \end{split}$$

Therefore

 $\rho(Tx,Ty) < \rho(x,y).$ 

**Case (2)**: If  $\rho(x, y) = dist(D_i, D_{i+1})$ , then from (\*), we have  $\rho(Tx, Ty) \leq \rho(x, y)$ . By equation (1.1),

$$\rho(x,y) = dist(D_i, D_{i+1}) = dist(D_{i+1}, D_{i+2}) \le \rho(Tx, Ty) \le \rho(x, y),$$

therefore

$$\rho(Tx, Ty) = \rho(x, y).$$

Hence, T is p-cyclic strict contraction.

(b) Let  $x, y \in D_i$ . Since T is p-cyclic non-expansive,  $\{\rho(T^{pn}x, T^{pn+1}y)\}$  is a decreasing sequence and is bounded below by  $dist(D_i, D_{i+1})$ . Therefore,

$$\rho(T^{pn}x, T^{pn+1}y) \to r \text{ as } n \to \infty \text{ and } r \ge dist(D_i, D_{i+1}),$$

where  $r = \inf_{n \ge 1} \rho(T^{pn}x, T^{pn+1}y).$ 

Claim:  $r = dist(D_i, D_{i+1})$ .

If  $\rho(T^{pn}x, T^{pn+1}y) = dist(D_i, D_{i+1})$  for some *n*, then by the *p*-cyclic non-expansiveness of *T*,

$$\rho(T^{pn+k}x, T^{pn+k+1}y) = \rho(T^{pn}x, T^{pn+1}y), k = 1, 2, \dots$$

Hence, we have

$$\rho(T^{pn}x, T^{pn+1}y) \to dist(D_i, D_{i+1}) \text{ as } n \to \infty$$

Let us assume that  $\rho(T^{pn}x, T^{pn+1}y) > dist(D_i, D_{i+1}), n \in \mathbb{N}$ . Suppose that  $r > dist(D_i, D_{i+1})$ . Since T is p-cyclic non expansive,

$$\begin{split} \rho(T^{p(n+1)}x, T^{p(n+1)+1}y) &\leq \rho(T^{pn+1}x, T^{pn+2}y) \\ &\leq F\Big(\psi\big(\vartheta(\rho(T^{pn}x, T^{pn+1}y))\big)\rho(T^{pn}x, T^{pn+1}y) - \psi(\vartheta(\rho(T^{pn}x, T^{pn+1}y)))dist(D_i, D_{i+1})\Big), \\ \varphi\big(\vartheta(\rho(T^{pn}x, T^{pn+1}y))\rho(T^{pn}x, T^{pn+1}y)\big) - \varphi\big(\vartheta(\rho(T^{pn}x, T^{pn+1}y))dist(D_i, D_{i+1})\big)\Big) \\ &+ \psi(\vartheta(\rho(T^{pn}x, T^{pn+1}y)))dist(D_i, D_{i+1}) \\ &\leq \psi(\vartheta(\rho(T^{pn}x, T^{pn+1}y))\Big[\rho(T^{pn}x, T^{pn+1}y) - dist(D_i, D_{i+1}) + dist(D_i, D_{i+1})\Big]. \end{split}$$

Then

$$(T^{p(n+1)}x, T^{p(n+1)+1}y)$$
  
$$\leq \psi(\vartheta(\rho(T^{pn}x, T^{pn+1}y))[\rho(T^{pn}x, T^{pn+1}y)]$$



ρ

https://doi.org/10.58715/bangmodjmcs.2022.8.1 Bangmod J-MCS 2022 Since  $\vartheta \in S$  and  $\psi(t) < t$ ,

$$\frac{\rho(T^{p(n+1)}x, T^{p(n+1)+1}y)}{\rho(T^{pn}x, T^{pn+1}y)} \le \vartheta(\rho(T^{pn}x, T^{pn+1}y)) < 1.$$
(3.2)

Since  $r = \lim_{n \to \infty} \rho((T^{p(n+1)}x, T^{p(n+1)+1}y)) > dist(D_i, D_{i+1})$  by our assumption, letting  $n \to \infty$  in equation (3.2), we get

$$1 \le \lim_{n \to} \vartheta(\rho(T^{pn}x, T^{pn+1}y)) \le 1,$$

that is,

$$\lim_{n \to \infty} \vartheta(\rho(T^{pn}x, T^{pn+1}y)) = 1$$

However,  $\lim_{n \to \infty} \rho(T^{pn}x, T^{pn+1}y) = r > 0$ , which contradicts  $\vartheta \in S$ . Hence,  $r = dist(D_i, D_{i+1})$ . This proves Part (b).

