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Abstract In this paper, we present a new iterative method for solving nonlinear system of equations

using Levenberg-Marquardt technique. The proposed method is a two-steps and proved to be globally

convergent. The global convergence is achieved by incoperating the proposed algorithm with nonmono-

tone line search. The fourth-order of the scheme was obtained through computation of its computational

order of convergence (COC). The strategy being a regularized method, solves most of the test functions

that are singular in nature. Comparison for computation of efficiency index shows that the proposed

method is robust in both classical or traditional efficiency index (TEI) and flops-like efficiency index

(FEI). The convergence properties of the proposed method are also presented. In terms of less number

of iterations and fast computing time, our proposed technique competes with other existing fourth-order

methods nicely. Almost all the numerical performances conducted on some benchmark problems, have

shown that the proposed algorithm is very efficient and promising.
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1. Introduction

We consider the system of nonlinear equatios,

F(x) = 0, (1.1)
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where
F (x) = [f1, f2, f3, ..., fn]

T and x = [x1, x2, ..., xn]
T ∈ Rn

is a nonlinear mapping and continuously differentiable. This problem is one of the corner-
stones in computation and applied mathematics such as physics, engineering, technology,
economics, industries, etc [2, 3, 5, 6, 13–15]

For decades, researchers were more interested in finding the approximate solution of
(1.1), using Newton method and its invariants[1]. Halley[16] established a new exact and
easy strategy for finding the roos of nonlinear equations. Traub[27] came up with iterative
methods for solution of equations and was able to prove that the convergence order of the
Newton’s method is 2.
Waziri et al [28] achieved a local convergence by implementing a two-step derivative-free
diagonally Newton method for large-scale nonlinear equations. Amini and Faramarz [2]
used a modified two-steps Levenberg-Marquardt method where they achieved cubic con-
vergence. Amini and Rostam [3] introduced a new nonmonotone third-order Armijor type
line search which guarantees the global convergence of a modified Lenvenberg-Marquardt
method for solving of nonlinear equations.

In recent times, higher-order iterative techniques have been introduced and succes-
sifully implemented in order to increase the rate of convergence. Alicia et al [12], have
produced increasing the order of convergence of an iterative scheme and achieved higher-
order of convergence. Artdiello et al [4], have developed design of higher-order iterative
methods for nonlinear system of equations by using weight function procedure. Sharma
and Guha [22] presented an efficient fourth-order Weighted-Newton method for nonlinear
system of equations. Waziri et al[29] developed a new multi-step fixed newton method for
solving large-scale systems of nonlinear equations. Singh [23] implemented an iterative
strategy using three-step and achieved fourth-order convergence. The main draw back in
the scheme is that at each step, one has to compute the Jacobian matrix and its inverse,
which is itself a very difficult. We notice that if the Jacobian matrix is singular, then the
method of Singh fails. To over come the defiency, we use the regularization technique of
Levenberg-Marquardt method and regularized the Singh’s scheme. We suggest a modified
two-step method with nonmonotone line search for solving nonlinear system of equations.
This nonmonotone line search is what guarantees the global convergence of our proposed
method. Some examples are given to illustrate the efficiency of the regularized method.
The global convergence of the proposed method is investigated. Comparison between
Singh’s and other existing fourth-order iterative methods shows that the performance of
our method is better.

The paper is organized as follows. In Section 2, preliminaries and basic concepts were
presented . In Section 3, we present our method and implementation of the proposeed
algorithm. Global convergence of our method is analysed in section 4. in section 5, we
give the numerical results in which our method is compared with Singh’s scheme and
other existing methods. Conclusion is presented in the last section.
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2. Preliminaries and Basic concept.

Consider the system of nonlinear equation

f1(x1,x2, ...,xn) = 0,

f2(x1,x2, ...,xn) = 0,

...

fn(x1,x2, ...,xn) = 0,

(2.1)

where each function fi, i = 1, 2, 3..., n, maps a vector x ∈ Rn of n-dimensional space
Rn to the real line R. The above system is representated in (1.1) and the components
fi, i = 1, 2, 3, ..., n are coordinate functions of F. For the sake of simplicity, we denote the
Jacobian matrix, by

Jk = ∇F (xk).
The well known method for solving (1.1) is the Newton’s method. The iterate of this
strategy is given by

xk+1 = xk − J−1
k F (xk), (2.2)

it gives quadratic convergence for a sufficiently accurate starting point if J−1
k exists. One

of the weaknesses of the Newton’s method is computation and inverting the Jacobian
matrix at each eteration. Gauss-Newton method is a modification of Newton’s method
for finding the minimum of a function. The iterate is given as

xk+1 = xk − (JT
k Jk)

