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Abstract In this manuscript, we extend the notion of generalized cyclic weak φ-contractions to p sets,

p ≥ 2. We investigate the convergence of best proximity points of such maps in p-cyclic complete metric

spaces. We also give an example to support our main results. Our works generalize and improve the

related results in the literature.
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1. Introduction

In 1968, Bryant [1] constructed a remarkable result in fixed point theory and proved
that, in a complete metric space, if for some positive integer n ≥ 2, the nth iteration of
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the given mapping forms a contraction, then it possess a unique fixed point. Another out-
standing approach was proposed by Kirk, Srinivasan and Veeramani [13] by introducing
the notion of cyclic contraction. More precisely, every cyclic contraction in a complete
metric space possess a unique fixed point. This statement is plain but significant when we
compare with the results of Bryant. Later, the concept of the cyclic contractions has been
investigated immensely by a considerable large number of authors who brought several
brilliant notions and derived a number of interesting results (see, e.g.[2–6, 10, 11, 14–
18, 20, 21, 24, 29] and the references therein). Let T be a self-mapping on a metric space
(X, ρ). Suppose that E and F are non-empty subsets of X such that X = E ∪ F . A
self-mapping T : E ∪ F → E ∪ F is called a cyclic contraction [13] if

1). T (E) ⊆ F and T (F ) ⊆ E.
2). If there is a k ∈ (0, 1) such that the following inequality is satisfied

d(Tx, Ty) ≤ kd(x, y), for all x ∈ E, y ∈ F.

After this initial construction, several extensions of cyclic mappings and cyclic contrac-
tions have been introduced. In this paper, we mainly follow the notations defined in
[19, 23]. In [19], a notion of p-cyclic map was introduced. Let D1, D2, . . . , Dp(p ≥ 2)
be non-empty sets. A p-cyclic map T : ∪pi=1Di → ∪pi=1Di is defined such that T (Di) ⊆
Di+1,∀i ∈ {1, 2, . . . , p}, x = x0 ∈ Di, defines a sequence {xn} ⊂ ∪pi=1Di as xn = Txn−1.
Then, {xpn} is a subsequence in Di, {xpn+1} is a subsequence in Di+1 and so on. From
the arrangement of such a sequence formed by a p-cyclic map, Karapinar et al. in [23]
introduced a notion of p-cyclic sequence (Definition 2.1(1)). If Dis are subsets of a met-
ric space (X, ρ), then, to obtain a best proximity point of T under various contractive
conditions (some of them given in the literature), it is enough to prove that: given ε > 0,
there exists N0 ∈ N such that

ρ(xpn, xpm+1) < dist(Di, Di+1) + ε,∀n,m ≥ N0.

This observation motivated the authors [23] to introduce a concept of p-cyclic Cauchy se-
quence and p-cyclic complete metric space (Definition 2.1). In addition, while investigat-
ing the behavior of such p-cyclic maps, it is often the case that, if ρ(x, y) > dist(Di, Di+1),
then ρ(Tx, Ty) < ρ(x, y) and, if ρ(x, y) = dist(Di, Di+1), then ρ(Tx, Ty) = ρ(x, y), x ∈
Di, y ∈ Di+1. They call a p-cyclic map with this property as p-cyclic strict contraction
map (Definition 3.1). Note that, if the distances between the adjacent sets are zero, then
a p-cyclic strict contraction map is a strict contraction map in the usual sense. All such
maps invariably satisfy the condition: x, y ∈ Di, ρ(T

pnx, T pn+1y) → dist(Di, Di+1) as
n → ∞. In the paper [23], all p-cyclic maps which satisfy the above two properties are
said to belong to class Ω (Definition 3.4). Finally, the authors proved the existence and
convergence of best proximity points of Ω class of mappings in a p-cyclic complete metric
space.

Now we recollect some essential definitions.

Definition 1.1 (see [4]). A continuous function F : [0,∞)2 → R is called a C-class
function, if for any s, t ∈ [0,∞), the following conditions hold:

(1) F (s, t) ≤ s;
(2) F (s, t) = s implies that either s = 0 or t = 0.

Remark 1.2. We denote the class of all C-class functions as C.
Example 1.3 (see [4]). Following examples show that the class C of C-class functions is
nonempty:
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(1) F (s, t) = s− t.
(2) F (s, t) = ms, 0 < m < 1
(3) F (s, t) = s

(1+t)r for some r ∈ (0,∞).

(4) F (s, t) = log(t+ as)/(1 + t), for some a > 1.
(5) F (s, t) = ln(1 + as)/2, for a > e. Indeed F (s, 1) = s implies that s = 0.
(6) F (s, t) = (s+ l)(1/(1+t)

r) − l, l > 1, for r ∈ (0,∞).
(7) F (s, t) = s logt+a a, for a > 1.

(8) F (s, t) = s− ( 1+s2+s )(
t

1+t ).

(9) F (s, t) = sβ(s), where β : [0,∞) → [0, 1). etc.

More examples of C-class functions can be found in [4].

Definition 1.4 (see [22]). A function ψ : [0,∞) → [0,∞) is called an altering distance
function, if the following properties are satisfied:

(i) ψ is non-decreasing and continuous,
(ii) ψ (t) = 0 if and only if t = 0.

We denote the class of altering distance functions as Ψ.

Definition 1.5 (see [4]). An ultra altering distance function is a continuous, non-decreasing
mapping φ : [0,∞) → [0,∞) such that φ(t) > 0, t > 0 and φ(0) ≥ 0

We denote the class of ultra altering distance functions as Ψu.

In what follows, we recollect some definitions and fundamental results which are crucial
to prove our main results.