Next, we recall some essential definitions and some known results as follows.

**Definition 3.10.** ([9], Definition 2.1) Let E and F be nonempty subsets of a metric space  $(X, \rho)$ . Suppose that  $\varphi : [0, \infty) \to [0, \infty)$  is a strictly increasing map. A cyclic map  $T : E \cup F \to E \cup F$  is said to be a generalized cyclic weak  $\varphi$ -contraction, if for any  $x \in E, y \in F$ 

$$\rho(Tx, Ty) \le m(x, y) - \varphi(m(x, y)) + \varphi(dist(E, F))$$
(3.3)

where  $m(x, y) = \max\{\rho(x, y), \rho(x, Tx), \rho(y, Ty), \frac{1}{2}[\rho(x, Ty) + \rho(y, Tx)]\}.$ 

**Definition 3.11.** [25, 26] Let  $(X, \rho)$  be a metric space with a mapping  $T : X \to X$ , if  $\lim_{n \to \infty} T^{n_i}(y) = z \Rightarrow \lim_{n \to \infty} T(T^{n_i}(y)) = Tz$ , we call mapping T to be orbitally continuous.

The following are known results in [9].

**Theorem 3.12.** [9] Let E and F be nonempty subsets of a metric space  $(X, \rho)$ . Suppose  $T : E \cup F \to E \cup F$  is a generalized cyclic weak  $\varphi$ -contraction and there exists  $y_0 \in E$ . Define  $y_{n+1} = Ty_n$  for any  $n \in \mathbb{N}$ . Then  $\rho(y_n, y_{n+1}) \to \rho(E, F)$  as  $n \to \infty$ .

**Theorem 3.13.** [9] Let E and F be nonempty subsets of a metric space  $(X, \rho)$ . Suppose  $T: E \cup F \to E \cup F$  is a generalized cyclic weak  $\varphi$ -contraction and T is orbitally continuous. Assume E is closed and there exists  $y_0 \in E$ . Define  $y_{n+1} = Ty_n$  for any  $n \in \mathbb{N}$ . If  $\{y_{2n}\}$  has a convergent subsequence in E, then there exists  $p \in E$  such that  $\rho(p, Tp) \to \rho(E, F)$ .

#### 4. Best proximity points of generalized *p*-cyclic weak $\varphi$ -contractions

In this section we extend and generalize the results by Cheng and Su in [9]. We introduce the following definitions and main results.

**Definition 4.1.** Let  $D_1, D_2, \ldots, D_p, (p \ge 2)$  be nonempty subsets of a metric space  $(X, \rho)$ . Suppose that  $\varphi : [0, \infty) \to [0, \infty)$  is a strictly increasing map. A map  $T : \bigcup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$  is said to be a generalized *p*-cyclic weak  $\varphi$ -contraction, if for any  $x \in D_i, y \in D_{i+1}$ 

$$\rho(Tx, Ty) \le m(x, y) - \varphi(m(x, y)) + \varphi(dist(D_i, D_{i+1}))$$

$$(4.1)$$

where  $m(x, y) = \max\{\rho(x, y), \rho(x, Tx), \rho(y, Ty), \frac{1}{2}[\rho(x, Ty) + \rho(y, Tx)]\}.$ 



**Remark 4.2.** If we let p = 2 in definition 4.1, then we obtain the definition 3.10 (see [9]).

**Theorem 4.3.** For a non-empty set X, suppose  $\rho: X \times X \to [0,\infty)$  forms a metric and  $D_1, D_2, \ldots, D_p, (p \ge 2)$  are non-empty subsets of X. Suppose  $T: \bigcup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$  is p-cyclic maps satisfying (3.3) and there exists  $y_0 \in D_i$ . Define  $y_{n+1} = Ty_n$  for any  $n \in \mathbb{N}$ . Then  $\rho(y_n, y_{n+1}) \to dist(D_i, D_{i+1})$  as  $n \to \infty$ .