−1JT
k F (xk). (2.3)

The Gauss-Newton method has an advantage that second derivatives which can be chal-
lenging, are never required[7].
The main shortcoming of the Gauss-Newton method is that when the computed Jacobian
at each step becomes singuar, the algorithm stops. To overcome this problem, in 1944 [19],
Kenneth Levenberg came up with an algorithm which solved the ill-possed problem of the
system in both Newton and Gauss-Newton strategies. The classical Levenberg-Marquardt
method computes the search directiondk as

dk = −(JT
k Jk + µkI)

−1JT
k F (xk), (2.4)

where µk > 0 is called the Levenberg-Marquardt parameter and I is the identity matrix
of order n× n

Definition 2.1. [23] (Computational order of convergence): Let β be a zero of the
function F and suppose that xk−1, xk and xk+1 are three consecutive iterations close to
β. Then, the computational order of convergence is approximated using the formula

p ≈ COC =
log

(
∥(xk+1)−(xk)∥/∥(xk)−(xk−1)∥

)
log

(
∥(xk)−(xk−1)∥/∥(xk−1)−(xk−2)∥

)
Definition 2.2 (Global convergence). An algorithm is said to be globally convergent
if for any choosen initial point x0, the sequence {xk}k=0 generated by the algorithm,
converges to a point for which a necessary condition of optimality holds.
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3. Method and Algorithm.

In this section, a two-steps scheme for solving system of nonlinear equations is pre-
sented.

For x ∈ Rn,
yk = xk + dk

dk = −
(
JT
k Jk + µkI

)−1
JT
k F (xk), µk = ∥Jk

∥ 10kk + ∥F (xk)
2∥,

d̃k = −
(
J(yk)TJ(yk) + µkI

)−1
J(yk)TF (xk + dk).

xk+1 = xk + α1dk + α2
2d̃k, (3.1)

where α1, α2 positive real numbers.
In this paper, the scheme is denoted as ELM.
We now present the implementation of our proposed Algorithm 3.1.
Step 1. Input x0 ∈ Rn, µ0 > 0, δ ∈ [0, 2], J0 = I, σ1, σ2, σ3 > 0 and τ, ρ ∈ (0.1). Let
k := 0
Step 2. If ∥JT

k F (xk)∥ = 0, then stop. Else compute dk and d̃k by,

dk = −
(
JT
k Jk + µkI

)−1
JT
k F (xk), µk = ∥Jk∥

10kk+∥F (xk)∥2 ,

where, ||Jk||F =
√
tr(J2

k ), and tr(J2
k ), is the trace of the square of the matrix Jk,

d̃k = −
(
J(yk)TJ(yk) + µkI

)−1
J(yk)TF (yk). yk = xk + dk.

Step 3. If

∥F (xk + dk + d̃k)∥ ≤ ρ∥F (xk)∥, (3.2)

then α = 1 and go to Step 5. Else go to step
Step 4. Compute αk = max

{
10, τ1, τ2, ...,

}
where αk = τ i : i = 0, 1, 2, 3..., n, satisfying

∥F (xk + dk + d̃k)∥2 − ∥F (xk)∥2

≤ −σ1α
2∥dk∥2 − σ2α

2∥d̃k∥2 − σ3α
2∥F (xk)∥2 + ϵ∥F (xk)∥2,

where, {ϵk} is a given positive sequence such that

∞∑
k=0

ϵk < ∞. (3.3)

Step 5. Compute F (yk),

xk+1 = xk −
[
α1AF (xk) + α2

2BF (yk)
]

= xk + α1dk + α2
2d̃k

(3.4)

where,

A =
(
JT
k Jk + µkI

)−1
JT
k and B =

(
J(yk)TJ(yk) + µkI

)−1
J(yk)T

Step 6. Let k = k + 1 and go to Step 2

Remark 3.1. It follows this
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1. We observe that as α → 0+, the left-hand side of the inequality (3.3) goes to
zero but the right-hand tends to ϵk∥F (xk)∥ which is positive. The algorithm is
well defined since for any sufficiently α > 0, the inequality (8) is satisfied.

2. The parameter µk = ∥Jk∥
10kk+∥F (xk)∥ used in our proposed algorithm was sug-

gested from our parameter derived in [30].