Definition 1.6. ([19], Definitions 3.1). For a non-empty set X, suppose ρ : X × X →
[0,∞) forms a metric and D1, D2, . . . , Dp, (p ≥ 2) are non-empty subsets of X. Define
Dp+i := Di, for all i ∈ {1, 2, . . . , p}. A map T : ∪pi=1Di → ∪pi=1Di is called a p-cyclic
map, if T (Di) ⊆ Di+1,∀i ∈ {1, 2, . . . , p}. If p = 2, then T is called a cyclic map. A
point x ∈ Di is said to be a best proximity point of T in Di, if ρ(x, Tx) = dist(Di, Di+1),
where dist(Di, Di+1) := inf{ρ(x, y) : x ∈ Di, y ∈ Di+1}.

In [23], the authors introduced the conditions for the underlying space and for the
subsets of the space, to have a unique best proximity point under a p-cyclic map, if it
exists, irrespective of the contraction condition imposed on the map.

Proposition 1.7 ([23]). Let D1, D2, . . . , Dp, (p ≥ 2) be non-empty convex subsets of a
strictly convex norm linear space X such that dist(Di, Di+1) > 0, i ∈ {1, 2, . . . , p}. Let
T : ∪pi=1Di → ∪pi=1Di be a p-cyclic map. Then, T has at most one best proximity point
in Di, 1 ≤ i ≤ p.

Let T be a p-cyclic map as given in Definition 1.6. T is said to be p-cyclic non expansive
map if for all x ∈ Di, y ∈ Di+1, the following holds:

ρ(Tx, Ty) ≤ ρ(x, y),∀i ∈ {1, 2, . . . , p}.
The following lemma naturally follows for a p-cyclic non-expansive map.

Lemma 1.8. ([19], Lemma 3.3). For a non-empty set X, suppose ρ : X ×X → [0,∞)
forms a metric and D1, D2, . . . , Dp, (p ≥ 2) are non-empty subsets of X. If T : ∪pi=1Di →
∪pi=1Di is a p-cyclic non-expansive map, then

dist(Di, Di+1) = dist(Di+1, Di+2) = dist(D1, D2),∀i ∈ {1, 2, . . . , p}. (1.1)
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In addition, if ν ∈ Di ∩D(T )i ̸= ∅, then T jν ∈ Di+1 ∩D(T )i+j ̸= ∅, for all j = 1, 2, . . . ,
(p-1), where D(T )k is the set of best proximity point of the mapping T in Dk.

The following lemma (see [11, 23]) is essential to prove that a given sequence is Cauchy.

Lemma 1.9. ([11], Lemma 3.7). For a uniformly convex Banach space (X, ∥.∥), we
suppose that E,F are non-empty closed subsets of X and {an}, {bn} ⊂ E and {dn} ⊂ F .
If E is convex such that

(i) ∥bn − dn∥ → dist(E,F ); and
(ii) for every ε > 0 there exists N ∈ N such that for all m > n > N ,

∥am − dn∥ ≤ dist(E,F ) + ε,

then for all ε > 0, there exists N1 ∈ N such that for all m > n > N1, ∥am− bn∥ ≤
ε.

Next, we recall a few p-cyclic maps with some contraction conditions imposed on them,
which are defined in [2, 3, 9, 12, 19].

Definition 1.10. ([2], Definition 3.1). For a non-empty set X, suppose ρ : X × X →
[0,∞) forms a metric and D1, D2, . . . , Dp, (p ≥ 2) are non-empty subsets of X. Let
T : ∪pi=1Di → ∪pi=1Di be a p-cyclic map, T is said to be a p-cyclic contraction, if
there exists k ∈ (0, 1) such that for all x ∈ Di and y ∈ Di+1, we have

ρ(Tx, Ty) ≤ kρ(x, y) + (1− k)dist(Di, Di+1),∀i ∈ {1, 2, . . . , p}.
Definition 1.11. ([3], Definition 2.1). For a non-empty set X, suppose ρ : X × X →
[0,∞) forms a metric, E and F are non-empty subsets of X. A cyclic map T : E ∪ F →
E ∪ F is said to be a cyclic φ-contraction if

ρ(Tx, Ty) ≤ ρ(x, y)− φ(ρ(x, y)) + φ(dist(E,F )),∀x ∈ E, y ∈ F,

where φ : [0,∞) → [0,∞) is a strictly increasing map.

Definition 1.12. ([9], Definition 2.1). Let E and F be nonempty subsets of a metric
space (X, ρ). Suppose that φ : [0,∞) → [0,∞) is a strictly increasing map. A cyclic
map T : E ∪ F → E ∪ F is said to be a generalized cyclic weak φ-contraction, if for any
x ∈ E, y ∈ F

ρ(Tx, Ty) ≤ m(x, y)− φ(m(x, y)) + φ(dist(E,F )) (1.2)

where m(x, y) = max{ρ(x, y), ρ(x, Tx), ρ(y, Ty), 12 [ρ(x, Ty) + ρ(y, Tx)]}.
Definition 1.13. ([6], Definition 2.1). Let E and F be nonempty subsets of a metric
space(X, ρ). Suppose that φ,ψ : [0,∞) → [0,∞) and φ is a strictly increasing map. A
cyclic map T : E

∪
F → E

∪
F is called a generalized cyclic weak (F, ψ, φ)-contraction,

if for any x ∈ E and y ∈ F ,

ψ(ρ(Tx, Ty)) ≤ F
(
ψ(m(x, y))− ψ(dist(E,F )),

φ(m(x, y))− φ(dist(E,F ))
)
+ ψ

(
dist(E,F )

) (1.3)

where F ∈ C, ψ ∈ Ψ with ψ(s+ t) ≤ ψ(s) + ψ(t), φ ∈ Ψu and

m(x, y) = max{ρ(x, y), ρ(x, Tx), ρ(y, Ty), 1
2
[ρ(x, Ty) + ρ(y, Tx)]}.

