

BEST PROXIMITY POINTS OF GENERALIZED *p***-CYCLIC WEAK** *φ***-CONTRACTIONS**

Buraskorn Nuntadilok¹ **, Pitchaya Kingkam**2*,∗***, Jamnian Nantadilok**³

¹ *Department of Mathematics, Faculty of Science, Maejo University, Chiangmai, Thailand E-mail: burasakorn.nun@gmail.com*

²*Department of Mathematics, Faculty of Science, Lampang Rajabhat University, Lampang, Thailand E-mail: pitchaya.king@gmail.com*

³ *Department of Mathematics, Faculty of Science, Lampang Rajabhat University, Lampang, Thailad E-mail: jamnian2010@gmail.com*

**Corresponding author.*

Received: 28 March 2022 / Accepted: 25 September 2022

Abstract In this manuscript, we extend the notion of generalized cyclic weak *φ*-contractions to *p* sets, *p* ≥ 2. We investigate the convergence of best proximity points of such maps in *p*-cyclic complete metric spaces. We also give an example to support our main results. Our works generalize and improve the related results in the literature.

MSC: 47H10; 54H25

Keywords: *p*-cyclic contractions; strict contractions; best proximity points; generalized weak φ -contractions; *p*-cyclic metric space

1. INTRODUCTION

In 1968, Bryant [1] constructed a remarkable result in fixed point theory and proved that, in a complete metric space, if for some positive integer $n \geq 2$, the nth iteration of

Published online: 3 October 2022

Please cite this article as: B. Nuntadilok et al., Best proximity points of generalized *p*-cyclic weak *ψ*-contractions, Bangmod J-MCS., Vol. 8 (2022) 1–16.

*⃝*c 2022 The authors*.* Published by TaCS-CoE, KMUTT

https://doi.org/10.58715/bangmodjmcs.2022.8.1 **Bangmod J-MCS** 2022 [the](#page-15-0) [giv](#page-15-1)[en](#page-15-2) [map](#page-15-3)[pin](#page-15-4)g forms a contraction, then it possess a unique fixed point. Another outstanding approach was proposed by Kirk, Srinivasan and Veeramani [13] by introducing the notion of cyclic contraction. More precisely, every cyclic [con](#page-14-0)traction in a complete metric space possess a unique fixed point. This statement is plain but significant when we compare with the results of Bryant. Later, the concept of the cyclic contractions has been investigated immensely by a considerable large number of authors who brought several brilliant notions and derived a number of interesting results (see, e.g. $[2-6, 10, 11, 14-$ 18, 20, 21, 24, 29] and the references therein). Let *T* be a self-mapping on a metric space (X, ρ) . Suppose that *E* and *F* are non-empty subsets of *X* such that $X = E \cup F$. A [self](#page-15-5)-[ma](#page-15-6)pping $T : E \cup F \to E \cup F$ $T : E \cup F \to E \cup F$ is called a cyclic contraction [13] if

- 1). $T(E) \subseteq F$ and $T(F) \subseteq E$.
- 2). If there is a $k \in (0,1)$ such that the following inequality is satisfied
	- $d(Tx, Ty) \leq kd(x, y)$, for all $x \in E, y \in F$.

After this initial construction, several extensions of [cyc](#page-4-0)lic mappings and cyclic contractions have been introduced. In this paper, we mainly follow the notations defined in [19, 23]. In [19], a notion of *p*-cyclic map was introduced. Let $D_1, D_2, \ldots, D_p(p \geq 2)$ be non-empty sets. A *p*-cyclic map $T: \bigcup_{i=1}^{p} D_i \to \bigcup_{i=1}^{p} D_i$ is defined such that $T(D_i) \subseteq$ $D_{i+1}, \forall i \in \{1, 2, ..., p\}, x = x_0 \in D_i$, defines a sequence $\{x_n\} \subset \bigcup_{i=1}^p D_i$ as $x_n = Tx_{n-1}$. Then, $\{x_{pn}\}$ is a subsequence in D_i , $\{x_{pn+1}\}$ is a subsequence in D_{i+1} and so on. From the arrangement of such a sequence for[med](#page-15-6) by a *p*-cyclic map, Karapinar et al. in [23] introduced a notion of *p*-cyclic sequence (Definition 2.[1\(1](#page-4-0))). If $D_i s$ are subsets of a metric space (X, ρ) , then, to obtain a best proximity point of *T* under various contractive conditions (some of them given in the literature), it is enough to prove that: given $\varepsilon > 0$, there exists $N_0 \in \mathbb{N}$ $N_0 \in \mathbb{N}$ such that

$$
\rho(x_{pn}, x_{pm+1}) < dist(D_i, D_{i+1}) + \varepsilon, \forall n, m \ge N_0.
$$

This observation motivated the authors [23] to introduce a concept of *p*-cyclic Cauchy sequence and *p*-cyclic co[mpl](#page-15-6)ete metric space (Definition 2.1). In addition, while investigating the behavior of such *p*-cyclic maps[, it](#page-5-0) is often the case that, if $\rho(x, y) > dist(D_i, D_{i+1}),$ then $\rho(Tx, Ty) < \rho(x, y)$ and, if $\rho(x, y) = dist(D_i, D_{i+1})$, then $\rho(Tx, Ty) = \rho(x, y)$, $x \in$ $D_i, y \in D_{i+1}$. They call a *p*-cyclic map with this property as *p-cyclic strict contraction map* (Definition 3.1). Note that, if the distances between the adjacent sets are zero, then a *p*-cyclic strict contra[ct](#page-14-1)ion map is a strict contraction map in the usual sense. All such maps invariably satisfy the condition: $x, y \in D_i$, $\rho(T^{pn}x, T^{pn+1}y) \rightarrow dist(D_i, D_{i+1})$ as $n \to \infty$. In the paper [23], all *p*-cyclic maps which satisfy the above two properties are said to belong to class Ω (Definition 3.4). Finally, the authors proved the existence and convergence of best proximity points of Ω class of mappings in a *p*-cyclic complete metric space.

Now we recollect [s](#page-14-1)ome essential definitions.

Definition 1.1 (see [4]). A continuous function $F : [0, \infty)^2 \to \mathbb{R}$ is called a *C*-class function, if for any $s, t \in [0, \infty)$, the following condition[s hold:](https://doi.org/10.58715/bangmodjmcs.2022.8.1)

 (1) $F(s,t) \leq s$;

(2) $F(s,t) = s$ implies that either $s = 0$ or $t = 0$.

Remark 1.2. We denote the class of all *C*-class functions as C.

Example 1.3 (see [4]). Following examples show that the class \mathbb{C} of *C*-class functions is nonempty:

 $(F(s,t) = s - t.$ (2) $F(s,t) = ms, 0 < m < 1$ (3) $F(s,t) = \frac{s}{(1+t)^r}$ for some $r \in (0,\infty)$.

- (4) $F(s,t) = \log(t + a^s)/(1 + t)$, for some $a > 1$.
- (5) $F(s,t) = \ln(1 + a^s)/2$ $F(s,t) = \ln(1 + a^s)/2$ $F(s,t) = \ln(1 + a^s)/2$, for $a > e$. Indeed $F(s, 1) = s$ implies that $s = 0$.
- (6) $F(s,t) = (s+t)^{(1/(1+t)^r)} l, l > 1$, for $r \in (0,\infty)$.
- (7) $F(s,t) = s \log_{t+a} a$, for $a > 1$.
- (8) $F(s,t) = s (\frac{1+s}{2+s})(\frac{t}{1+t}).$

(9) $F(s,t) = s\beta(s)$, where $\beta : [0,\infty) \to [0,1)$. etc.

More examples of *C*-[cl](#page-14-1)ass functions can be found in [4].

Definition 1.4 (see [22]). A function $\psi : [0, \infty) \to [0, \infty)$ is called an altering distance function, if the following properties are satisfied:

- (i) ψ is non-decreasing and continuous,
- $(iii) \psi(t) = 0$ if and only if $t = 0$.

We denote the class of *altering distance functions* as Ψ.