4. Convergence Analysis.

Definition 4.1. Define the level set L0 = {x :
∥∥F (xk)

∥∥ ≤ ϵ
1
2

∥∥F (x0)
∥∥},

where ϵ is a positive constant such that

∞∑
k=0

ϵk ≤ ϵ < ∞. (4.1)

Lemma 4.2.
[
[13],Lemma3.3

]
: Let {αk} and {rk} be two positive sequences satisfying

αk+1 ≤ (1+ rk)αk + rk and

∞∑
k=0

rk < ∞. Then {αk} converges.

Lemma 4.3. [[20],Lemma2.1]. Let the sequence {xk} be generated by Algorithm 3.1, then
the sequenc {∥Fk∥} converges and x ∈ L0 for all k ≥ 0.

Proof. The Proof is similar to that of Lemm 4.2, but for the sake of completeness we
write the proof. Now, from (3.2) and (3.3)

∥F (xk + dk + ˜dk)∥ ≤ ρ∥Fk∥ (4.2)

and

∥F (x+ αdk + α2d̃k)∥2 − ∥Fk∥2 ≤ −σ1α
2∥dk∥2 − σ2α

2∥d̃k∥ − σ3α
2∥Fk∥2 + ϵk∥Fk∥2 (4.3)

where {ϵk} is a given positive sequence such that

∞∑
k=0

ϵk < ∞, (4.4)

, we have,

∥F (xk+1)∥ ≤ (1 + ϵk)∥F (xk)∥2. (4.5)

Inequalities (4.1), (4.2) and Lemma 4.2, imply that the sequence {∥F (xk)∥2} converges.
Hence, the sequence {∥F (xk)∥} also converges. Similarly, from definition 4.1 and (4.1),
we can work out the following

∥F (xk+1)∥ ≤ (1 + ϵk)
1
2 ∥F (xk)∥ ≤ ... ≤ Πk

i=0(1 + ϵk)
1
2 ∥F (x0)∥

≤
k∑

i=0

1

k + 1
(1 + ϵk)

k+1
2 ∥F (x0)∥

≤ (1 + ϵ
k+1 )

k+1
2 ∥F (x0)∥

≤ e
ϵ
2 ∥F (x0)∥.

The above inequality implies that x ∈ L0 for all k. Therefore, the proof is complete.
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By Lemma 4.3, it can clearly be shown that the sequence{∥F (xk)∥} is bounded. Meaning,
there exists a constant M > 0 such that

∥F (xk)∥ ≤ M, ∀k ≥ 0. (4.6)

Now, we use the following definition as our assumption.

Definition 4.4. The matrix Jk and the function F are said to be Lipschitz continuous if
there exists positive constants L1 and L2 called Lipschitz constants such that

∥∇F (y)−∇F (x)∥ ≤ L1∥y − x∥,∀x, y ∈ Rn (4.7)

and

∥F (y)− F (x)∥ ≤ L2∥y − x∥,∀x, y ∈ Rn. (4.8)

Since The matrix Jk is a linear operator, we have,

∥Jk∥ ≤ L,∀x ∈ Rn, (4.9)

and some L > 0. We now present the global convergence of our algorithm.

Definition 4.5. Suppose that F (x) and ∇F (x) in (4.7) and (4.8) hold. Then Algorithm
3.1 terminates in finite iteration or satisfies

lim
k

inf ∥JT
k F (xk)∥ = 0. (4.10)

Proof. We can use contradiction to prove the theorem. Suppose it is not true, it implies
that the exists an integer k̃ such that

∥JT
k F (xk)∥ ≥ τ, ∀k ≥ k̃. (4.11)

and this implies that

∥F (xk)∥ ≥ τ1, (4.12)

for sufficiently large k, the inequality holds for some positive constant τ1.
If equation (3.2) holds for in fine k, then ∥F (xk)∥ → 0, which is a contradiction to

(4.12). By (3.2) and (3.3), we have,

∥F (xk+1)∥ ≤ Πi∈Gk
(1 + ϵi)

1
2Πi∈Hk

ρ∥F (x0)∥

= Πi∈Gk
(1 + ϵi)

1
2 ρ|Hk|∥F (x0)∥

≤ e
ϵ
2 ρ|Hk|∥F (x0)∥ → 0, as k → ∞.

We will assume that (3.2) holds for only finite k. Thus, it can clearly be obtain from (3.3)
that

∞∑
k=0

α2
k∥dk∥2 < ∞,

∞∑
k=0

α2
k∥d̃k∥2 < ∞ and

∞∑
k=0

α2
k∥F (xk)∥2 < ∞.

Therefore, these strong inequalities imply that
∞∑
k=0

αk∥dk∥ = 0,

∞∑
k=0

αk∥d̃k∥ = 0 and

∞∑
k=0

αk∥F (xk)∥ = 0.