Remark 1.14. If we take F (s, t) = s− t and ψ(t) = t in Definition 1.13, the we obtain
Definition 1.12 above.
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2. p-Cyclic Sequences and p-Cyclic Complete Metric Spaces

Throughout this article, let N0 = N ∪ {0}. In [23], Karapinar et al. introduced the
notion of p-cyclic sequence as follows:

Definition 2.1 ([23]). For a non-empty set X, suppose ρ : X × X → [0,∞) forms a
metric and D1, D2, . . . , Dp, (p ≥ 2) are non-empty subsets of X.

1 . A sequence {xn}∞n=1 ⊂ ∪pi=1Di is called a p-cyclic sequence if xpn+i ∈ Di, for
all n ∈ N0 and i = 1, 2, . . . , p.

2 . We say that {xn}∞n=1 is a p-cyclic Cauchy sequence, if for given ε > 0 there
exists an N0 ∈ N such that for some i ∈ {1, 2, . . . , p}, we have

ρ(xpn+i, xpm+i+1) < dist(Di, Di+1) + ε, ∀m,n ≥ N0. (2.1)

3 . A p-cyclic sequence {xn}∞n=1 in ∪pi=1Di is said to be p-cyclic bounded, if
{xpn+i}∞n=1 is bounded in Di for some i ∈ {1, 2, ..., p}.

4 . Let {xn}∞n=1 be a p-cyclic sequence in ∪pi=1Di. If for some j ∈ {1, 2, ..., p} the
subsequence {xpn+j} of {xn}∞n=1 converges in Dj , then we say that {xn}∞n=1 is
p-cyclic convergent.

5 . Under the assumption thatD1, D2, . . . , Dp, (p ≥ 2) are non-empty closed subsets
of a metric space (X, ρ), we say that ∪pi=1Di is p-cyclic complete if every p-cyclic
Cauchy sequence in ∪pi=1Di is p-cyclic convergent.

6 . If there are subsets D1, D2, . . . , Dp, (p ≥ 2) of (X, ρ) such that X = ∪pi=1Di and
∪pi=1Di is p-cyclic complete, then we call (X, ρ) a p-cyclic complete metric space.

Remark 2.2. Note that a p-cyclic sequence which is a Cauchy sequence in the usual
sense is a p-cyclic Cauchy sequence. On the other hand, p-cyclic Cauchy sequences need
not be Cauchy sequences in the usual sense, even if dist(Di, Di+1) = 0, ∀i ∈ {1, 2, ..., p}.

Examples which illustrate the notion of p-cyclic sequence and p-cyclic Cauchy sequence
can be found in ([23], Example 1 and 2). And a complete metric space need not be p-cyclic
complete, (see [23], Remark 2, for example).

The following proposition shows that a p-cyclic Cauchy sequence is p-cyclic bounded.

Proposition 2.3 ([23]). For a non-empty set X, suppose ρ : X × X → [0,∞) forms
a metric and D1, D2, . . . , Dp, (p ≥ 2) are non-empty subsets of X. Then, every p-cyclic
Cauchy sequence in ∪pi=1Di is p-cyclic bounded.

The following proposition is an example of two-cyclic complete metric space.

Proposition 2.4 ([23]). Let E and F be subsets of a uniformly convex Banach space X,
which are non-empty and closed. If either E or F is convex, then E ∪ F is two-cyclic
complete.

3. p-Cyclic Strict Contraction Maps

In [23], Karapinar et al. introduced a notion of p-cyclic strict contraction, which is a
generalization of strict contraction in the usual sense.

Definition 3.1 ([23]). For a non-empty set X, suppose ρ : X × X → [0,∞) forms a
metric and D1, D2, . . . , Dp, (p ≥ 2) are non-empty subsets of X. A p-cyclic map T is said
to be p-cyclic strict contraction if, for all x ∈ Di, y ∈ Di+1, 1 ≤ i ≤ p:

(i) ρ(x, y) > dist(Di, Di+1) ⇒ ρ(Tx, Ty) < ρ(x, y), and
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(ii) ρ(x, y) = dist(Di, Di+1) ⇒ ρ(Tx, Ty) = ρ(x, y).

Remark 3.2. Note that, if Di = A, for all i = 1, 2, . . . , p, then p-cyclic strict contraction
is a strict contraction in the usual sense. It is clear that the p-cyclic strict contraction
also forms a p-cyclic non-expansive map.

The following proposition proves an important property of p-cyclic strict contraction
map

Proposition 3.3 ([23]). For a non-empty set X, suppose ρ : X × X → [0,∞) forms a
metric and D1, D2, . . . , Dp, (p ≥ 2) are non-empty subsets of X. Let x ∈ Di(1 ≤ i ≤ p).
Suppose that T : ∪pi=1Di → ∪pi=1Di is a p-cyclic strict contraction map and if for all
ε > 0, there exists an n0 ∈ N such that

ρ(T pnx, T pm+1x) < dist(Di, Di+1) + ε, n,m ≥ n0, (3.1)

then for a given ε > 0, there exists an n1 ∈ N such that

ρ(T pn+kx, T pm+k+1x) < dist(Di+k, Di+k+1) + ε, n,m ≥ n1, k ∈ {1, 2, . . . , p}.

In [23], Karapinar et al. introduced the notion of p-cyclic maps with various contractive
conditions and possed some common properties. They also introduced a notion of class
Ω, a certain class of mappings.