Definition 1.5 (se[e \[4](#page-15-5)]). An ultra altering distance function is a continuous, non-decreasing mapping $\varphi : [0, \infty) \to [0, \infty)$ such that $\varphi(t) > 0, t > 0$ and $\varphi(0) \ge 0$

We denote the class of *ultra altering distance functions* as Ψ_u .

In what follows, we recollect some definitions and fundamental results which are crucial to prove our main results.

Defin[itio](#page-15-6)n 1.6. ([19], Definitions 3.1). For a non-empty set *X*, suppose $\rho: X \times X \rightarrow$ $[0, \infty)$ forms a metric and $D_1, D_2, \ldots, D_p, (p \geq 2)$ are non-empty subsets of *X*. Define $D_{p+i} := D_i$, for all $i \in \{1, 2, ..., p\}$. A map $T : \bigcup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$ is called a *p*-cyclic **map**, if $T(D_i) ⊆ D_{i+1}, \forall i \in \{1, 2, ..., p\}$ $T(D_i) ⊆ D_{i+1}, \forall i \in \{1, 2, ..., p\}$ $T(D_i) ⊆ D_{i+1}, \forall i \in \{1, 2, ..., p\}$. If $p = 2$, then *T* is called **a cyclic map**. A point $x \in D_i$ is said to be a best proximity point of *T* in D_i , if $\rho(x, Tx) = dist(D_i, D_{i+1}),$ where $dist(D_i, D_{i+1}) := \inf \{ \rho(x, y) : x \in D_i, y \in D_{i+1} \}.$

In [23], the authors introduced the conditions for the underlying space and for the subsets of the space, to have a unique best pr[oxim](#page-2-0)ity point under a *p*-cyclic map, if it exists, irrespective of the contraction condition imposed on the map.

Proposition 1.7 ([23]). Let $D_1, D_2, \ldots, D_p, (p \geq 2)$ be non-empty convex subsets of a *strictly convex norm linear space* X *such that* $dist(D_i, D_{i+1}) > 0, i \in \{1, 2, \ldots, p\}$ *. Let* $T: \bigcup_{i=1}^{p} D_i \to \bigcup_{i=1}^{p} D_i$ $T: \bigcup_{i=1}^{p} D_i \to \bigcup_{i=1}^{p} D_i$ $T: \bigcup_{i=1}^{p} D_i \to \bigcup_{i=1}^{p} D_i$ be a p-cyclic map. Then, *T* has at most one best proximity point *in* D_i , $1 \leq i \leq p$.

Let *T* be a *p*-cyclic map as given in Definition 1.6. *T* is said to be *p*-cyclic non expansive map if for all $x \in D_i$, $y \in D_{i+1}$, the following holds:

$$
\rho(Tx,Ty) \le \rho(x,y), \forall i \in \{1,2,\ldots,p\}.
$$

The following lemma naturally follows for a *p*-cyclic [non-expansive map.](https://doi.org/10.58715/bangmodjmcs.2022.8.1)

Lemma 1.8. ([19], Lemma 3.3). *For a non-empty set X, suppose* $\rho: X \times X \to [0, \infty)$ *forms a metric and D*1*, D*2*, . . . , Dp,*(*p ≥* 2) *are non-empty subsets of X. If T* : *∪ p ⁱ*=1*Dⁱ →* $\cup_{i=1}^p D_i$ *is a p-cyclic non-expansive map, then*

$$
dist(D_i, D_{i+1}) = dist(D_{i+1}, D_{i+2}) = dist(D_1, D_2), \forall i \in \{1, 2, \dots, p\}.
$$
\n(1.1)

*⃝*c 2022 The authors. Published by TaCS-CoE, KMUTT https://doi.org/10.58715/bangmodjmcs.2022.8.1 **Bangmod J-MCS** 2022 In addition, if $\nu \in D_i \cap \mathbf{D}(T)_i \neq \emptyset$, then $T^j \nu \in D_{i+1} \cap \mathbf{D}(T)_{i+j} \neq \emptyset$, for all $j = 1, 2, ...,$ $(p-1)$, where $\mathbf{D}(T)_k$ *is the set of best proximity point of the mapping T in* D_k *.*

The following lemma (see $[11, 23]$) is essential to prove that a given sequence is Cauchy.

Lemma 1.9. ([11], Lemma 3.7). For a uniformly convex Banach space $(X, \|\cdot\|)$, we suppose that E, F are non-empty closed subsets of X and $\{a_n\}, \{b_n\} \subset E$ and $\{d_n\} \subset F$. *If E is convex such that*

- (i) $||b_n d_n|| \rightarrow dist(E, F);$ [an](#page-15-5)d
- *(ii) for every* $\varepsilon > 0$ $\varepsilon > 0$ $\varepsilon > 0$ *there exists* $N \in \mathbb{N}$ *such that for all* $m > n > N$,
	- $||a_m d_n||$ ≤ $dist(E, F) + \varepsilon$,

then for all $\varepsilon > 0$ *, there exists* $N_1 \in \mathbb{N}$ *such that for all* $m > n > N_1$, $||a_m - b_n|| \le$ *ε.*

Next, we recall a few *p*-cyclic maps with some contraction conditions imposed on them, which are defined in $[2, 3, 9, 12, 19]$.

Definition 1.10. ([2], Definition 3.1). For a non-empty set *X*, suppose $\rho: X \times X \rightarrow$ $[0, \infty)$ forms a metric and $D_1, D_2, \ldots, D_p, (p \geq 2)$ are non-empty subsets of *X*. Let $T: \bigcup_{i=1}^{p} D_i \to \bigcup_{i=1}^{p} D_i$ be **a** *p***-cyclic map**, *T* is said to be **a** *p***-cyclic contraction**, if there exists $k \in (0,1)$ such that for all $x \in D_i$ and $y \in D_{i+1}$, we have

$$
\rho(Tx,Ty) \le k\rho(x,y) + (1-k)dist(D_i, D_{i+1}), \forall i \in \{1,2,\ldots,p\}.
$$

Definition 1.11. ([3], Definition 2.1). For a non-empty set *X*, suppose $\rho: X \times X \rightarrow$ $[0,\infty)$ forms a metric, *E* and *F* are non-empty subsets of *X*. A cyclic map $T: E \cup F \rightarrow$ $E \cup F$ is said to be a cyclic φ -contraction if

$$
\rho(Tx,Ty) \le \rho(x,y) - \varphi(\rho(x,y)) + \varphi(dist(E,F)), \forall x \in E, y \in F,
$$

where $\varphi : [0, \infty) \to [0, \infty)$ is a strictly increasing map.

Definition 1.12. ([[9\]](#page-14-6), Definition 2.1). Let *E* and *F* be nonempty subsets of a metric space (X, ρ) . Suppose that $\varphi : [0, \infty) \to [0, \infty)$ is a strictly increasing map. A cyclic map $T : E \cup F \to E \cup F$ is said to be a generalized cyclic weak φ -contraction, if for any $x \in E, y \in F$

$$
\rho(Tx, Ty) \le m(x, y) - \varphi(m(x, y)) + \varphi(dist(E, F))
$$
\n(1.2)

where $m(x, y) = \max\{\rho(x, y), \rho(x, Tx), \rho(y, Ty), \frac{1}{2}[\rho(x, Ty) + \rho(y, Tx)]\}.$

Definition 1.13. ([6], Definition 2.1). Let E and F be nonempty subsets of a metric space(*X, ρ*). Suppose that $\varphi, \psi : [0, \infty) \to [0, \infty)$ and φ is a strictly increasing map. A cyclic map $T: E \bigcup F \to E \bigcup F$ is called a generalized cyclic weak (F, ψ, φ) -contraction, if for any $x \in E$ and $y \in F$,

$$
\psi(\rho(Tx,Ty)) \le F\Big(\psi(m(x,y)) - \psi(dist(E,F)),
$$

$$
\varphi(m(x,y)) - \varphi(dist(E,F))\Big) + \psi(dist(E,F))
$$
\n(1.3)

where $F \in \mathbb{C}, \psi \in \Psi$ with $\psi(s+t) \leq \psi(s) + \psi(t)$, $\varphi \in \Psi_u$ and

$$
m(x, y) = \max\{\rho(x, y), \rho(x, Tx), \rho(y, Ty), \frac{1}{2}[\rho(x, Ty) + \rho(y, Tx)]\}.
$$

Remark 1.14. If we take $F(s,t) = s - t$ and $\psi(t) = t$ in Definition 1.13, the we obtain Definition 1.12 above.