The inequalities above and (4.12) yeild
∞
lim
k=0

αk = 0. (4.13)
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Now, set ᾱ = α
r . Thus, from (3.3), we have

∥F (xk + ᾱkdk + ᾱk
2d̃k)∥2 − ∥F (xk)∥2

≥ −σ1ᾱ
2
k∥dk∥2 − σ2ᾱ

2
k∥d̃k∥2 − σ3ᾱ

2
k∥F (xk)∥2 + ϵk∥F (xk)∥2

≥ −σ1ᾱ
2
k∥dk∥2 − σ2ᾱ

2
k∥d̃k∥2 − σ3ᾱ

2
k∥F (xk)∥2,

Thus, we have

ᾱk

(
σ1∥dk∥2 + σ2∥d̃k∥2 + σ3∥F (xk)∥2

)
≥ −

(
∥F (xk + ᾱkdk + ᾱk

2d̃k)∥2 − ∥F (xk)∥2
)

= −
(
2F (xk)T

(
F (xk + ᾱkdk + ᾱk

2d̃k)− F (xk)
)

+
∥∥∥F (xk) + ᾱkdk + ᾱk

2d̃k)− F (xk)
∥∥∥2 )

≥ −2F (xk)
T
(
F (xk + ᾱkdk + ᾱk

2d̃k)− F (xk)
)
− η1ᾱk

2
(
∥dk∥2 +

∥∥∥d̃k∥∥∥2),
where η1 is a constant and (4.14) uses (4.7), the since ᾱk < 1

r .

The following expression can be estimated. F (xk)T
(
F (xk + ᾱkdk + ᾱk

2d̃k)− F (xk)
)
.

It is worth noting that

F (xk)T
(
F (xk + ᾱkdk + ᾱk

2d̃k)− F (xk)
)

= F (xk)T
(
F (xk + ᾱkdk + ᾱk

2d̃k)− F (xk)− F (xk)
(
xk + ᾱkd̃k

)
+ F (xk)T

(
F (xk + ᾱkdk)− F (xk)

)
≤ LMᾱk∥d̃k∥+ F (xk)TJkᾱkdk + F (xk)T

∫ 1

0

(
J(xk + tᾱkdk)− Jk

)
≤ 2LMᾱ2∥d̃k∥ − ᾱkd

T
k

(
JT
k Jk + µkI

)
dk.

(4.14)

The first inequality comes from (13) and (15), while the last one from (6) and (14). Sim-
ilarly, from (21) up to (22) means there exists a positive constant η2 such that

ᾱk =
dTk

(
JT
k Jk + µkI

)
dk

η2
(
∥dk∥2 + ∥d̃k∥2∥F (xk)∥2 + ∥d̃k∥

≥ µkd
T
k dk

η2
(
∥dk∥2 + ∥d̃k∥2 ∥F (xk)∥2 + ∥d̃k∥

.

(4.15)

Now, on the boundedness of dk, we use the SVD of the matrix Jk. Let the SVD of the
Jacobiam matrix be
Jk = UDV T ,
where U and V are two orthorgonal matrices and D is a diagonal matrix with nonnegative
diagonal enteries which are its singular values, σi ≥ 0; i = 1, 2, 3, ..., n. Then, we have∥∥∥(JT

k Jk + µkI
)−1

∥∥∥ =
∥∥V (D2 + µkI)

−1V T
∥∥

=
∥∥(D2 + µkI)

−1
∥∥

= max
i=1,2,3,...,n

(
σ2
i + µkI

)−1

≤ µ−1
k .
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Now, from (15), (16), Step 2 of the algorithm and the above inequality, we have

∥dk∥ =
∥∥(JT

k Jk + µkI)
−1JT

k F (xk)
∥∥ ≤

∥∥∥(JT
k Jk + µkI

)−1
∥∥∥ ∥∥JT

k

∥∥∥∥F (xk)
∥∥ ≤ LMµ−1

k

≤ LM
(
10kk +M2

)
(4.16)

where

µ−1
k =

1okk +
∥∥F (xk)

∥∥2
∥Jk∥

. (4.17)

Similarly, we can obtain from (3.1), (4.8) and (4.12) that∥∥∥d̃k∥∥∥ =
∥∥(JT

k Jk + µkI)
−1JT

k F (yk)
∥∥

≤
∥∥(JT

k Jk + µkI)
−1JT

k F (yk)− F (xk)
∥∥+

∥∥(JT
k Jk + µkI)

−1JT
k F (xk)

∥∥
≤ L2µ−1

k ∥dk∥+ ∥dk∥ ≤
(
L(10kk +M2

)
∥dk∥ .