*Proof.* Let  $\rho_n = \rho(y_n, y_{n+1})$ . We first claim that the sequence  $\{\rho_n\}$  is non-increasing. By our assumption, we have

$$\rho_{n+1} = \rho(y_{n+1}, y_{n+2}) = \rho(Ty_n, Ty_{n+1}) \leq m(y_n, y_{n+1}) - \varphi(m(y_n, y_{n+1})) + \varphi(dist(D_i, D_{i+1}))$$

where

$$m(y_n, y_{n+1}) = \max\{\rho(y_n, y_{n+1}), \rho(y_n, Ty_n), \rho(y_{n+1}, Ty_{n+1}), \frac{1}{2}[\rho(y_n, Ty_{n+1}) + \rho(y_{n+1}, Ty_n)]\}$$
  
= max{ $\rho(y_n, y_{n+1}), \rho(y_{n+1}, y_{n+2})$ }. (\*)

Assume that there exists  $n_0 \in \mathbb{N}$  such that  $m(y_{n_0}, y_{n_0+1}) = \rho(y_{n_0+1}, y_{n_0+2})$ . From  $\rho(y_{n_0+1}, y_{n_0+2}) > \rho(y_{n_0}, y_{n_0+1})$ , we have

$$\rho(y_{n_0+1}, y_{n_0+2}) \le \rho(y_{n_0+1}, y_{n_0+2}) - \varphi(\rho(y_{n_0+1}, y_{n_0+2})) + \varphi(dist(D_i, D_{i+1})).$$

Then

$$\varphi\big(\rho(y_{n_0+1}, y_{n_0+2})\big) \le \varphi\big(dist(D_i, D_{i+1})\big).$$

Since  $\varphi$  is a strictly increasing map, we have

$$\rho(y_{n_0+1}, y_{n_0+2})) \le dist(D_i, D_{i+1}) \le \rho(y_{n_0+1}, y_{n_0+2}).$$

Obviously,  $\rho(y_{n_0+1}, y_{n_0+2})) = dist(D_i, D_{i+1}) \leq \rho(y_{n_0}, y_{n_0+1})$ , which is a contradiction. Hence, for all  $n \in \mathbb{N}$ ,

$$m(y_n, y_{n+1}) = \rho(y_n, y_{n+1}).$$
 (\*\*)

From (\*) and (\*\*) we conclude that  $\rho(y_{n+1}, y_{n+2}) \leq \rho(y_n, y_{n+1})$ . This shows the sequence  $\{\rho_n\}$  is non-increasing, and by Proposition 2.3 it is bounded below. Therefore  $\lim_{n\to\infty} \rho_n$  exists. If  $\rho_{n_0} = 0$ , for some  $n_0 \in \mathbb{N}$ , so  $\rho_n \to 0$  and  $dist(D_i, D_{i+1}) = 0$ , that is  $\rho_n \to dist(D_i, D_{i+1})$ . If  $\rho_n \neq 0$  for all  $n \in \mathbb{N}$ . Put  $\rho_n \to \gamma$ , then

$$\gamma \ge dist(D_i, D_{i+1}).$$

Since  $\varphi$  is a strictly increasing map, we have

$$\varphi(\gamma) \ge \varphi(dist(D_i, D_{i+1})). \tag{4.2}$$

From (\*) and (\*\*) and (3.3) we can write

$$\rho(y_{n+1}, y_{n+2}) \le \rho(y_n, y_{n+1}) - \varphi(\rho(y_n, y_{n+1})) + \varphi(dist(D_i, D_{i+1})),$$

equivalently,

$$\varphi(\rho(y_n, y_{n+1})) \le \rho(y_n, y_{n+1}) - \rho(y_{n+1}, y_{n+2}) + \varphi(dist(D_i, D_{i+1}))$$



Taking the limit as  $n \to \infty$ , we get

$$\varphi(\gamma) \le \varphi(dist(D_i, D_{i+1})). \tag{4.3}$$

From (4.2) and (4.3), we obtain

$$\gamma = dist(D_i, D_{i+1}).$$

That is  $\rho_n \to dist(D_i, D_{i+1})$ . Our proof is complete.

**Lemma 4.4.** Let  $D_1, D_2, \ldots, D_p$  be non-empty subsets of a metric space  $(X, \rho)$ . Let  $T : \bigcup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$  is a p-cyclic maps satisfying (3.3). Then,  $T \in \Omega$ .