2. *p***-Cyclic Sequences and** *p***-Cyclic Complete Metric Spaces**

Throughout this article, let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. In [23], Karapinar et al. introduced the notion of *p*-cyclic sequence as follows:

Definition 2.1 ([23]). For a non-empty set *X*, suppose $\rho: X \times X \to [0, \infty)$ forms a metric and $D_1, D_2, \ldots, D_p, (p \ge 2)$ are non-empty subsets of X.

- 1 . A sequence $\{x_n\}_{n=1}^{\infty}$ ⊂ $\cup_{i=1}^p D_i$ is called a *p*-cyclic sequence if $x_{pn+i} \in D_i$, for all $n \in \mathbb{N}_0$ and $i = 1, 2, ..., p$.
- 2. We say that $\{x_n\}_{n=1}^{\infty}$ is a *p*-cyclic Cauchy sequence, if for given $\varepsilon > 0$ there exists an $N_0 \in \mathbb{N}$ such that for some $i \in \{1, 2, \ldots, p\}$, we have

 $\rho(x_{pn+i}, x_{pm+i+1}) < dist(D_i, D_{i+1}) + \varepsilon, \forall m, n \ge N_0.$ (2.1)

- 3. A *p*-cyclic sequence $\{x_n\}_{n=1}^{\infty}$ in $\bigcup_{i=1}^{p} D_i$ is said to be *p*-cyclic bounded, if ${x_{pn+i}}_{n=1}^{\infty}$ is bounded in *D_i* for some $i \in \{1, 2, ..., p\}$.
- 4 . Let $\{x_n\}_{n=1}^{\infty}$ be a *p*-cyclic sequence in $\bigcup_{i=1}^{p} D_i$. If for some $j \in \{1, 2, ..., p\}$ the subsequence $\{x_{pn+j}\}$ of $\{x_n\}_{n=1}^{\infty}$ converges in D_j , then we say that $\{x_n\}_{n=1}^{\infty}$ is *p*-cyclic convergent.
- 5. Under the assumption that $D_1, D_2, \ldots, D_p, (p \ge 2)$ are non-empty closed subsets of a metric space (X, ρ) , we say that $\bigcup_{i=1}^p D_i$ is *p*-cyclic complete if every *p*-cyclic Cauchy sequence in $\bigcup_{i=1}^{p} D_i$ is *p*-cyclic convergent.
- 6. If there [ar](#page-15-6)e subsets $D_1, D_2, \ldots, D_p, (p \ge 2)$ of (X, ρ) such that $X = \bigcup_{i=1}^p D_i$ and $\cup_{i=1}^p D_i$ [is](#page-15-6) *p*-cyclic complete, then we call (X, ρ) a *p*-cyclic complete metric space.

Remark 2.2. Note that a *p*-cyclic sequence which is a Cauchy sequence in the usual sense is a *p*-cyclic C[auc](#page-15-6)hy sequence. On the other hand, *p*-cyclic Cauchy sequences need not be Cauchy sequences in the usual sense, even if $dist(D_i, D_{i+1}) = 0$, $\forall i \in \{1, 2, ..., p\}$.

Examples which illustrate the notion of *p*-cyclic sequence and *p*-cyclic Cauchy sequence can be found in ([23], Example 1 and 2). And a complete metric space need not be *p*-cyclic complete, (see [23], Remark 2, for example).

The following pr[opo](#page-15-6)sition shows that a *p*-cyclic Cauchy sequence is *p*-cyclic bounded.

Proposition 2.3 ([23]). For a non-empty set *X*, suppose $\rho: X \times X \rightarrow [0, \infty)$ forms *a* metric and $D_1, D_2, \ldots, D_p, (p \geq 2)$ are non-empty subsets of X. Then, every p-cyclic *Cauchy sequence in* $\bigcup_{i=1}^{p} D_i$ *is p*-*cyclic bounded.*

Th[e fo](#page-15-6)llowing proposition is an example of two-cyclic complete metric space.

Proposition 2.4 ([23])**.** *Let E and F be subsets of a uniformly convex Banach space X, which are non-em[pty](#page-15-6) and closed. If either* E *or* F *is convex, then* $E \cup F$ *is two-cyclic complete.*

3. *p***-Cyclic Strict Contraction Maps**

In [23], Karapinar et al. introduced a notion of *p*-cy[clic strict contraction, which is a](https://doi.org/10.58715/bangmodjmcs.2022.8.1) generalization of strict contraction in the usual sense.

Definition 3.1 ([23]). For a non-empty set *X*, suppose $\rho: X \times X \to [0, \infty)$ forms a metric and $D_1, D_2, \ldots, D_p, (p \ge 2)$ are non-empty subsets of *X*. A *p*-cyclic map *T* is said to be *p*-cyclic strict contraction if, for all $x \in D_i$, $y \in D_{i+1}$, $1 \leq i \leq p$:

 (i) $\rho(x, y) > dist(D_i, D_{i+1}) \Rightarrow \rho(Tx, Ty) < \rho(x, y)$, and

(ii)
$$
\rho(x, y) = dist(D_i, D_{i+1}) \Rightarrow \rho(Tx, Ty) = \rho(x, y)
$$
.

Remark 3.2. Note [th](#page-15-6)at, if $D_i = A$, for all $i = 1, 2, \ldots, p$, then *p*-cyclic strict contraction is a strict contraction in the usual sense. It is clear that the *p*-cyclic strict contraction also forms a *p*-cyclic non-expansive map.

The following proposition proves an important property of *p*-cyclic strict contraction map

Proposition 3.3 ([23]). For a non-empty set *X*, suppose $\rho : X \times X \to [0, \infty)$ forms a metric and $D_1, D_2, \ldots, D_p, (p \ge 2)$ are non-empty subsets of X. Let $x \in D_i (1 \le i \le p)$. *Suppose that* $T : \bigcup_{i=1}^{p} D_i \to \bigcup_{i=1}^{p} D_i$ *is a p-cyclic strict contraction map and if for all* $\varepsilon > 0$ *, [th](#page-15-6)ere exists an* $n_0 \in \mathbb{N}$ *such that*

$$
\rho(T^{pn}x, T^{pm+1}x) < dist(D_i, D_{i+1}) + \varepsilon, n, m \ge n_0,\tag{3.1}
$$

then for a given $\varepsilon > 0$ $\varepsilon > 0$ $\varepsilon > 0$ *, there exists an* $n_1 \in \mathbb{N}$ *such that*

$$
\rho(T^{pn+k}x, T^{pm+k+1}x) < dist(D_{i+k}, D_{i+k+1}) + \varepsilon, n, m \ge n_1, k \in \{1, 2, \dots, p\}.
$$

In [23], Karapinar et al. introduced the notion of *p*-cyclic maps with various contractive conditions and possed some common properties. They also introduced a notion of class Ω , a certain class of mappings.

Definition 3.4 ([23]). For a non-empty set *X*, suppose $\rho: X \times X \to [0, \infty)$ forms a metric and $D_1, D_2, \ldots, D_p, (p \geq 2)$ are non-empty subsets of *X*. A *p*-cyclic map *T* : $\cup_{i=1}^p D_i$ → $\cup_{i=1}^p D_i$ is said to belong to the class Ω if

- (1) *T* is *p*-cyclic strict contraction.
- (2) If $x, y \in D_i$, then $\lim_{n \to \infty} \rho(T^{pn}x, T^{pn+1}y) = dist(D_i, D_{i+1}), 1 \le i \le p$.

In this manuscript, we list some *p*-cyclic maps different from those given in [23] which belong to the class Ω . First, we prove that a *p*-cyclic contraction map, which is defined via the notion of *C*-class functions, belongs to the class Ω. We give the following new definition via *C*-class functions.