(4.18)

Thus, if lim inf
k→∞

∥dk∥ = 0, then we have from Step 2 and (13) that

lim inf
k→∞

∥∥JT
k F (xk)

∥∥ = lim inf
k→∞

∥∥(JT
k Jk + µkI)dk

∥∥ = 0.

This is a contradiction to (18). Hence, there exists a contant τ2 such that
lim inf

k→∞
∥dk∥ ≥ τ2, which in addition to (4.6), (4.12), (4.16) and (4.18) imply that there

exists a contradiction to (4.13). Hence the proof is complete.

5. Numerical Experiments.

In this section, we present some numerical experiments to show the robustness of our
strategy in solving system of nonlinear equations. All the numerical results reported in
this section, were computed and implemented in MATLAB R2014a 8.3.0.532 (64-bit) and
tested on a 64-bit 1.73 GHz Q740 core 17 processor and 4GB RAM window 10. We
tested our algorithm on numerical problems stated below and comparisons were made
with existing methods used in [23]. We compare Algorithm 3.1 denoted as ELM, OM4

[23], M4.1[22] and M44[25] The main stopping criterion is
∥∥JT

k Fk

∥∥ ≤ 10−8. If the iteration
k ≥ 1000, the test failed and is denoted as ’–’. The parameters in the algorithm are set as
µ0 = 0.5, ϵ = 10−8, σ1 = 10−4, σ2 = 0.25, σ3 = 0.75, τ = 0.05, ρ = 0.02. The numerical
results obtained are depicted inTables 1 , 2, 3 and 4. The meaning of the notations used in
the table 1, are stated as follows. ”P”: stands for Benchmark problem. ′x0′ : means initial
starting point. ”n”: stands for dimension of the problem. ′′#iter′′ is the total number of
iterations. cpu: stands for processing time recorded in seconds. ”x”: Solution reached by
a given solver.

∥∥JT
k Fk

∥∥ : Stands for the value at which the solution is reached at point xk

. NaN: indicates that the method diverges. ’–’: Shows that the iterations is more than
1000 and no solution is found.”s”: Means the given solver fails due to singularity i.e the
Jacobian matrix generated is singular. In Table 2, COC: stands for computational order
of convergence. TNFE: Stands for total number of function evaluations for both F and
F’. In Tabble 4, TEI: Stands for Traditional Efficiency Index and FEI, means Flops-like
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Efficiency index. In the figures, M1.4,M4.4 and OM4 are represented as M14, M44 and
OM4, respectively.

5.1. Nonlinear system of equations

In Table 1, we use the following nonlinear system of equations for comparing ELM and
other fourth-order existing methods.
F1: Rosenbrock function (n is even) [More et al., 1981].

f2i−1(x) = 10(x2i − x2
i−1)

f2i(x) = 1− x2
2i−1

x0 = (1,−1, 1, ..., 1)
i = 1, 2, 3, ..., n/2

F2: Strictly convex function I [Raydan, 1997].

fi(x) =
√
(exi − xi)

x0 = (1/n, 2/n, 3/n, ..., 1)
i = 1, 2, 3, ..., n.

F3: Strictly convex function II [Raydan, 1997].
fi(x) =

i
10 (e

xi − xi),
x0 = (1, 1, 1, ..., 1)
i = 1, 2, 3, ..., n.

F4: Trigonometric diagonal exponential function [Luksan and vicek, 2003].
h = 1/(n+ 1)
f1(x) = x1)e

(cos(h(x1+x2),

fi(x) = xi − e(cos(hxi−1+xi+xi+1),
i = 2, 3, 4, ..., n− 1

x0 = (1.5, 1.5, ..., 1.5)
F5: Trigonometric exponential function [Luksan and vicek, 2003].

f1(x) = 3x3
1 + 2x2 − 5 + sin(x1 − x2)sin(x1 + x2),

fi(x) = 3x3
i +2xi+1−5+sin(xi−xi+1)sin(xi+xi+1)+4xi−xi−1e

(xi−1−xi),
for 1 < i < n

fn(x) = 4xn − xn−1e
(xn−1−xn) − 3

x0 = (4, 4, 4, ..., 4)
i = 1, 2, 3, ..., n.

F6: Exponential function [La Cruz et al., 2004]
f1(x) = ex1−1.
fi(x) = i(ex1−1),
x0 = (0.5, 0.5, 0.5, ..., 0.5).
i = 2, 3, ..., n.