*Proof.* (a). We first show that T is a p-cyclic strict contraction. Since the map T is a generalized p-cyclic weak  $\varphi$ - contraction, then

$$\rho(Ty_n, Ty_{n+1}) \le m(y_n, y_{n+1}) - \varphi(m(y_n, y_{n+1})) + \varphi(dist(D_i, D_{i+1})),$$

for all  $i = 1, 2, ..., p, (p \ge 2)$ , where

$$m(y_n, y_{n+1}) = \max\{\rho(y_n, y_{n+1}), \rho(y_n, Ty_n), \rho(y_{n+1}, Ty_{n+1}), \\ \frac{1}{2}[\rho(y_n, Ty_{n+1}) + \rho(y_{n+1}, Ty_n)]\} \\ = \max\{\rho(y_n, y_{n+1}), \rho(y_{n+1}, y_{n+2})\}.$$

Similar to the proof of above theorem, we have that  $m(y_n, y_{n+1}) = \rho(y_n, y_{n+1})$  for all  $n \in \mathbb{N}$ . That is  $m(x, y) = \rho(x, y)$  for all  $x, y \in D_i$ .

If  $\rho(x, y) = dist(D_i, D_{i+1})$ , then we have

$$\begin{split} \rho(Tx,Ty) &\leq \rho(x,y) - \varphi(\rho(x,y)) + \varphi(\rho(x,y)) \\ &= \rho(x,y). \end{split}$$

That is

$$\rho(Tx, Ty) \le \rho(x, y). \tag{4.4}$$

Therefore, we get  $\rho(x, y) = dist(D_i, D_{i+1}) \le \rho(Tx, Ty) \le \rho(x, y)$ . It yields that

$$\rho(Tx, Ty) = \rho(x, y)$$

In addition, if  $\rho(x, y) > dist(D_i, D_{i+1})$ , then

$$\rho(Tx, Ty) \le m(x, y) - \varphi(m(x, y)) + \varphi(dist(D_i, D_{i+1}))$$
  
$$< \rho(x, y) - \varphi(\rho(x, y)) + \varphi(\rho(x, y))$$
  
$$= \rho(x, y).$$

That is

$$\rho(Tx, Ty) < \rho(x, y). \tag{4.5}$$

Thus, from (4.4) and (4.5) we conclude that T is a p-cyclic strict contraction.

(b). We next prove the condition (2) of Definition 3.4. Let  $x, y \in D_i$ . Note that

$$\rho(T^{p(n+1)}x, T^{p(n+1)+1}y) \le \rho(T^{pn}x, T^{pn+1}y), n \in \mathbb{N}.$$

Then, the sequence  $\{\rho(T^{pn}x, T^{pn+1}y)\}_{n=1}^{\infty}$  is bounded below by  $dist(D_i, D_{i+1})$  and is a non-increasing sequence. Hence,  $\rho(T^{pn}x, T^{pn+1}y) \to r$  as  $n \to \infty$  and  $r \ge dist(D_i, D_{i+1})$ , where  $r = \inf_{n\ge 1} \rho(T^{pn}x, T^{pn+1}y)$ .

Claim:  $r = dist(D_i, D_{i+1})$ .



**Case 1.** If  $\rho(T^{pn}x, T^{pn+1}y) = dist(D_i, D_{i+1})$  for some  $n \in \mathbb{N}$ . Then, by the *p*-cyclic non-expansiveness of T,

$$p(T^{pn+k}x, T^{pn+k+1}y) = dist(D_i, D_{i+1}), k = 1, 2, \dots$$

Thus,  $\rho(T^{pn}x, T^{pn+1}y) \to dist(D_i, D_{i+1})$ , as  $n \to \infty$ .