Definition 3.4 ([23]). For a non-empty set X, suppose ρ : X × X → [0,∞) forms a
metric and D1, D2, . . . , Dp, (p ≥ 2) are non-empty subsets of X. A p-cyclic map T :
∪pi=1Di → ∪pi=1Di is said to belong to the class Ω if

(1) T is p-cyclic strict contraction.
(2) If x, y ∈ Di, then lim

n→∞
ρ(T pnx, T pn+1y) = dist(Di, Di+1), 1 ≤ i ≤ p.

In this manuscript, we list some p-cyclic maps different from those given in [23] which
belong to the class Ω. First, we prove that a p-cyclic contraction map, which is defined
via the notion of C-class functions, belongs to the class Ω. We give the following new
definition via C-class functions.

Definition 3.5. Let D1, D2, . . . , Dp be non-empty subsets of a metric space (X, ρ). Let
T : ∪pi=1Di → ∪pi=1Di is called a p-cyclic (F, ψ, φ)-contraction map, if it satisfies

ψ
(
ρ(Tx, Ty)

)
≤ F

(
ψ(ρ(x, y))− ψ(dist(Di, Di+1)), φ(ρ(x, y))− φ(dist(Di, Di+1))

)
+ ψ

(
dist(Di, Di+1)

)
,

for all i ∈ {1, 2, . . . , p}, where F ∈ C, ψ ∈ Ψ and φ : [0,∞) → [0,∞) is a strictly increasing
map.

Remark 3.6. If we take F (s, t) = s − t, ψ(t) = t and p = 2 in Definion 3.5, then we
obtain Definition 1.11 (Definition 2.1, defined in [3]).

Next we prove that a p-cyclic (F, ψ, φ)-contraction map belongs to the class Ω.

Example 3.7. Let D1, D2, . . . , Dp be non-empty subsets of a metric space (X, ρ). Let
T : ∪pi=1Di → ∪pi=1Di be a p-cyclic (F, ψ, φ)-contraction map. Then, T ∈ Ω.
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Proof. We first show that T is a p-cyclic strict contraction. Because the the map T is a
p-cyclic (F, ψ, φ)-contraction, we have

ψ
(
ρ(Tx, Ty)

)
≤F

(
ψ(ρ(x, y))− ψ(dist(Di, Di+1)), φ(ρ(x, y))− φ(dist(Di, Di+1))

)
,

+ ψ(dist(Di, Di+1)),

for all i ∈ {1, 2, . . . , p}, where F ∈ C, ψ ∈ Ψ. Taking F (s, t) = s− t , we have

ψ
(
ρ(Tx, Ty)

)
≤ ψ

(
ρ(x, y)

)
− φ(ρ(x, y)) + φ

(
dist(Di, Di+1)

)
.

If ρ(x, y) = dist(Di, Di+1), we have

ρ(Tx, Ty) ≤ ρ(x, y).

Since ρ(x, y) = dist(Di, Di+1) ≤ ρ(Tx, Ty), we then have

ρ(Tx, Ty) = ρ(x, y).

In addition, if ρ(x, y) > dist(Di, Di+1), then

ψ
(
ρ(Tx, Ty)

)
≤ F

(
ψ(ρ(x, y))− ψ(dist(Di, Di+1)), φ(ρ(x, y))− φ(dist(Di, Di+1))

)
+ ψ(dist(Di, Di+1)),

≤ ψ(ρ(x, y)− φ(ρ(x, y)) + φ(dist(Di, Di+1))

< ψ(ρ(x, y))− φ(ρ(x, y)) + φ(ρ(x, y)).

Therefore

ρ(Tx, Ty) < ρ(x, y).

Therefore, T is a p-cyclic strict contraction. The second condition of Definition 3.4 follows
from Lemma 3.3 in [2]. Hence, T ∈ Ω.

Remark 3.8. Karapinar et al.[23] showed that the p-cyclic Meir-Keeler map (p-cyclic
MK-map) introduced in [19] belongs to the class Ω. See Example 4 in [23].

Next, we establish an example of p-cyclic map satisfying a contraction condition of
Geraghtys type [7] and show that it belongs to the class Ω. Here, we use the notion
of C-class functions introduced in [4] combining with a class of functions S introduced
by Geraghty [7], where S is the class of all functions ϑ : [0,∞) → [0, 1) that satisfies
ϑ(tn) → 1, then tn → 0, tn ∈ [0,∞) for n ∈ N.

Example 3.9. For a non-empty set X, suppose ρ : X ×X → [0,∞) forms a metric and
D1, D2, . . . , Dp, (p ≥ 2) are non-empty subsets of X. Let T : ∪pi=1Di → ∪pi=1Di be a
p-cyclic (F, ψ, φ, ϑ)-map such that

ρ(Tx, Ty) ≤ F
(
ψ
(
ϑ(ρ(x, y))

)
ρ(x, y)− ψ

(
ϑ(ρ(x, y))

)
dist(Di, Di+1),

φ
(
ϑ(ρ(x, y))ρ(x, y)

)
− φ

(
ϑ(ρ(x, y)

)
dist(Di, Di+1)

)
+ψ

(
ϑ(ρ(x, y))

)
dist(Di, Di+1),

for all i ∈ {1, 2, . . . , p}, where F ∈ C, ψ ∈ Ψ where ψ(t) < t and ϑ ∈ S. Then

(a) T is a p-cyclic strict contraction.
(b) lim

n→∞
ρ(T pnx, T pn+1y) = dist(Di, Di+1), x ∈ Di, y ∈ Di+1.
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Proof. (a) Let x ∈ Di, y ∈ Di+1.
Case (1): If ρ(x, y) > dist(Di, Di+1), by the definition of F , we have

ρ(Tx, Ty) ≤F
(
ψ
(
ϑ(ρ(x, y))

)
ρ(x, y)− ψ

(
ϑ(ρ(x, y))

)
dist(Di, Di+1),

φ
(
ϑ(ρ(x, y))

)
ρ(x, y)− φ

(
ϑ(ρ(x, y))

)
dist(Di, Di+1)

)
,

+ ψ
(
ϑ(ρ(x, y))

)
dist(Di, Di+1)

≤ ψ
(
ϑ(ρ(x, y))

)[
ρ(x, y)− dist(Di, Di+1) + dist(Di, Di+1)

]
(∗)

≤ ψ
(
ϑ(ρ(x, y))

)
ρ(x, y).