F7: Singular Broyden funtion [Luksan and Vicek, 2003.]
f1(x) = ((3− 2x1)x1 − 2x2 + 1)2

fi(x) = ((3− 2xi)xi − xi−1 − 2xi+1 + 1)2,
fn(x) = ((3− xn)xn − xn−1 + 1)2

x0 = (−1,−1,−1, ...,−1).
i = 2, 3, ..., n− 1.

F8: Trigonometric function [More et al., 1981].
fi(x) = n−

∑n
j=1 cos(xj) + i(1− cos(xi))− sin(xi,),

i = 2, 3, ..., n.
x0 = (1− 1/n, 1− 2/n, 1− 3/n, ...0)
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9. F9: Vector function(Generalized function of Spedicator).
fi(x) =

∑n
i (x

2
i sin(xi))− x4

i + sin(x2
i ),

i = 2, 3, ..., n.
x0 = (0.5, 0.5, 0.5, ..., 0.5).

10. F10: Brown and Dennis function.
fi(x) = (xi + (i/5)xi+1 − e(i/5)

2

) + xi+2 + xi+3sin(i/5)− cos(i/5)2, for
i = 1

x0 = (15, 5,−5,−1)

Table 1. Numerical results of M41, M44, OM1 and ELM for problem
F1-F10

M41 M44 OM4 ELM
P n x0 #iter cpu x’

∥∥JT
k F (xk)

∥∥ #iter cpu x’
∥∥JT

k F (xk)
∥∥ #iter cpu x’

∥∥JT
k F (xk)

∥∥ #iter cpu x’
∥∥JT

k F (xk)
∥∥

10 15 0.007838 5.25e-04 3.34e-10 21 0.016049 7.10e-04 8.43e-10 3 0.002266 4.74e-07 8.18e-17 3 0.007774 5.4ee-04 5.08e-10
100 16 0.084444 3.61e-04 3.43e-10 22 0.145501 4.90e-04 8.68e-10 3 0.018782 4.74e-07 2.59e-16 3 0.122468 2.49e-04 1.56e-10

F1 200 (1,−1, 1, ..., 1)t 16 0.355277 3.61e-04 4.85e-10 23 0.543634 3.30e-04 4.00e-10 3 0.063229 4.74e-07 3.66e-16 3 0.433151 2.77e-04 3.03e-10
300 16 0.918445 3.61e-04 5.94e-10 23 1.409837 3.30e-04 4.89e-10 4 0.189492 4.74e-07 4.48e-16 4 1.145931 3.24e-04 5.90e-10
500 16 3.960224 3.61e-04 7.67e-10 23 5.751119 3.30e-04 6.32e-10 5 0.806104 4.74e-07 5.78e-16 4 5.991453 2.28e-04 2.68e-10
10 720 0.381068 NaN Na 10 0.006132 1.69e-11 3.70e-10 5 0.002747 4.08e-15 1.26e-14 5 0.00798 -1.90e+00 5.04e-14

100 738 4.167025 NaN NaN 9 0.050089 7.64e-11 7.64e-10 5 0.018901 1.00e-13 1.03e-12 5 0.004524 4.16e-11 1.32e-11
F2 200 (1/n, 2/n, 3/n, ..., 1)t 744 14.56816 NaN NaN 9 0.215749 3.70e-11 5.33e-10 5 0.066605 2.75e-13 3.89e-13 5 0.047856 2.61e-11 2.61e-11

300 748 42.22197 NaN Na 9 0.560666 2.22e-11 3.90e-10 5 0.490845 1.66e-13 2.88e-13 5 0.459225 8.46e-12 1.47e-11
500 751 188.6564 NaN NaN 9 2.30e+00 2.2804e-10 3.35e-10 6 1.197088 5.07e-14 8.85e-14 5 1.732335 5.68e-13 1.27e-11
10 1 S S S 1 S S S 1 S S S 8 0.041183 -1.13 5.04e-14

100 1 S S S 1 S S S 1 S S S 113 1.423668 -1.13 1.13e-14
F3 200 (1, 1, 1, ..., 1)t 1 S S S 1 S S S 1 S S S NaN NaN NaN NaN

300 1 S S S 1 S S S 1 S S S NaN NaN NaN NaN
500 1 S S S 1 S S S 1 S S S NaN NaN NaN NaN
10 NaN NaN NaN NaN 10 0.016046 2.41 7.12e-10 5 0.015913 2.41 6.65e-10 5 0.007954 2.48 9.06e-12