**Case 2.** If  $\rho(T^{pn}x, T^{pn+1}y) > dist(D_i, D_{i+1})$  for all  $n \in \mathbb{N}$ .

Since T is p-cyclic non-expansive, we have

$$\rho(T^{p(n+1)}x, T^{p(n+1)+1}y) \leq \rho(T^{pn+1}x, T^{pn+2}y) \\
\leq m(T^{pn}x, T^{pn+1}y) - \varphi(m(T^{pn}x, T^{pn+1}y)) + \varphi(dist(D_i, D_{i+1})) \\
= \rho(T^{pn}x, T^{pn+1}y) - \varphi(\rho(T^{pn}x, T^{pn+1}y)) + \varphi(dist(D_i, D_{i+1})).$$

So

$$\begin{split} \rho(T^{p(n+1)}x,T^{p(n+1)+1}y) &- \varphi(\rho(T^{pn}x,T^{pn+1}y)) \\ &< \rho(T^{pn}x,T^{pn+1}y) - \varphi(\rho(T^{pn}x,T^{pn+1}y). \end{split}$$

Taking the limit as  $n \to \infty$ , it yields that

 $\varphi(r) > \varphi(r).$ 

Since  $\varphi$  is strictly increasing, r > r. This is a contradiction. Therefore, we have  $\rho(T^{pn}x, T^{pn+1}y) = dist(D_i, D_{i+1})$ . Hence,  $r = dist(D_i, D_{i+1})$ . From both cases (a) and (b) we conclude that  $T \in \Omega$ .

**Theorem 4.5.** Let  $D_1, D_2, \ldots, D_p, (p \ge 2)$  are non-empty subsets of a p-cyclic metric space  $(X, \rho)$ . Suppose a cyclic map  $T : \bigcup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$  satisfies the definition of **a** generalized p-cyclic weak  $\varphi$ -contraction (3.3) and T is orbitally continuous. Assume that each  $D_i, i = 1, 2, \ldots, p, (p \ge 2)$  is closed and there exists  $y_0 \in D_i$ . Define  $y_{n+1} = Ty_n$ for any  $n \in \mathbb{N}$ . If  $\{y_{pn}\}$  has a convergent subsequence in  $D_i$ , then there exists  $y \in D_i$  such that  $\rho(y, Ty) = dist(D_i, D_{i+1})$ .

*Proof.* By the asumption, we know that the subsequence  $\{y_{pn_k}\}$  of sequence  $\{y_{pn_k}\}$  converges to apoint  $y \in D_i$ . By Theorem 4.3, we have

$$\rho(y_{pn_k}, y_{pn_k+1}) = \rho(y_{pn_k}, Ty_{pn_k}) \to dist(D_i, D_{i+1}).$$

Since T is an orbitally continuous, we have  $\rho(y, Ty) = dist(D_i, D_{i+1})$ .

**Definition 4.6.** A metric space  $(X, \rho)$  is called **regular** if every bounded monotone sequence of X is convergent.

**Corollary 4.7.** Let  $D_1, D_2, \ldots, D_p, (p \ge 2)$  are non-empty subsets of a regular p-cyclic ordered metric space  $(X, \rho, \preceq)$ . Suppose that  $T : \bigcup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$  is a decreasing generalized p-cyclic weak  $\varphi$ -contraction (3.3) and T is also orbitally continuous. Assume that  $D_i$  is closed for each  $i, i = 1, 2, \ldots, p, (p \ge 2)$  and there exists  $y_0 \in D_i$  such that  $y_0 \preceq T^2 y_0 \preceq \cdots \preceq T y_0$ . Define  $y_{n+1} = T y_n$  for any  $n \in \mathbb{N}$ . Then there exists  $y \in D_i$  such that  $\rho(y, Ty) = dist(D_i, D_{i+1})$ .

*Proof.* By the asumption, we have

 $y_0 \preceq y_2 \preceq \cdots \preceq y_1.$ 

Since X is regular and  $D_i$  is closed for each *i*, the sequence  $\{y_{pn}\}$  converges to a point  $y \in D_i$ . From Theorem 4.5, we conclude that  $\rho(y, Ty) = dist(D_i, D_{i+1})$ .



**Theorem 4.8.** For a non-empty set X, suppose  $\rho: X \times X \to [0,\infty)$  forms a metric and  $D_1, D_2, \ldots, D_p, (p \ge 2)$  are non-empty subsets of X. Let  $T: \bigcup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$  be a *p*-cyclic maps and satisfies a generalized *p*-cyclic weak  $\varphi$ -contraction (3.3). Assume for some  $k \in \mathbb{N}$  and  $x \in D_i, (1 \leq i, k \leq p), \{T^{pn+k}x\}$  converges to  $\nu \in D_{i+k}$ . Then,  $\nu$  is a best proximity point of T in  $D_{i+k}$  (That is  $\rho(\nu, T\nu) = dist(D_{i+k}, D_{i+k+1}))$ .