Definition 3.5. Let D_1, D_2, \ldots, D_p be non-empty subsets of a metric space (X, ρ) . Let $T: \bigcup_{i=1}^{p} D_i \to \bigcup_{i=1}^{p} D_i$ is called **a** *p***-cyclic** (F, ψ, φ) **-contraction map**, if it satisfies

$$
\psi(\rho(Tx,Ty)) \le F\Big(\psi(\rho(x,y)) - \psi(dist(D_i,D_{i+1})), \varphi(\rho(x,y)) - \varphi(dist(D_i,D_{i+1}))\Big) + \psi(dist(D_i,D_{i+1})),
$$

for all $i \in \{1, 2, \ldots, p\}$, where $F \in \mathbb{C}$, $\psi \in \Psi$ and $\varphi : [0, \infty) \to [0, \infty)$ is a strictly increasing map.

Remark 3.6. If we take $F(s,t) = s - t$, $\psi(t) = t$ and $p = 2$ in Definion 3.5, then we obtain Definition 1.11 (Definition 2.1, defined in [3]).

Next we prove that a *p*-cyclic (F, ψ, φ) -contraction map belongs to the class Ω .

Example 3.7. Let D_1, D_2, \ldots, D_p be non-empty subsets of a metric space (X, ρ) . Let $T: \bigcup_{i=1}^{p} D_i \to \bigcup_{i=1}^{p} D_i$ be a *p*-cyclic (F, ψ, φ) -contraction map. Then, $T \in \Omega$.

Proof. We first show that *T* is a *p*-cyclic strict contraction. Because the the map *T* is a *p*-cyclic (F, ψ, φ) -contraction, we have

$$
\psi(\rho(Tx,Ty)) \leq F\Big(\psi(\rho(x,y)) - \psi(dist(D_i,D_{i+1})), \varphi(\rho(x,y)) - \varphi(dist(D_i,D_{i+1}))\Big),
$$

+
$$
\psi(dist(D_i,D_{i+1})),
$$

for all $i \in \{1, 2, \ldots, p\}$, where $F \in \mathbb{C}$, $\psi \in \Psi$. Taking $F(s, t) = s - t$, we have

$$
\psi(\rho(Tx,Ty)) \leq \psi(\rho(x,y)) - \varphi(\rho(x,y)) + \varphi\big(\text{dist}(D_i, D_{i+1})\big).
$$

If $\rho(x, y) = dist(D_i, D_{i+1}),$ we have

$$
\rho(Tx,Ty) \le \rho(x,y).
$$

Since $\rho(x, y) = dist(D_i, D_{i+1}) \leq \rho(Tx, Ty)$, we then have

$$
\rho(Tx,Ty) = \rho(x,y).
$$

In addition, if $\rho(x, y) > dist(D_i, D_{i+1}),$ then

$$
\psi\big(\rho(Tx,Ty)\big) \le F\big(\psi(\rho(x,y)) - \psi\big(\text{dist}(D_i, D_{i+1})\big), \varphi(\rho(x,y)) - \varphi\big(\text{dist}(D_i, D_{i+1})\big)\big) + \psi\big(\text{dist}(D_i, D_{i+1})\big),\le \psi(\rho(x,y) - \varphi(\rho(x,y)) + \varphi\big(\text{dist}(D_i, D_{i+1})\big) < \psi(\rho(x,y)) - \varphi(\rho(x,y)) + \varphi(\rho(x,y)).
$$

Therefore

$$
\rho(Tx,Ty) < \rho(x,y).
$$

Therefore, *T* is a *[p](#page-14-7)*-cyclic strict cont[ra](#page-14-1)ction. The second condition of Definition 3.4 follows from Lemma [3.3](#page-14-7) in [2]. Hence, $T \in \Omega$.

Remark 3.8. Karapinar et al.[23] showed that the *p*-cyclic Meir-Keeler map (*p*-cyclic *MK*-map) introduced in [19] belongs to the class Ω . See Example 4 in [23].

Next, we establish an example of *p*-cyclic map satisfying a contraction condition of Geraghtys type [7] and show that it belongs to the class Ω . Here, we use the notion of *C*-class functions introduced in [4] combining with a class of functions *S* introduced by Geraghty [7], where *S* is the class of all functions $\vartheta : [0, \infty) \to [0, 1)$ that satisfies $\vartheta(t_n) \to 1$, then $t_n \to 0, t_n \in [0, \infty)$ for $n \in \mathbb{N}$.

Example 3.9. For a non-empty set *X*, suppose $\rho: X \times X \to [0, \infty)$ forms a metric and $D_1, D_2, \ldots, D_p, (p \geq 2)$ are non-empty subsets of X. Let $T: \bigcup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$ be a *p***-cyclic** $(F, \psi, \varphi, \vartheta)$ **-map** such that

$$
\rho(Tx,Ty) \le F\Big(\psi\big(\vartheta(\rho(x,y))\big)\rho(x,y) - \psi\big(\vartheta(\rho(x,y))\big)dist(D_i, D_{i+1}),
$$

$$
\varphi\big(\vartheta(\rho(x,y))\rho(x,y)\big) - \varphi\big(\vartheta(\rho(x,y))dist(D_i, D_{i+1})\big)
$$

$$
+ \psi\big(\vartheta(\rho(x,y))\big)dist(D_i, D_{i+1}),
$$

for all $i \in \{1, 2, \ldots, p\}$, where $F \in \mathbb{C}$, $\psi \in \Psi$ where $\psi(t) < t$ and $\vartheta \in S$. Then

- (a) *T* is a *p*-cyclic strict contraction.
- (b) $\lim_{n \to \infty} \rho(T^{pn}x, T^{pn+1}y) = dist(D_i, D_{i+1}), x \in D_i, y \in D_{i+1}.$

Proof. (a) Let $x \in D_i, y \in D_{i+1}$.

Case (1): If
$$
\rho(x, y) > dist(D_i, D_{i+1})
$$
, by the definition of F , we have
\n
$$
\rho(Tx, Ty) \leq F\Big(\psi\big(\vartheta(\rho(x, y))\big)\rho(x, y) - \psi\big(\vartheta(\rho(x, y))\big)dist(D_i, D_{i+1}),
$$
\n
$$
\varphi\big(\vartheta(\rho(x, y))\big)\rho(x, y) - \varphi\big(\vartheta(\rho(x, y))\big)dist(D_i, D_{i+1})\Big),
$$
\n
$$
+ \psi\big(\vartheta(\rho(x, y))\big)dist(D_i, D_{i+1})
$$
\n
$$
\leq \psi\big(\vartheta(\rho(x, y))\big)\Big[\rho(x, y) - dist(D_i, D_{i+1}) + dist(D_i, D_{i+1})\Big](*)
$$
\n
$$
\leq \psi\big(\vartheta(\rho(x, y))\big)\rho(x, y).
$$

Therefore

$$
\rho(Tx, Ty) < \rho(x, y).
$$

Case (2): If $\rho(x, y) = dist(D_i, D_{i+1})$, then from (*), we have $\rho(Tx, Ty) \leq \rho(x, y)$. By equation (1.1) ,

$$
\rho(x,y) = dist(D_i, D_{i+1}) = dist(D_{i+1}, D_{i+2}) \le \rho(Tx,Ty) \le \rho(x,y),
$$

therefore

$$
\rho(Tx,Ty) = \rho(x,y).
$$

Hence, *T* is *p*-cyclic strict contraction.

(b) Let $x, y \in D_i$. Since *T* is *p*-cyclic non-expansive, $\{\rho(T^{pn}x, T^{pn+1}y)\}\$ is a decreasing sequence and is bounded below by $dist(D_i, D_{i+1})$. Therefore,

$$
\rho(T^{pn}x, T^{pn+1}y) \to r
$$
 as $n \to \infty$ and $r \ge dist(D_i, D_{i+1}),$

where $r = \inf_{n \geq 1} \rho(T^{pn}x, T^{pn+1}y)$.