Therefore

ρ(Tx, Ty) < ρ(x, y).

Case (2): If ρ(x, y) = dist(Di, Di+1), then from (*), we have ρ(Tx, Ty) ≤ ρ(x, y). By
equation (1.1),

ρ(x, y) = dist(Di, Di+1) = dist(Di+1, Di+2) ≤ ρ(Tx, Ty) ≤ ρ(x, y),

therefore
ρ(Tx, Ty) = ρ(x, y).

Hence, T is p-cyclic strict contraction.
(b) Let x, y ∈ Di. Since T is p-cyclic non-expansive, {ρ(T pnx, T pn+1y)} is a decreasing

sequence and is bounded below by dist(Di, Di+1). Therefore,

ρ(T pnx, T pn+1y) → r as n→ ∞ and r ≥ dist(Di, Di+1),

where r = infn≥1 ρ(T
pnx, T pn+1y).

Claim: r = dist(Di, Di+1).
If ρ(T pnx, T pn+1y) = dist(Di, Di+1) for some n, then by the p-cyclic non-expansiveness

of T ,

ρ(T pn+kx, T pn+k+1y) = ρ(T pnx, T pn+1y), k = 1, 2, . . . .

Hence, we have

ρ(T pnx, T pn+1y) → dist(Di, Di+1) as n→ ∞.

Let us assume that ρ(T pnx, T pn+1y) > dist(Di, Di+1), n ∈ N. Suppose that r >
dist(Di, Di+1). Since T is p-cyclic non expansive,

ρ(T p(n+1)x, T p(n+1)+1y) ≤ ρ(T pn+1x, T pn+2y)

≤ F
(
ψ
(
ϑ(ρ(T pnx, T pn+1y))

)
ρ(T pnx, T pn+1y)− ψ(ϑ(ρ(T pnx, T pn+1y)))dist(Di, Di+1)

)
,

φ
(
ϑ(ρ(T pnx, T pn+1y))ρ(T pnx, T pn+1y)

)
− φ

(
ϑ(ρ(T pnx, T pn+1y))dist(Di, Di+1)

))
+ ψ(ϑ(ρ(T pnx, T pn+1y)))dist(Di, Di+1)

≤ ψ(ϑ(ρ(T pnx, T pn+1y))
[
ρ(T pnx, T pn+1y)− dist(Di, Di+1) + dist(Di, Di+1)

]
.

Then

ρ(T p(n+1)x,T p(n+1)+1y)

≤ ψ(ϑ(ρ(T pnx, T pn+1y))[ρ(T pnx, T pn+1y)].
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Since ϑ ∈ S and ψ(t) < t,

ρ(T p(n+1)x, T p(n+1)+1y)

ρ(T pnx, T pn+1y)
≤ ϑ(ρ(T pnx, T pn+1y)) < 1. (3.2)

Since r = lim
n→∞

ρ((T p(n+1)x, T p(n+1)+1y)) > dist(Di, Di+1) by our assumption, letting

n→ ∞ in equation (3.2), we get

1 ≤ lim
n→

ϑ(ρ(T pnx, T pn+1y)) ≤ 1,

that is,

lim
n→∞

ϑ(ρ(T pnx, T pn+1y)) = 1

However, lim
n→∞

ρ(T pnx, T pn+1y) = r > 0, which contradicts ϑ ∈ S. Hence, r = dist(Di, Di+1).

This proves Part (b).

Next, we recall some essential definitions and some known results as follows.

Definition 3.10. ([9], Definition 2.1) Let E and F be nonempty subsets of a metric
space (X, ρ). Suppose that φ : [0,∞) → [0,∞) is a strictly increasing map. A cyclic map
T : E ∪ F → E ∪ F is said to be a generalized cyclic weak φ-contraction, if for any
x ∈ E, y ∈ F

ρ(Tx, Ty) ≤ m(x, y)− φ
(
m(x, y)

)
+ φ

(
dist(E,F )

)
(3.3)

where m(x, y) = max{ρ(x, y), ρ(x, Tx), ρ(y, Ty), 12 [ρ(x, Ty) + ρ(y, Tx)]}.

Definition 3.11. [25, 26] Let (X, ρ) be a metric space with a mapping T : X → X, if
lim
n→∞

Tni(y) = z ⇒ lim
n→∞

T (Tni(y)) = Tz, we call mapping T to be orbitally continuous.

The following are known results in [9].

Theorem 3.12. [9] Let E and F be nonempty subsets of a metric space (X, ρ). Suppose
T : E ∪ F → E ∪ F is a generalized cyclic weak φ-contraction and there exists y0 ∈ E.
Define yn+1 = Tyn for any n ∈ N. Then ρ(yn, yn+1) → ρ(E,F ) as n→ ∞.

Theorem 3.13. [9] Let E and F be nonempty subsets of a metric space (X, ρ). Suppose
T : E∪F → E∪F is a generalized cyclic weak φ-contraction and T is orbitally continuous.
Assume E is closed and there exists y0 ∈ E. Define yn+1 = Tyn for any n ∈ N. If {y2n}
has a convergent subsequence in E, then there exixts p ∈ E such that ρ(p, Tp) → ρ(E,F ).