*Proof.* Let  $x \in D_i$  be as given in the theorem. By equation (1.1), for each  $n \in N$ , we have,

$$dist(D_{i+k}, D_{i+k+1}) = dist(D_{i+k-1}, D_{i+k}) \leq \rho(T^{pn+k-1}x, \nu) \leq \rho(T^{pn+k-1}x, T^{pn+k}x) + \rho(T^{pn+k}x, \nu).$$

By lemma 4.4,  $T \in \Omega$ , so

$$\lim_{n \to \infty} \left( \rho(T^{pn+k-1}x, T^{pn+k}x) + \rho(T^{pn+k}x, \nu) \right) = dist(D_{i+k-1}, D_{i+k}).$$

Therefore,

n

$$\lim_{n \to \infty} \rho(T^{pn+k-1}x, \nu) = dist(D_{i+k-1}, B_{i+k}) = dist(D_{i+k}, D_{i+k+1}).$$
(4.6)

Now,

$$dist(D_{i+k}, D_{i+k+1}) \leq \rho(\nu, T\nu)$$
  
= 
$$\lim_{n \to \infty} \rho(T^{pn+k}x, T\nu)$$
  
$$\leq \lim_{n \to \infty} \rho(T^{pn+k-1}x, \nu)$$
  
= 
$$dist(D_{i+k}, D_{i+k+1}), \text{ (by equation(4.6))}.$$

Hence,  $\rho(\nu, T\nu) = dist(D_{i+k}, D_{i+k+1}).$ 

**Theorem 4.9.** For a non-empty set X, suppose  $\rho : X \times X \to [0,\infty)$  forms a metric and  $X_1, X_2, \ldots, D_p, (p \ge 2)$  are non-empty subsets of X. Suppose that  $X = \bigcup_{i=1}^p D_i$  and  $\cup_{i=1}^{p} D_{i}$  is p-cyclic complete. Let  $T: \cup_{i=1}^{p} D_{i} \to \cup_{i=1}^{p} D_{i}$  be a p-cyclic mapping which satisfies a generalized p-cyclic weak  $\varphi$ -contraction (3.3). Then, there exists a best proximity point of T in  $D_j$  for some  $j \in \{1, 2, \ldots, p\}$ .

*Proof.* Let  $x \in D_i, 1 \leq i \leq p$ . Define a sequence  $\{x_n\}_{n=1}^{\infty}$  in  $(X, \rho)$  by

$$x_n := T^n x \text{ for } n \in \mathbb{N}.$$

**Claim**:  $\{T^n x\}_{n=1}^{\infty}$  is a *p*-cyclic Cauchy sequence. Let  $m, n \in \mathbb{N}$  be such that m > n,

$$\rho(T^{pm}x, T^{pn+1}x) = \rho(T^{p(n+r)}x, T^{pn+1}x), \text{ where } m = n+r, r \in \mathbb{N}$$
$$= \rho(T^{pn}y, T^{pn+1}x), \text{ where } y = T^{pr}x \in D_i$$
$$\to dist(D_i, D_{i+1}), \text{ as } n \to \infty \text{ (because } T \in \Omega).$$

This implies that, for all  $\varepsilon > 0$ , there exists an  $n_0 \in \mathbb{N}$  such that

$$\rho(T^{pm}x, T^{pn+1}x) < \varepsilon + dist(D_i, D_{i+1}), m, n \ge n_0.$$

By Proposition 3.3, for any given  $\varepsilon > 0$ , there exists an  $n_1 \in \mathbb{N}$  such that

$$\rho(T^{pm+k}x, T^{pn+k+1}x) < \varepsilon + dist(D_{i+k}, D_{i+k+1}), m, n \ge n_1, k \in \{1, 2, \dots, p\}.$$



13

Therefore, the sequence  $\{T^n x\}$  is a *p*-cyclic Cauchy sequence in  $(X, \rho)$ . Since  $(X, \rho)$  is *p*-cyclic complete, there exists  $k \in \{1, 2, ..., p\}$  such that  $\{T^{pn+k}x\}$  converges to  $z \in D_{i+k}$ . By Theorem 4.8, *z* is best proximity point of *T* in  $D_j$ , where j = i + k.