Claim: $r = dist(D_i, D_{i+1}).$

If $\rho(T^{pn}x, T^{pn+1}y) = dist(D_i, D_{i+1})$ for some *n*, then by the *p*-cyclic non-expansiveness of *T*,

$$
\rho(T^{pn+k}x, T^{pn+k+1}y) = \rho(T^{pn}x, T^{pn+1}y), k = 1, 2, \dots
$$

Hence, we have

$$
\rho(T^{pn}x, T^{pn+1}y) \to dist(D_i, D_{i+1}) \text{ as } n \to \infty.
$$

Let us assume that $\rho(T^{pn}x, T^{pn+1}y) > dist(D_i, D_{i+1}), n \in \mathbb{N}$. Suppose that $r >$ $dist(D_i, D_{i+1})$. Since *T* is *p*-cyclic non expansive,

$$
\rho(T^{p(n+1)}x, T^{p(n+1)+1}y) \leq \rho(T^{pn+1}x, T^{pn+2}y)
$$
\n
$$
\leq F\Big(\psi\big(\vartheta(\rho(T^{pn}x, T^{pn+1}y))\big)\rho(T^{pn}x, T^{pn+1}y) - \psi(\vartheta(\rho(T^{pn}x, T^{pn+1}y)))dist(D_i, D_{i+1})\big),
$$
\n
$$
\varphi\big(\vartheta(\rho(T^{pn}x, T^{pn+1}y))\rho(T^{pn}x, T^{pn+1}y)\big) - \varphi\big(\vartheta(\rho(T^{pn}x, T^{pn+1}y))dist(D_i, D_{i+1})\big)\Big)
$$
\n
$$
+ \psi(\vartheta(\rho(T^{pn}x, T^{pn+1}y)))dist(D_i, D_{i+1})
$$
\n
$$
\leq \psi(\vartheta(\rho(T^{pn}x, T^{pn+1}y))\Big[\rho(T^{pn}x, T^{pn+1}y) - dist(D_i, D_{i+1}) + dist(D_i, D_{i+1})\Big].
$$

Then

$$
\rho(T^{p(n+1)}x, T^{p(n+1)+1}y) \leq \psi(\vartheta(\rho(T^{pn}x, T^{pn+1}y))[\rho(T^{pn}x, T^{pn+1}y)].
$$

Since $\vartheta \in S$ and $\psi(t) < t$,

$$
\frac{\rho(T^{p(n+1)}x, T^{p(n+1)+1}y)}{\rho(T^{pn}x, T^{pn+1}y)} \le \vartheta(\rho(T^{pn}x, T^{pn+1}y)) < 1.
$$
\n(3.2)

Since $r = \lim_{n \to \infty} \rho((T^{p(n+1)}x, T^{p(n+1)+1}y)) > dist(D_i, D_{i+1})$ by our assumption, letting $n \to \infty$ in equation (3.2), we get

$$
1 \le \lim_{n \to} \vartheta(\rho(T^{pn}x, T^{pn+1}y)) \le 1,
$$

that is,

$$
\lim_{n \to \infty} \vartheta(\rho(T^{pn}x, T^{pn+1}y)) = 1
$$

However, $\lim_{n \to \infty} \rho(T^{pn}x, T^{pn+1}y) = r > 0$, which contradicts $\vartheta \in S$. Hence, $r = dist(D_i, D_{i+1})$. This proves Part (b).

Next, we recall some essential definitions and some known results as follows.

Definition 3.10. [\(\[9](#page-15-8)], [D](#page-15-9)efinition 2.1) Let *E* and *F* be nonempty subsets of a metric space (X, ρ) . Suppose that $\varphi : [0, \infty) \to [0, \infty)$ is a strictly increasing map. A cyclic map $T: E \cup F \to E \cup F$ is said to be a generalized cyclic weak φ -contraction, if for any $x \in E, y \in F$

$$
\rho(Tx, Ty) \le m(x, y) - \varphi\big(m(x, y)\big) + \varphi\big(dist(E, F)\big) \tag{3.3}
$$

where $m(x, y) = \max\{\rho(x, y), \rho(x, Tx), \rho(y, Ty), \frac{1}{2}[\rho(x, Ty) + \rho(y, Tx)]\}.$

Definition 3.11. [25, 26] Let (X, ρ) be a metric space with a mapping $T : X \to X$, if $\lim_{n\to\infty} T^{n_i}(y) = z \Rightarrow \lim_{n\to\infty} T(T^{n_i}(y)) = Tz$, we call mapping *T* to be orbitally continuous.

The following are known results in [9].

Theorem 3.12. [9] Let E and F be nonempty subsets of a metric space (X, ρ) . Suppose $T : E \cup F \rightarrow E \cup F$ *is a generalized cyclic weak* φ -*contraction and there exists* $y_0 \in E$. *Define* $y_{n+1} = Ty_n$ *for any* $n \in \mathbb{N}$ *. Then* $\rho(y_n, y_{n+1}) \to \rho(E, F)$ *as* $n \to \infty$ *.*

Theorem 3.13. [9] Let E and F be nonempty subsets of a metric space (X, ρ) *. [Su](#page-14-4)ppose* $T : E \cup F \rightarrow E \cup F$ *is a generalized cyclic weak* φ -*contraction and* T *is orbitally continuous.* Assume E is closed and there exists $y_0 \in E$. Define $y_{n+1} = Ty_n$ for any $n \in \mathbb{N}$. If $\{y_{2n}\}\$ *has a convergent subsequence in E, then there exixts* $p \in E$ *such that* $\rho(p, Tp) \to \rho(E, F)$ *.*

4. **Best proximity points of generalized** *p***-cyclic weak** *φ***-contractions**

In this section we extend and generalize the results by Cheng and Su in $[9]$. We introduce the following definitions and main results.

Definition 4.1. Let $D_1, D_2, \ldots, D_p, (p \geq 2)$ be nonempty subsets of a metric space (X, ρ) . Suppose that $\varphi : [0, \infty) \to [0, \infty)$ is a strictly increasing map. A map *T*: $\nu_{i=1}^p D_i$ → $\nu_{i=1}^p D_i$ is said to be a generalized *p*-cyclic weak φ [-contraction](https://doi.org/10.58715/bangmodjmcs.2022.8.1), if for any $x \in D_i, y \in D_{i+1}$

$$
\rho(Tx, Ty) \le m(x, y) - \varphi(m(x, y)) + \varphi(dist(D_i, D_{i+1})) \tag{4.1}
$$

where $m(x, y) = \max\{\rho(x, y), \rho(x, Tx), \rho(y, Ty), \frac{1}{2}[\rho(x, Ty) + \rho(y, Tx)]\}.$

Remark 4.2. If we let $p = 2$ in definition 4.1, then we obtain the definition 3.10 (see [9]).

Theorem 4.3. For a non-empty set X, suppose $\rho: X \times X \to [0, \infty)$ forms a metric and $D_1, D_2, \ldots, D_p, (p \ge 2)$ are non-empty subsets of X. Suppose $T : \bigcup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$ is *p*-cyclic maps satisfying (3.3) and there exists $y_0 \in D_i$. Define $y_{n+1} = Ty_n$ for any $n \in \mathbb{N}$. *Then* $\rho(y_n, y_{n+1}) \rightarrow dist(D_i, D_{i+1})$ *as* $n \rightarrow \infty$.

Proof. Let $\rho_n = \rho(y_n, y_{n+1})$. We first claim that the sequence $\{\rho_n\}$ is non-increasing. By our assumption, we have

$$
\rho_{n+1} = \rho(y_{n+1}, y_{n+2})
$$

= $\rho(Ty_n, Ty_{n+1})$
 $\leq m(y_n, y_{n+1}) - \varphi(m(y_n, y_{n+1})) + \varphi(dist(D_i, D_{i+1})),$

where

$$
m(y_n, y_{n+1}) = \max\{\rho(y_n, y_{n+1}), \rho(y_n, Ty_n), \rho(y_{n+1}, Ty_{n+1}),
$$

$$
\frac{1}{2}[\rho(y_n, Ty_{n+1}) + \rho(y_{n+1}, Ty_n)]\}
$$

$$
= \max\{\rho(y_n, y_{n+1}), \rho(y_{n+1}, y_{n+2})\}.
$$
 (*)

Assume that there exists $n_0 \in \mathbb{N}$ such that $m(y_{n_0}, y_{n_0+1}) = \rho(y_{n_0+1}, y_{n_0+2})$. From $\rho(y_{n_0+1}, y_{n_0+2}) > \rho(y_{n_0}, y_{n_0+1})$, we have

$$
\rho(y_{n_0+1}, y_{n_0+2}) \leq \rho(y_{n_0+1}, y_{n_0+2}) - \varphi(\rho(y_{n_0+1}, y_{n_0+2}))+ \varphi\big(\text{dist}(D_i, D_{i+1})\big).
$$