4.Best proximity points of generalized p-cyclic weak φ-contractions

In this section we extend and generalize the results by Cheng and Su in [9]. We
introduce the following definitions and main results.

Definition 4.1. Let D1, D2, . . . , Dp, (p ≥ 2) be nonempty subsets of a metric space
(X, ρ). Suppose that φ : [0,∞) → [0,∞) is a strictly increasing map. A map T :
∪pi=1Di → ∪pi=1Di is said to be a generalized p-cyclic weak φ-contraction, if for any
x ∈ Di, y ∈ Di+1

ρ(Tx, Ty) ≤ m(x, y)− φ(m(x, y)) + φ(dist(Di, Di+1)) (4.1)

where m(x, y) = max{ρ(x, y), ρ(x, Tx), ρ(y, Ty), 12 [ρ(x, Ty) + ρ(y, Tx)]}.
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10 B. Nuntadilok, P. Kingkam, J. Nantadilok

Remark 4.2. If we let p = 2 in definition 4.1, then we obtain the definition 3.10 (see
[9]).

Theorem 4.3. For a non-empty set X, suppose ρ : X ×X → [0,∞) forms a metric and
D1, D2, . . . , Dp, (p ≥ 2) are non-empty subsets of X. Suppose T : ∪pi=1Di → ∪pi=1Di is
p-cyclic maps satisfying (3.3) and there exists y0 ∈ Di. Define yn+1 = Tyn for any n ∈ N.
Then ρ(yn, yn+1) → dist(Di, Di+1) as n→ ∞.

Proof. Let ρn = ρ(yn, yn+1). We first claim that the sequence {ρn} is non-increasing. By
our assumption, we have

ρn+1 = ρ(yn+1, yn+2)

= ρ(Tyn, T yn+1)

≤ m(yn, yn+1)− φ
(
m(yn, yn+1)

)
+ φ

(
dist(Di, Di+1)

)
,

where

m(yn, yn+1) = max{ρ(yn, yn+1), ρ(yn, T yn), ρ(yn+1, T yn+1),

1

2
[ρ(yn, T yn+1) + ρ(yn+1, T yn)]}

= max{ρ(yn, yn+1), ρ(yn+1, yn+2)}. (∗)

Assume that there exists n0 ∈ N such that m(yn0
, yn0+1) = ρ(yn0+1, yn0+2). From

ρ(yn0+1, yn0+2) > ρ(yn0 , yn0+1), we have

ρ(yn0+1, yn0+2) ≤ ρ(yn0+1, yn0+2)− φ
(
ρ(yn0+1, yn0+2)

)
+ φ

(
dist(Di, Di+1)

)
.

Then

φ
(
ρ(yn0+1, yn0+2)

)
≤ φ

(
dist(Di, Di+1)

)
.

Since φ is a strictly increasing map, we have

ρ(yn0+1, yn0+2)) ≤ dist(Di, Di+1) ≤ ρ(yn0+1, yn0+2).

Obviously, ρ(yn0+1, yn0+2)) = dist(Di, Di+1) ≤ ρ(yn0 , yn0+1), which is a contradiction.
Hence, for all n ∈ N,

m(yn, yn+1) = ρ(yn, yn+1). (∗∗)

From (∗) and (∗∗) we conclude that ρ(yn+1, yn+2) ≤ ρ(yn, yn+1). This shows the sequence
{ρn} is non-increasing, and by Proposition 2.3 it is bounded below. Therefore lim

n→∞
ρn

exists. If ρn0
= 0, for some n0 ∈ N, so ρn → 0 and dist(Di, Di+1) = 0, that is ρn →

dist(Di, Di+1). If ρn ̸= 0 for all n ∈ N. Put ρn → γ, then

γ ≥ dist(Di, Di+1).

Since φ is a strictly increasing map, we have

φ(γ) ≥ φ
(
dist(Di, Di+1)

)
. (4.2)

From (∗) and (∗∗) and (3.3) we can write

ρ(yn+1, yn+2) ≤ ρ(yn, yn+1)− φ
(
ρ(yn, yn+1)

)
+ φ

(
dist(Di, Di+1)

)
,

equivalently,

φ
(
ρ(yn, yn+1)

)
≤ ρ(yn, yn+1)− ρ(yn+1, yn+2) + φ

(
dist(Di, Di+1)

)
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Taking the limit as n→ ∞, we get

φ(γ) ≤ φ
(
dist(Di, Di+1)

)
. (4.3)

From (4.2) and (4.3), we obtain

γ = dist(Di, Di+1).

That is ρn → dist(Di, Di+1). Our proof is complete.

Lemma 4.4. Let D1, D2, . . . , Dp be non-empty subsets of a metric space (X, ρ). Let
T : ∪pi=1Di → ∪pi=1Di is a p-cyclic maps satisfying (3.3). Then, T ∈ Ω.

Proof. (a). We first show that T is a p-cyclic strict contraction. Since the map T is a
generalized p-cyclic weak φ- contraction, then

ρ(Tyn, T yn+1) ≤ m(yn, yn+1)− φ
(
m(yn, yn+1)

)
+ φ

(
dist(Di, Di+1)

)
,

for all i = 1, 2, . . . , p, (p ≥ 2), where

m(yn, yn+1) =max{ρ(yn, yn+1), ρ(yn, T yn), ρ(yn+1, T yn+1),

1

2
[ρ(yn, T yn+1) + ρ(yn+1, T yn)]}

=max{ρ(yn, yn+1), ρ(yn+1, yn+2)}.

Similar to the proof of above theorem, we have that m(yn, yn+1) = ρ(yn, yn+1) for all
n ∈ N. That is m(x, y) = ρ(x, y) for all x, y ∈ Di.