**Example 4.10.** Let  $X =: \mathbb{R}^2$  be the Euclidean plane equipped with the usual Euclidean metric. Let subsets  $D_i$ , i = 1, 2, 3, 4 be as follows:

$$D_1 = \{(0, 0.5 + x) : 0 \le x \le 0.5\}, D_2 = \{(0.5 + x, 0) : 0 \le x \le 0.5\}$$

 $D_3 = \{(0, -(0.5 + x)) : 0 \le x \le 0.5\}$  and  $D_4 = \{-(0.5 + x, 0) : 0 \le x \le 0.5\}$ . Let  $\varphi(t) = \frac{1}{5}t, \forall t \ge 0$ . Similarly, define  $T : \cup_{i=1}^4 D_i \to \cup_{i=1}^4 D_i$  as follows:

$$T(0, 0.5 + x) = (0.5 + \frac{x}{10}, 0);$$
  

$$T(0.5 + x, 0) = (0, -(0.5 + \frac{x}{10}));$$
  

$$T(0, -(0.5 + x)) = (-(0.5 + \frac{x}{10}), 0);$$
  

$$T(-(0.5 + x), 0) = (0, 0.5 + \frac{x}{10}).$$

It is clear that  $\rho(D_1, D_2) = \rho(D_2, D_3) = \rho(D_3, D_4) = \rho(D_4, D_1) = \frac{1}{2}\sqrt{2}$ . Obviously T is a 4-cyclic map. If  $x \in D_i, y \in D_{i+1}, i = 1, 2, 3, 4$ . One can easily show that

$$m(x,y) - \varphi(m(x,y)) + \varphi(\rho(D_i, D_{i+1})) - \rho(Tx, Ty)$$
  
=  $\frac{4}{5}m(x,y) + \frac{\sqrt{2}}{10} - \sqrt{(0.5 + \frac{x}{10})^2 + (0.5 + \frac{y}{10})^2} \ge 0,$ 

for all  $x \in D_i, y \in D_{i+1}$ , where  $D_{4+1} = D_1$  and

$$m(x,y) = \max\{\rho(x,y), \rho(x,Tx), \rho(y,Ty), \frac{1}{2}[\rho(x,Ty) + \rho(y,Tx)]\}.$$

Therefore, T is a generalized p-cyclic weak  $\varphi$ -contraction(3.3), where p = 4. All the conditions of Theorem 4.9 hold true, and T has the best proximity point. Let  $x = (0, 0.5 + y) \in D_1$ , where  $y \in [0, 0.5]$ . Then  $\{T^{4n}x\} = \{(0, 0.5 + \frac{y}{10^{4n}})\}$ . Clearly,  $\{T^{4n}x\} \to (0, 0.5)$  as  $n \to \infty$ , which is a best proximity point of T in  $D_1$ . Also, T(0, 0.5) = (0.5, 0), so (0.5, 0) is a best proximity point of T in  $D_2$ ,  $T^2(0.0.5) = (0, -0.5)$  and  $T^3(0, 0.5) = (-0.5, 0)$  are unique best proximity points of T in  $D_3$  and  $D_4$ , respectively.

## 5. ACKNOWLEDGEMENTS

The authors would like to thank the referees for useful comments and suggestions for the improvement of this manuscripts.

#### 6. FUNDING

Not Applicable.

## 7. COMPETING INTERESTS

The authors declare that they have no competing inteests.



# 8. AUTHOR CONTRIBUTIONS

The authors contributed equally to this paper. All authors have read and approved the final version of the manuscript.