Then

$$
\varphi(\rho(y_{n_0+1}, y_{n_0+2})) \leq \varphi\big(\text{dist}(D_i, D_{i+1})\big).
$$

Since φ is a strictly increasing map, we have

$$
\rho(y_{n_0+1}, y_{n_0+2})) \leq dist(D_i, D_{i+1}) \leq \rho(y_{n_0+1}, y_{n_0+2}).
$$

Obviously, $\rho(y_{n_0+1}, y_{n_0+2}) = dist(D_i, D_{i+1}) \leq \rho(y_{n_0}, y_{n_0+1})$, which is a contradiction. Hence, for all $n \in \mathbb{N}$,

$$
m(y_n, y_{n+1}) = \rho(y_n, y_{n+1}).
$$
(**)

From (*) and (**) we conclude that $\rho(y_{n+1}, y_{n+2}) \leq \rho(y_n, y_{n+1})$. This shows the sequence ${p_n}$ is non-increasing, and by Proposition 2.3 it is bounded below. Therefore $\lim_{n\to\infty} \rho_n$ exists. If $\rho_{n_0} = 0$, for [som](#page-8-1)e $n_0 \in \mathbb{N}$, so $\rho_n \to 0$ and $dist(D_i, D_{i+1}) = 0$, that is $\rho_n \to 0$ $dist(D_i, D_{i+1})$ *.* If $\rho_n \neq 0$ for all $n \in \mathbb{N}$ *.* Put $\rho_n \to \gamma$ *,* then

$$
\gamma \ge dist(D_i, D_{i+1}).
$$

Since φ is a strictly increasing map, we have

$$
\varphi(\gamma) \ge \varphi\big(dist(D_i, D_{i+1})\big). \tag{4.2}
$$

From $(*)$ and $(**)$ and (3.3) we can write

$$
\rho(y_{n+1}, y_{n+2}) \leq \rho(y_n, y_{n+1}) - \varphi(\rho(y_n, y_{n+1})) + \varphi\big(dist(D_i, D_{i+1})\big),
$$

equivalently,

$$
\varphi(\rho(y_n, y_{n+1})) \le \rho(y_n, y_{n+1}) - \rho(y_{n+1}, y_{n+2}) + \varphi\big(\text{dist}(D_i, D_{i+1})\big)
$$

*⃝*c 2022 The authors. Published by TaCS-CoE, KMUTT

https://doi.org/10.58715/bangmodjmcs.2022.8.1 **Bangmod J-MCS** 2022 Taking the limit as $n \to \infty$, we get

$$
\varphi(\gamma) \le \varphi\big(dist(D_i, D_{i+1})\big). \tag{4.3}
$$

From (4.2) and (4.3) , we obtain

$$
\gamma = dist(D_i, D_{i+1}).
$$

That is $\rho_n \to dist(D_i, D_{i+1})$. Our proof is complete.

П

Lemma 4.4. *Let* D_1, D_2, \ldots, D_p *be non-empty subsets of a metric space* (X, ρ) *. Let* $T: \bigcup_{i=1}^{p} D_i \to \bigcup_{i=1}^{p} D_i$ *is a p-cyclic maps satisfying* (3.3)*. Then,* $T \in \Omega$ *.*

Proof. (a). We first show that *T* is a *p*-cyclic strict contraction. Since the map *T* is a generalized *p*-cyclic weak φ - contraction, then

$$
\rho(Ty_n, Ty_{n+1}) \le m(y_n, y_{n+1}) - \varphi(m(y_n, y_{n+1})) + \varphi(dist(D_i, D_{i+1})),
$$

for all $i = 1, 2, ..., p, (p \ge 2)$, where

$$
m(y_n, y_{n+1}) = \max\{\rho(y_n, y_{n+1}), \rho(y_n, Ty_n), \rho(y_{n+1}, Ty_{n+1}),
$$

$$
\frac{1}{2}[\rho(y_n, Ty_{n+1}) + \rho(y_{n+1}, Ty_n)]\}
$$

$$
= \max\{\rho(y_n, y_{n+1}), \rho(y_{n+1}, y_{n+2})\}.
$$

Similar to the proof of above theorem, we have that $m(y_n, y_{n+1}) = \rho(y_n, y_{n+1})$ for all $n \in \mathbb{N}$. That is $m(x, y) = \rho(x, y)$ for all $x, y \in D_i$.

If $\rho(x, y) = dist(D_i, D_{i+1}),$ then we have

$$
\rho(Tx,Ty) \le \rho(x,y) - \varphi(\rho(x,y)) + \varphi(\rho(x,y))
$$

= $\rho(x,y)$.

That is

$$
\rho(Tx, Ty) \le \rho(x, y). \tag{4.4}
$$

Therefore, we get $\rho(x, y) = dist(D_i, D_{i+1}) \leq \rho(Tx, Ty) \leq \rho(x, y)$. It yields that

$$
\rho(Tx,Ty)=\rho(x,y).
$$

In addition, if $\rho(x, y) > dist(D_i, D_{i+1})$, then

$$
\rho(Tx, Ty) \le m(x, y) - \varphi(m(x, y)) + \varphi(dist(D_i, D_{i+1}))
$$

$$
< \rho(x, y) - \varphi(\rho(x, y)) + \varphi(\rho(x, y))
$$

$$
= \rho(x, y).
$$

That is

 $\rho(Tx, Ty) < \rho(x, y)$. (4.5)

Thus, from (4.4) and (4.5) we conclude that *T* is a *p*-cyclic strict contraction.

(b). We next prove the condition (2) of Definition 3.4. Let $x, y \in D_i$. Note that

$$
\rho(T^{p(n+1)}x, T^{p(n+1)+1}y) \le \rho(T^{pn}x, T^{pn+1}y), n \in \mathbb{N}.
$$

Then, the sequence $\{\rho(T^{pn}x, T^{pn+1}y)\}_{n=1}^{\infty}$ is bounded below by $dist(D_i, D_{i+1})$ and is a non-increasing sequence. Hence, $\rho(T^{pn}x, T^{pn+1}y) \to r$ as $n \to \infty$ and $r \geq dist(D_i, D_{i+1}),$ where $r = \inf_{n \geq 1} \rho(T^{pn}x, T^{pn+1}y)$.

Claim: $r = dist(D_i, D_{i+1}).$

*⃝*c 2022 The authors. Published by https://doi.org/10.58715/bangmodjmcs.2022.8.1 **Bangmod J-MCS** 2022

Case 1. If $\rho(T^{pn}x, T^{pn+1}y) = dist(D_i, D_{i+1})$ for some $n \in \mathbb{N}$. Then, by the *p*-cyclic non-expansiveness of *T*,

 $\rho(T^{pn+k}x, T^{pn+k+1}y) = dist(D_i, D_{i+1}), k = 1, 2, \ldots$.

Thus, $\rho(T^{pn}x, T^{pn+1}y) \rightarrow dist(D_i, D_{i+1}),$ as $n \rightarrow \infty$. **Case 2**. If $\rho(T^{pn}x, T^{pn+1}y) > dist(D_i, D_{i+1})$ for all $n \in \mathbb{N}$. Since *T* is *p*-cyclic non-expansive, we have

$$
\rho(T^{p(n+1)}x, T^{p(n+1)+1}y) \leq \rho(T^{pn+1}x, T^{pn+2}y)
$$

\n
$$
\leq m(T^{pn}x, T^{pn+1}y) - \varphi(m(T^{pn}x, T^{pn+1}y)) + \varphi(dist(D_i, D_{i+1}))
$$

\n
$$
= \rho(T^{pn}x, T^{pn+1}y) - \varphi(\rho(T^{pn}x, T^{pn+1}y)) + \varphi(dist(D_i, D_{i+1})).
$$

So

$$
\rho(T^{p(n+1)}x, T^{p(n+1)+1}y) - \varphi(\rho(T^{pn}x, T^{pn+1}y)) < \rho(T^{pn}x, T^{pn+1}y) - \varphi(\rho(T^{pn}x, T^{pn+1}y)).
$$

Taking the limit as $n \to \infty$, it yeilds that

$$
\varphi(r) > \varphi(r).
$$

Since φ is strictly increasing, $r > r$. This is a contradiction. Therefore, we have $\rho(T^{pn}x, T^{pn+1}y) = dist(D_i, D_{i+1})$. Hence, $r = dist(D_i, D_{i+1})$. From both cases (a) and (b) we conclude that $T \in \Omega$.