100 NaN NaN NaN NaN 12 0.120581 2.71 1.52e-10 5 0.049925 2.71 7.58e-11 5 0.342597 2.71 3.19e-15
F4 200 (1.5, 1.5, 1.5, ..., 1.5)t NaN NaN NaN NaN 12 0.79738 2.71 2.41e-10 6 0.292601 2.71 6.89e-11 7 2.625341 2.71 4.30e-14

300 NaN NaN NaN NaN 12 2.167812 2.71 3.02e-10 7 0.769334 2.71 3.36e-12 7 10.00061 2.71 2.30e-14
500 NaN NaN NaN NaN 12 6.606776 2.71 3.94e-10 7 1.692597 2.71 2.79e-10 8 43.95724 2.71 6.28e-16
10 1 S S S 1 S S S 1 S S S 7 0.01243 1 9.92e-10

100 1 S S S 1 S S S 1 S S S 7 0.253455 1 6.80e-10
F5 200 (4, 4, 4, ..., 4)t 1 S S S 1 S S S 1 S S S 7 0.535404 1 3.79e-14

300 1 S S S 1 S S S 1 S S S 7 1.036635 1 5.87e-10
500 1 S S S 1 S S S 1 S S S 8 4.125789 1 3.68e-14
10 1 S S S 1 S S S 1 S S S 17 0.057884 1 8.44e-10

100 1 S S S 1 S S S 1 S S S 65 53.16407 1 8.44e-10
F6 200 (0.5, 0.5, 0.5, ..., 0.5)t 1 S S S 1 S S S 1 S S S 129 321.4642 1 7.05e-10

300 1 S S S 1 S S S 1 S S S – – – –
500 1 S S S 1 S S S 1 S S S – – – –
10 NaN NaN Nan NaN 11 0.005716 1.50e-11 4.75e-10 5 0.003026 1.87e-12 5.78e-12 5 0.004739 1.16e-16 3.72e-14

100 NaN NaN NaN NaN 12 0.06566 1.80e-11 1.88e-10 5 0.028834 1.87e-11 1.83e-11 5 0.076151 6.62e-16 6.66e-15
F7 200 (−1,−1,−1, ...,−1)t NaN NaN NaN NaN 12 0.241737 1.87e-11 2.65e-10 6 0.109214 1.87e-11 2.59e-11 5 0.199589 2.78e-15 3.14e-15

300 NaN NaN NaN NaN 12 0.683208 1.87e-11 3.25e-10 6 0.298054 1.82e-12 3.17e-11 6 0.83209 1.45e-16 3.85e-15
500 NaN NaN NaN NaN 12 2.943035 1.87e-11 4.19e-10 7 1.273314 1.82e-12 4.09e-11 6 3.914426 5.80e-16 1.29e-13
10 1 S S S 1 S S S 1 S S S 11 0.015858 3.08e-02 1.15e-13

100 1 S S S 1 S S S 1 S S S 13 0.277447 3.88e-04 3.68e-11
F8 200 (1− 1/n, 1− 2/n, 1− 3/n, ...0)t 1 S S S 1 S S S 1 S S S 13 0.764857 2.59e-13 1.49e-11

300 1 S S S 1 S S S 1 S S S 13 3.132658 4.40e-05 2.21e-11
500 1 S S S 1 S S S 1 S S S 17 18.49659 1.59e-05 3.02e-10
10 11 0.009591 4.01e-04 6.01e-10 9 0.025303 3.60e-04 4.43e-10 4 0.004237 7.57e-04 7.58e-16 5 0.007645 2.43e-04 1.79e-10

100 11 0.1808 2.73e-04 6.41e-10 11 0.148885 2.49e-04 4.85e-10 5 0.076537 2.78E-04 1.29e-11 5 0.136648 2.47-04 6.31e-10
F9 200 (0.5, 0.5, 0.5, ..., 0.5)t 13 0.562116 2.52e-04 7.47e-10 12 0.551576 2.16e-04 4.72e-10 5 0.159649 1.76e-04 4.37e-12 5 0.421302 2.50e-04 9.94e-10

300 14 1.505676 2.14e-04 5.88e-10 12 1.369161 2.50e-04 9.73e-10 5 0.382522 4.67e-05 6.15e-11 6 1.138028 1.31e-04 1.75e-10
500 14 5.758127 2.02e-04 7.05e-10 13 5.613862 2.12e-04 8.20e-10 6 1.333342 1.18e-04 9.79e-10 6 3.03265 1.35e-04 2.68e-10
10 – – – – 11 0.007509 1.00e+00 9.85e-10 – – – – 6 0.005128 1.00e+00 3.32e-11