## References

- V.W. Bryant, A remark on a fixed point theorem for iterated mappings, Am. Math. Mon. 75(1968) 399–400.
- [2] S. Karpagam, S. Agrawal., Existence of best proximity points for p-cyclic contractions, Int. J. Fixed Point Theory Comput. Appl. 13(2012) 99–105.
- [3] M. Al-Thagafi, N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal. 70(2009) 3665–3671.
- [4] A.H. Ansari, Note on  $\varphi$ - $\psi$ -contractive type mappings and related fixed point, The 2nd Regional Conference on Mathematics and Applications, Payame Noor University, September (2014), 377–380.
- [5] A. Almeida, E. Karapinar, K. Sadarangani, A note on best proximity point theorems under weak P-property, Abstract and Applied Analysis, (2014), Article Id: 716825
- [6] A.H. Ansari, J. Nantadilok, M.S. Khan, Best proximity points results of generalized cyclic weak  $(F, \psi, \varphi)$ -contractions in ordered metric spaces, Nonlinear Functional Analysis and Applications 25(1)(2020) 55–67.
- [7] D.W. Boyd, J.S.W. Wong, On Nonlinear Contractions, Proc. Am. Math. Soc. 20(1969) 458-464.
- [8] P. Chuadchawan, A. Kaewcharoen, S. Plubtieng, Fixed point theorems for generalized α-η-ψ-Geraghty contraction type mappings in α-η-complete metric spaces, J. Nonlinear Sci. Appl. 9(2016) 471–485.
- [9] Q.Q. Cheng, Y.F. Su, Further investigation on best proximity point of generalized cyclic weak  $\varphi$ -contraction in ordered metric spaces, Nonlinear Functional Analysis and Applications 22(2017) 137–146.
- [10] M. De la Sen, E. Karapinar, Some Results on Best Proximity Points of Cyclic Contractions in Probabilistic Metric Spaces, J. Funct. Spaces 2015(2015) 470574, doi:10.1155/2015/470574
- [11] A.A. Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323(2006) 1001–1006.
- [12] M.A. Geraghty, On contractive maps, Proc. Am. Math. Soc. 40(1973) 604–608.
- [13] W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points for mapping satisfying cyclical contractive conditions, Fixed Point Theory 4(2003) 79–89.
- [14] E. Karapinar, Fixed point theory for cyclic weak f-contraction, Appl. Math. Lett. 24(2011) 822–825. doi:10.1016/j.aml.2010.12.016.
- [15] E. Karapnar, I.M. Erhan, Cyclic contractions and fixed point theorems, Filomat 26(2012) 777–782.
- [16] E. Karapinar, M. Jleli, B. Samet, A short note on the equivalence between best proximity points and fixed point results, Journal of Inequalities and Applications 2014(2014).
- [17] E. Karapinar, F. Khojasteh, An approach to best proximity points results via simulation functions, Journal of Fixed Point Theory and Applications 19(3)(2017) 1983– 1995.



- [18] E. Karapnar, N. Shobkolaei, S. Sedghi, S.M. Vaezpour, A common fixed point theorem for cyclic operators on partial metric spaces, Filomat 26(2012) 407–414.
- [19] S. Karpagam, S. Agrawal, Best proximity point theorems for p-cyclic Meir-Keeler contractions, Fixed Point Theory Appl. 2009(2009) 197308.
- [20] S. Karpagam, B. Zlatanov, Best proximity points of p-cyclic orbital Meir-Keeler contraction maps, Nonlinear Anal. Model. Control. 21(2016) 790-806.
- [21] S. Karpagam, B. Zlatanov, A note on best proximity points for p-summing cyclic orbital Meir-Keeler contraction maps, Int. J. Pure Appl. Math. 107(2016) 225–243.
- [22] M.S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30(1984) 1–9.
- [23] E. Karapinar, S. Karpagam, P. Magadevan, B. Zlatanov, On Ω class of mappings in a *p*-cyclic complete metric space, Symmetry,(2019), 15 pages. doi:10.3390/sym11040534
- [24] T.C. Lim, On characterization of Meir-Keeler contractive maps, Nonlinear Anal. 46(2001) 113–120.
- [25] Lj.B. Ciríc, On contraction type mappings, Math.Balkanica. 1(1971) 52–57.
- [26] Lj.B. Ciríc, On some maps with a non-unique fixed point, Publ. Inst. Math. 17(1974) 52–58.
- [27] A. Meir, E. Keeler, A theorem on contractive mappings, J. Math. Anal. Appl. 28(1969) 326–329.
- [28] M. Petric, B. Zlatanov, Best proximity points and Fixed points for p-summing maps, Fixed Point Theory Appl. 2012(2012) 86.
- [29] P. Sumati Kumari, J. Nantadilok, M. Sarwar, Some generalizations of weak cyclic compatible contractions, Thai J. Math. 2019, Special Issue:Annual Meeting in Mathematics 2018, 75–89.