Theorem 4.5. *Let* $D_1, D_2, \ldots, D_p, (p \geq 2)$ *are non-empty subsets of a p-cyclic metric space* (X, ρ) *. Suppose a cyclic map* $T : \bigcup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$ *satisfies the definition of* **a generalized** *p***-cyclic weak** φ **-contraction** (3.3) and *T* is orbitally continuous. Assume that each D_i , $i = 1, 2, ..., p$, $(p \ge 2)$ is closed and there exists $y_0 \in D_i$. Define $y_{n+1} = Ty_n$ *for any* $n \in \mathbb{N}$. If $\{y_{pn}\}$ *has a convergent subsequence in* D_i *, then there exists* $y \in D_i$ *such that* $\rho(y, Ty) = dist(D_i, D_{i+1}).$

Proof. By the asumption, we know that the subsequence $\{y_{pn_k}\}$ of sequence $\{y_{pn}\}$ converges to apoint $y \in D_i$. By Theorem 4.3, we have

$$
\rho(y_{pn_k}, y_{pn_k+1}) = \rho(y_{pn_k}, Ty_{pn_k}) \rightarrow dist(D_i, D_{i+1}).
$$

Since *T* is an orbitally continuous, we have $\rho(y, Ty) = dist(D_i, D_{i+1}).$

Definition 4.6. A metric space (X, ρ) is called **regular** if every bounded monotone sequence of *X* is convergent.

Corollary 4.7. *Let* $D_1, D_2, \ldots, D_p, (p \geq 2)$ *are non-empty subsets of a regular p-cyclic ordered metric space* (X, ρ, \preceq) *. Suppose that* $T : \bigcup_{i=1}^{p} D_i \to \bigcup_{i=1}^{p} D_i$ *is a decreasing generalized p-cyclic weak φ-contraction* (3.3) *and T is also orbitally continuous. Assume that* D_i *is closed for e[ach](#page-11-0)* $i, i = 1, 2, \ldots, p, (p \ge 2)$ *and there exists* $y_0 \in D_i$ *such that* $y_0 \preceq T^2y_0 \preceq \cdots \preceq Ty_0$. Define $y_{n+1} = Ty_n$ for any $n \in \mathbb{N}$. Then there exists $y \in D_i$ such *that* $\rho(y, Ty) = dist(D_i, D_{i+1}).$

Proof. By the asumption, we have

$$
y_0 \preceq y_2 \preceq \cdots \preceq y_1.
$$

Since *X* is regular and D_i is closed for each *i*, the sequence $\{y_{pn}\}$ converges to a point $y \in D_i$. From Theorem 4.5, we conclude that $\rho(y, Ty) = dist(D_i, D_{i+1})$.

Theorem 4.8. For a non-empty set X, suppose $\rho: X \times X \to [0, \infty)$ forms a metric and $D_1, D_2, \ldots, D_p, (p \ge 2)$ are non-empty subsets of X. Let $T : \bigcup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$ be a *p-cyclic maps and satisfies* **a generalized** *p***-cyclic weak** *φ***-contraction** (3.3)*. Assume* for some $k \in \mathbb{N}$ and $x \in D_i$, $(1 \leq i, k \leq p)$, $\{T^{pn+k}x\}$ converges to $\nu \in D_{i+k}$. Then, ν is *a* best proximity point of *T* in D_{i+k} (*That is* $\rho(\nu, T\nu) = dist(D_{i+k}, D_{i+k+1})$).

Proof. Let $x \in D_i$ $x \in D_i$ be as given in the theorem. By equation (1.1), for each $n \in N$, we have,

$$
dist(D_{i+k}, D_{i+k+1}) = dist(D_{i+k-1}, D_{i+k})
$$

\n
$$
\leq \rho(T^{pn+k-1}x, \nu)
$$

\n
$$
\leq \rho(T^{pn+k-1}x, T^{pn+k}x) + \rho(T^{pn+k}x, \nu).
$$

By lemma 4.4, $T \in \Omega$, so

$$
\lim_{n \to \infty} (\rho(T^{pn+k-1}x, T^{pn+k}x) + \rho(T^{pn+k}x, \nu)) = dist(D_{i+k-1}, D_{i+k}).
$$

Therefore,

$$
\lim_{n \to \infty} \rho(T^{pn+k-1}x, \nu) = dist(D_{i+k-1}, B_{i+k}) = dist(D_{i+k}, D_{i+k+1}). \tag{4.6}
$$

Now,

$$
dist(D_{i+k}, D_{i+k+1}) \leq \rho(\nu, T\nu)
$$

=
$$
\lim_{n \to \infty} \rho(T^{pn+k}x, T\nu)
$$

$$
\leq \lim_{n \to \infty} \rho(T^{pn+k-1}x, \nu)
$$

=
$$
dist(D_{i+k}, D_{i+k+1}),
$$
 (by equation(4.6)).

 $Hence, \rho(\nu, T\nu) = dist(D_{i+k}, D_{i+k+1}).$

Theorem 4.9. For a non-empty set X, suppose $\rho: X \times X \rightarrow [0, \infty)$ forms a metric *and* $X_1, X_2, \ldots, D_p, (p \geq 2)$ *are non-empty subsets of X. Suppose that* $X = \bigcup_{i=1}^p D_i$ *and* $\cup_{i=1}^p D_i$ is p-cyclic complete. Let $T : \bigcup_{i=1}^p D_i \to \bigcup_{i=1}^p D_i$ be a p-cyclic mapping which *satisties* **a generalized** *p***-cyclic weak** *φ***-contraction** (3.3)*. Then, there exists a best proximity point of T in* D_j *for some* $j \in \{1, 2, \ldots, p\}$ *.*

Proof. Let $x \in D_i$, $1 \leq i \leq p$. Define a sequence $\{x_n\}_{n=1}^{\infty}$ in (X, ρ) by

$$
x_n := T^n x \text{ for } n \in \mathbb{N}.
$$

Claim: $\{T^n x\}_{n=1}^{\infty}$ is a *p*-cyclic Cauchy sequence. Let $m, n \in \mathbb{N}$ be such that $m > n$,

$$
\rho(T^{pm}x, T^{pn+1}x) = \rho(T^{p(n+r)}x, T^{pn+1}x), \text{ where } m = n + r, r \in \mathbb{N}
$$

$$
= \rho(T^{pn}y, T^{pn+1}x), \text{ where } y = T^{pr}x \in D_i
$$

$$
\rightarrow dist(D_i, D_{i+1}), \text{ as } n \rightarrow \infty \text{ (because } T \in \Omega).
$$

This implies that, for all $\varepsilon > 0$, there exists an $n_0 \in \mathbb{N}$ such that

$$
\rho(T^{pm}x, T^{pn+1}x) < \varepsilon + dist(D_i, D_{i+1}), m, n \ge n_0.
$$

By Proposition 3.3, for any given $\varepsilon > 0$, there exists an $n_1 \in \mathbb{N}$ such that

$$
\rho(T^{pm+k}x, T^{pn+k+1}x) < \varepsilon + dist(D_{i+k}, D_{i+k+1}), m, n \ge n_1, k \in \{1, 2, ..., p\}.
$$

Bangmod J-MCS 2022

Therefore, the sequence $\{T^n x\}$ is a *p*-cyclic Cauchy sequence in (X, ρ) . Since (X, ρ) is *p*cyclic complete, there exists $k \in \{1, 2, \ldots, p\}$ such that $\{T^{pn+k}x\}$ converges to $z \in D_{i+k}$. By Theorem 4.8, *z* is best proximity point of *T* in D_j , where $j = i + k$.