If ρ(x, y) = dist(Di, Di+1), then we have

ρ(Tx, Ty) ≤ ρ(x, y)− φ(ρ(x, y)) + φ(ρ(x, y))

= ρ(x, y).

That is

ρ(Tx, Ty) ≤ ρ(x, y). (4.4)

Therefore, we get ρ(x, y) = dist(Di, Di+1) ≤ ρ(Tx, Ty) ≤ ρ(x, y). It yields that

ρ(Tx, Ty) = ρ(x, y).

In addition, if ρ(x, y) > dist(Di, Di+1), then

ρ(Tx, Ty) ≤ m(x, y)− φ(m(x, y)) + φ(dist(Di, Di+1))

< ρ(x, y)− φ(ρ(x, y)) + φ(ρ(x, y))

= ρ(x, y).

That is

ρ(Tx, Ty) < ρ(x, y). (4.5)

Thus, from (4.4) and (4.5) we conclude that T is a p-cyclic strict contraction.
(b). We next prove the condition (2) of Definition 3.4. Let x, y ∈ Di. Note that

ρ(T p(n+1)x, T p(n+1)+1y) ≤ ρ(T pnx, T pn+1y), n ∈ N.

Then, the sequence {ρ(T pnx, T pn+1y)}∞n=1 is bounded below by dist(Di, Di+1) and is a
non-increasing sequence. Hence, ρ(T pnx, T pn+1y) → r as n→ ∞ and r ≥ dist(Di, Di+1),
where r = infn≥1 ρ(T

pnx, T pn+1y).
Claim: r = dist(Di, Di+1).
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Case 1. If ρ(T pnx, T pn+1y) = dist(Di, Di+1) for some n ∈ N. Then, by the p-cyclic
non-expansiveness of T ,

ρ(T pn+kx, T pn+k+1y) = dist(Di, Di+1), k = 1, 2, . . . .

Thus, ρ(T pnx, T pn+1y) → dist(Di, Di+1), as n→ ∞.
Case 2. If ρ(T pnx, T pn+1y) > dist(Di, Di+1) for all n ∈ N.
Since T is p-cyclic non-expansive, we have

ρ(T p(n+1)x,T p(n+1)+1y) ≤ ρ(T pn+1x, T pn+2y)

≤ m(T pnx, T pn+1y)− φ
(
m(T pnx, T pn+1y)

)
+ φ(dist(Di, Di+1))

= ρ(T pnx, T pn+1y)− φ
(
ρ(T pnx, T pn+1y)

)
+ φ(dist(Di, Di+1)).

So

ρ(T p(n+1)x, T p(n+1)+1y)− φ(ρ(T pnx, T pn+1y))

< ρ(T pnx, T pn+1y)− φ(ρ(T pnx, T pn+1y).

Taking the limit as n→ ∞, it yeilds that

φ(r) > φ(r).

Since φ is strictly increasing, r > r. This is a contradiction. Therefore, we have
ρ(T pnx, T pn+1y) = dist(Di, Di+1). Hence, r = dist(Di, Di+1). From both cases (a)
and (b) we conclude that T ∈ Ω.

Theorem 4.5. Let D1, D2, . . . , Dp, (p ≥ 2) are non-empty subsets of a p-cyclic metric
space (X, ρ). Suppose a cyclic map T : ∪pi=1Di → ∪pi=1Di satisfies the definition of a
generalized p-cyclic weak φ-contraction (3.3) and T is orbitally continuous. Assume
that each Di, i = 1, 2, . . . , p, (p ≥ 2) is closed and there exists y0 ∈ Di. Define yn+1 = Tyn
for any n ∈ N. If {ypn} has a convergent subsequence in Di, then there exists y ∈ Di such
that ρ(y, Ty) = dist(Di, Di+1).

Proof. By the asumption, we know that the subsequence {ypnk
} of sequence {ypn} con-

verges to apoint y ∈ Di. By Theorem 4.3, we have

ρ(ypnk
, ypnk+1) = ρ(ypnk

, T ypnk
) → dist(Di, Di+1).

Since T is an orbitally continuous, we have ρ(y, Ty) = dist(Di, Di+1).

Definition 4.6. A metric space (X, ρ) is called regular if every bounded monotone
sequence of X is convergent.

Corollary 4.7. Let D1, D2, . . . , Dp, (p ≥ 2) are non-empty subsets of a regular p-cyclic
ordered metric space (X, ρ,⪯). Suppose that T : ∪pi=1Di → ∪pi=1Di is a decreasing gen-
eralized p-cyclic weak φ-contraction (3.3) and T is also orbitally continuous. Assume
that Di is closed for each i, i = 1, 2, . . . , p, (p ≥ 2) and there exists y0 ∈ Di such that
y0 ⪯ T 2y0 ⪯ · · · ⪯ Ty0. Define yn+1 = Tyn for any n ∈ N. Then there exists y ∈ Di such
that ρ(y, Ty) = dist(Di, Di+1).

Proof. By the asumption, we have

y0 ⪯ y2 ⪯ · · · ⪯ y1.

Since X is regular and Di is closed for each i, the sequence {ypn} converges to a point
y ∈ Di. From Theorem 4.5, we conclude that ρ(y, Ty) = dist(Di, Di+1).
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Theorem 4.8. For a non-empty set X, suppose ρ : X × X → [0,∞) forms a metric
and D1, D2, . . . , Dp, (p ≥ 2) are non-empty subsets of X. Let T : ∪pi=1Di → ∪pi=1Di be a
p-cyclic maps and satisfies a generalized p-cyclic weak φ-contraction (3.3). Assume
for some k ∈ N and x ∈ Di, (1 ≤ i, k ≤ p), {T pn+kx} converges to ν ∈ Di+k. Then, ν is
a best proximity point of T in Di+k (That is ρ(ν, Tν) = dist(Di+k, Di+k+1)).