Example 4.10. Let $X = \mathbb{R}^2$ be the Euclidean plane equipped with the usual Euclidean metric. Let subsets D_i , $i = 1, 2, 3, 4$ be as follows:

$$
D_1 = \{(0, 0.5 + x) : 0 \le x \le 0.5\}, D_2 = \{(0.5 + x, 0) : 0 \le x \le 0.5\},
$$

*D*₃ = { $(0, -(0.5 + x)) : 0 \le x \le 0.5$ } and *D*₄ = { $-(0.5 + x, 0) : 0 \le x \le 0.5$ }. Let $\varphi(t) = \frac{1}{5}t, \forall t \ge 0$. Similarly, define $T: \bigcup_{i=1}^{4} D_i \to \bigcup_{i=1}^{4} D_i$ as follows:

$$
T(0, 0.5 + x) = (0.5 + \frac{x}{10}, 0);
$$

\n
$$
T(0.5 + x, 0) = (0, -(0.5 + \frac{x}{10}));
$$

\n
$$
T(0, -(0.5 + x)) = (-(0.5 + \frac{x}{10}), 0);
$$

\n
$$
T(-(0.5 + x), 0) = (0, 0.5 + \frac{x}{10}).
$$

It is clear that $\rho(D_1, D_2) = \rho(D_2, D_3) = \rho(D_3, D_4) = \rho(D_4, D_1) = \frac{1}{2}$ *√* 2. Obviously T is a 4-cyclic map. If $x \in D_i$, $y \in D_{i+1}$, $i = 1, 2, 3, 4$. One can easily show that

$$
m(x,y) - \varphi(m(x,y)) + \varphi(\rho(D_i, D_{i+1})) - \rho(Tx, Ty)
$$

= $\frac{4}{5}m(x,y) + \frac{\sqrt{2}}{10} - \sqrt{(0.5 + \frac{x}{10})^2 + (0.5 + \frac{y}{10})^2} \ge 0,$

for all $x \in D_i$, $y \in D_{i+1}$, where $D_{4+1} = D_1$ and

$$
m(x, y) = \max\{\rho(x, y), \rho(x, Tx), \rho(y, Ty), \frac{1}{2}[\rho(x, Ty) + \rho(y, Tx)]\}.
$$

Therefore, T is a generalized *p*-cyclic weak φ -contraction(3.3), where $p = 4$. All the conditions of Theorem 4.9 hold true, and *T* has the best proximity point. Let $x = (0, 0.5 +$ $y) \in D_1$, where $y \in [0, 0.5]$. Then $\{T^{4n}x\} = \{(0, 0.5 + \frac{y}{10^{4n}})\}\$. Clearly, $\{T^{4n}x\} \to (0, 0.5)$ as $n \to \infty$, which is a best proximity point of *T* in D_1 . Also, $T(0, 0.5) = (0.5, 0)$, so $(0.5, 0)$ is a best proximity point of *T* in D_2 , $T^2(0.0.5) = (0, -0.5)$ and $T^3(0, 0.5) = (-0.5, 0)$ are unique best proximity points of T in D_3 and D_4 , respectively.

5. **ACKNOWLEDGEMENTS**

The authors would like to thank the referees for useful comments and suggestions for the improvement of this manuscripts.

6. **FUNDING**

Not Applicable.

7. **COMPETING INTERESTS**

The authors declare that they have no competing inteests.

8. **AUTHOR CONTRIBUTIONS**

The authors contributed equally to this paper. All authors have read and approved the final version of the manuscript.

REFERENCES

- [1] V.W. Bryant, A remark on a fixed point theorem for iterated mappings, Am. Math. Mon. 75(1968) 399–400.
- [2] S. Karpagam, S. Agrawal., Existence of best proximity points for *p*-cyclic contractions, Int. J. Fixed Point Theory Comput. Appl. 13(2012) 99–105.
- [3] M. Al-Thagafi, N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal. 70(2009) 3665–3671.
- [4] A.H. Ansari, Note on $\varphi \text{-} \psi$ -contractive type mappings and related fixed point, The 2nd Regional Conference on Mathematics and Applications, Payame Noor University,September (2014), 377–380.
- [5] A. Almeida, E. Karapinar, K. Sadarangani, A note on best proximity point theorems under weak *P*-property, Abstract and Applied Analysis, (2014), Article Id: 716825
- [6] A.H. Ansari, J. Nantadilok, M.S. Khan, Best proximity points results of generalized cyclic weak (F, ψ, φ) -contractions in ordered metric spaces, Nonlinear Functional Analysis and Applications 25(1)(2020) 55–67.
- [7] D.W. Boyd, J.S.W. Wong, On Nonlinear Contractions, Proc. Am. Math. Soc. 20(1969) 458–464.
- [8] P. Chuadchawan, A. Kaewcharoen, S. Plubtieng, Fixed point theorems for generalized α -*η*- ψ -Geraghty contraction type mappings in α -*η*-complete metric spaces, J. Nonlinear Sci. Appl. 9(2016) 471–485.
- [9] Q.Q. Cheng, Y.F. Su, Further investigation on best proximity point of generalized cyclic weak *φ*-contraction in ordered metric spaces, Nonlinear Functional Analysis and Applications 22(2017) 137–146.
- [10] M. De la Sen, E. Karapinar, Some Results on Best Proximity Points of Cyclic Contractions in Probabilistic Metric Spaces, J. Funct. Spaces 2015(2015) 470574, doi:10.1155/2015/470574
- [11] A.A. Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323(2006) 1001–1006.
- [12] M.A. Geraghty, On contractive maps, Proc. Am. Math. Soc. 40(1973) 604–608.
- [13] W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points for mapping satisfying cyclical contractive conditions, Fixed Point Theory 4(2003) 79–89.
- [14] E. Karapinar, Fixed point theory for cyclic weak *f*-contraction, Appl. Math. Lett. 24(2011) 822–825. doi:10.1016/j.aml.2010.12.016.
- [15] E. Karapnar, I.M. Erhan, Cyclic contractions and fixed point theorems, Filomat 26(2012) 777–782.
- [16] E. Karapinar, M. Jleli, B. Samet, A short note [on the equivalence between best](https://doi.org/10.58715/bangmodjmcs.2022.8.1) proximity points and fixed point results, Journal of Inequalities and Applications 2014(2014).
- [17] E. Karapinar, F. Khojasteh, An approach to best proximity points results via simulation functions, Journal of Fixed Point Theory and Applications 19(3)(2017) 1983– 1995.

- [18] E. Karapnar, N. Shobkolaei, S. Sedghi, S.M. Vaezpour, A common fixed point theorem for cyclic operators on partial metric spaces, Filomat 26(2012) 407–414.
- [19] S. Karpagam, S. Agrawal, Best proximity point theorems for *p*-cyclic Meir-Keeler contractions, Fixed Point Theory Appl. 2009(2009) 197308.
- [20] S. Karpagam, B. Zlatanov, Best proximity points of *p*-cyclic orbital Meir-Keeler contraction maps, Nonlinear Anal. Model. Control. 21(2016) 790-806.
- [21] S. Karpagam, B. Zlatanov, A note on best proximity points for *p*-summing cyclic orbital Meir-Keeler contraction maps, Int. J. Pure Appl. Math. 107(2016) 225–243.
- [22] M.S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30(1984) 1–9.
- [23] E. Karapinar, S. Karpagam, P. Magadevan, B. Zlatanov, On Ω class of mappings in a *p*-cyclic complete metric space, Symmetry,(2019), 15 pages. doi:10.3390/sym11040534
- [24] T.C. Lim, On charecterization of Meir-Keeler contractive maps, Nonlinear Anal. 46(2001) 113–120.
- [25] Lj.B. Ciríc, On contraction type mappings, Math.Balkanica. $1(1971)$ 52–57.
- [26] Lj.B. Ciric, On some maps with a non-unique fixed point, Publ. Inst. Math. $17(1974)$ 52–58.
- [27] A. Meir, E. Keeler, A theorem on contractive mappings, J. Math. Anal. Appl. 28(1969) 326–329.
- [28] M. Petric, B. Zlatanov, Best proximity points and Fixed points for *p*-summing maps, Fixed Point Theory Appl. 2012(2012) 86.
- [29] P. Sumati Kumari, J. Nantadilok, M. Sarwar, Some generalizations of weak cyclic compatible contractions, Thai J. Math. 2019, Special Issue:Annual Meeting in Mathematics 2018, 75–89.