Proof. Let x ∈ Di be as given in the theorem. By equation (1.1), for each n ∈ N , we
have,

dist(Di+k, Di+k+1) = dist(Di+k−1, Di+k)

≤ ρ(T pn+k−1x, ν)

≤ ρ(T pn+k−1x, T pn+kx) + ρ(T pn+kx, ν).

By lemma 4.4, T ∈ Ω, so

lim
n→∞

(
ρ(T pn+k−1x, T pn+kx) + ρ(T pn+kx, ν)

)
= dist(Di+k−1, Di+k).

Therefore,

lim
n→∞

ρ(T pn+k−1x, ν) = dist(Di+k−1, Bi+k) = dist(Di+k, Di+k+1). (4.6)

Now,

dist(Di+k, Di+k+1) ≤ ρ(ν, Tν)

= lim
n→∞

ρ(T pn+kx, Tν)

≤ lim
n→∞

ρ(T pn+k−1x, ν)

= dist(Di+k, Di+k+1), (by equation(4.6)).

Hence, ρ(ν, Tν) = dist(Di+k, Di+k+1).

Theorem 4.9. For a non-empty set X, suppose ρ : X × X → [0,∞) forms a metric
and X1, X2, . . . , Dp, (p ≥ 2) are non-empty subsets of X. Suppose that X = ∪pi=1Di and
∪pi=1Di is p-cyclic complete. Let T : ∪pi=1Di → ∪pi=1Di be a p-cyclic mapping which
satisties a generalized p-cyclic weak φ-contraction (3.3). Then, there exists a best
proximity point of T in Dj for some j ∈ {1, 2, . . . , p}.

Proof. Let x ∈ Di, 1 ≤ i ≤ p. Define a sequence {xn}∞n=1 in (X, ρ) by

xn := Tnx for n ∈ N.

Claim: {Tnx}∞n=1 is a p-cyclic Cauchy sequence.
Let m,n ∈ N be such that m > n,

ρ(T pmx, T pn+1x) = ρ(T p(n+r)x, T pn+1x), where m = n+ r, r ∈ N
= ρ(T pny, T pn+1x), where y = T prx ∈ Di

→ dist(Di, Di+1), as n→ ∞ (because T ∈ Ω).

This implies that, for all ε > 0, there exists an n0 ∈ N such that

ρ(T pmx, T pn+1x) < ε+ dist(Di, Di+1),m, n ≥ n0.

By Proposition 3.3, for any given ε > 0, there exists an n1 ∈ N such that

ρ(T pm+kx, T pn+k+1x) < ε+ dist(Di+k, Di+k+1),m, n ≥ n1, k ∈ {1, 2, . . . , p}.
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Therefore, the sequence {Tnx} is a p-cyclic Cauchy sequence in (X, ρ). Since (X, ρ) is p-
cyclic complete, there exists k ∈ {1, 2, . . . , p} such that {T pn+kx} converges to z ∈ Di+k.
By Theorem 4.8, z is best proximity point of T in Dj , where j = i+ k.

Example 4.10. Let X =: R2 be the Euclidean plane equipped with the usual Euclidean
metric. Let subsets Di, i = 1, 2, 3, 4 be as follows:

D1 = {(0, 0.5 + x) : 0 ≤ x ≤ 0.5}, D2 = {(0.5 + x, 0) : 0 ≤ x ≤ 0.5},

D3 = {(0,−(0.5 + x)) : 0 ≤ x ≤ 0.5} and D4 = {−(0.5 + x, 0) : 0 ≤ x ≤ 0.5}. Let
φ(t) = 1

5 t, ∀t ≥ 0. Similarly, define T : ∪4
i=1Di → ∪4

i=1Di as follows:

T (0, 0.5 + x) = (0.5 +
x

10
, 0);

T (0.5 + x, 0) = (0,−(0.5 +
x

10
));

T (0,−(0.5 + x)) = (−(0.5 +
x

10
), 0);

T (−(0.5 + x), 0) = (0, 0.5 +
x

10
).

It is clear that ρ(D1, D2) = ρ(D2, D3) = ρ(D3, D4) = ρ(D4, D1) =
1
2

√
2. Obviously T is

a 4-cyclic map. If x ∈ Di, y ∈ Di+1, i = 1, 2, 3, 4. One can easily show that

m(x, y)−φ(m(x, y)) + φ
(
ρ(Di, Di+1)

)
− ρ(Tx, Ty)

=
4

5
m(x, y) +

√
2

10
−
√
(0.5 +

x

10
)2 + (0.5 +

y

10
)2 ≥ 0,

for all x ∈ Di, y ∈ Di+1, where D4+1 = D1 and

m(x, y) = max{ρ(x, y), ρ(x, Tx), ρ(y, Ty), 1
2
[ρ(x, Ty) + ρ(y, Tx)]}.

Therefore, T is a generalized p-cyclic weak φ-contraction(3.3), where p = 4. All the
conditions of Theorem 4.9 hold true, and T has the best proximity point. Let x = (0, 0.5+
y) ∈ D1, where y ∈ [0, 0.5]. Then {T 4nx} = {(0, 0.5 + y

104n )}. Clearly,{T 4nx} → (0, 0.5)
as n→ ∞, which is a best proximity point of T in D1. Also, T (0, 0.5) = (0.5, 0), so (0.5, 0)
is a best proximity point of T in D2, T

2(0.0.5) = (0,−0.5) and T 3(0, 0.5) = (−0.5, 0) are
unique best proximity points of T in D3 and D4, respectively.
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[25] Lj.B. Ćiŕıc, On contraction type mappings, Math.Balkanica. 1(1971) 52–57.
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