100 – – – – 12 0.063294 1.00e+00 3.89e-10 – – – – 7 0.060971 1.00e+00 7.11e-14
F10 200 (15, 5,−5,−1)t – – – – 12 0.277783 1.00e+00 5.50e-10 – – – – 7 0.219662 1.00e+00 1.58e-10

300 – – – – 12 0.722181 1.00e+00 6.74e-10 – – – – 8 0.642896 1.00e+00 1.38e-13
500 – – – – 12 3.059641 1.00e+00 8.70e-10 – – – – 9 2.923045 1.00e+00 2.76e-12
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The reported numerical results in Table 1 above, indicate that OM4 and ELM compete
in terms of less number of iteration and cpu-time whlie solving F1 and F2, while M41
diverges for F2 . Methods M14, M44 and OM4 fail to solve F3, F5, F6 and F8 due to
singularity attained by their respective Jacobians at initial stage. M41 fails to solve F2,
F4 , F7 and F9 due to divergence. Our proposed method imerges superior with regards
to those function where the other three methods fail due to singularity.

5.2. Performance Profile

Below are the figures indicating the performances of our proposed method in
comparison to M41, M44, OM4 and ELM.
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Figure 1. Performance profile of M41, M44, OM4 and ELM. methods
with respect to number of iterations for problem 1-10
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Figure 2. Performance profile of M41, M44, OM4 and ELM. methods
with respect to cpu-time for problem 1-10

In Table 2, we used the following nonlinear test functions:
P1: Corresponds to Example 4.1.2[23]. P2: Corresponds to Example 4.1.3[23].
P3: Nonlinear problem:

f1(x) = 2x2
1 + sin(x1)− 1,

fi(x) = −2x2
i−1 + 2xi + 2sin(xi)− 1,

i = 2, 3, 4, ..., n− 1,
x0 = (1, 1, ...)
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P4: Exponential trigonometric function:
h = 1/(n+ 1),
f1 = x1e

cos(h(x1+x2)),
fi(x) = xi − ecos(h(x(i−1+xi+xi+1)),
fn(x) = xn − ecos(h(xn−1+xn))

i = 2, 3, 4, ..., n− 1
x0 = (1.5, 1.5, ...).

Table 2. Comparison of M41, M44, OM1 and ELM as fourth-order
iterative methods for problem P1-P4

Method x0 #Iter
∥∥F (x1)

∥∥ ∥∥F (x2)
∥∥ ∥∥F (x3)

∥∥ COC TNFE
P1:
M4.1 (0.5,0.5,0.5) 4 2.00e-02 2.00e-07 1.00e-35 3.9949 76
M4.4 4 1.00e-02 1.00e-10 7.00e-43 3.9955 76
OM4 4 4.00e-02 3.00e-08 1.00e-32 3.9931 78
ELM 4 8.90e-01 8.636-07 1.00e-31 3.9954 78
P2: (1.2,-1.8,0.1)
M4.1 6 1.00e-02 7.00e-08 1.00e-37 3.9764 46
M4.4 6 1.00e-03 7e-08 1.00e-37 3.9624 46
OM4 5 1.00e-03 1.00e-11 2.00e-49 4.0056 52
ELM 5 1.00e-04 1.00e-12 2.00e-52 4.0043 54
P3: (1,1,1)
M4.1 6 1.00e-01 6.00e-08 1.00e-34 3.9751 62
M4.4 6 2.00e-02 4.00e-08 2.00e-34 3.9633 62
OM4 5 1.00e-03 2.00e-10 2.00e-50 3.9986 64
ELM 5 1.00e-03 1.00e-11 1.00e-52 3.9994 64
P4: (1.5,1.5,1.5)
M4.1 7 1.00e-02 3.00e-06 2.00e-35 3.9994 46
M4.4 6 2.00e-02 6.00e-09 7.00e-43 3.9993 46
OM4 5 3.00e-02 2.00e-07 1.00e-32 4.0046 52
ELM 5 6.50e-01 3.00e-09 2.00e-31 4.0043 54

5.3. Computational Efficiency Index.

The well known methods or techniques mostly used for computing the computational
efficiency index are the Classical Efficiency Index or Traditional Efficiency Index and
Flops-like Efficiency Index, denoted by TEI and FEI respectively. The two are known
famous techniques or efficiency index for nonlinear ystem of equations. (I) Classical or

traditional efficiency index is defined by TEI= p
1
v , where p is the order of convergence

and v is the total computation cost per iteration in terms of number of function evalu-
ations. (II) The Flops-like efficiency index [23], FEI= p

1
V , where V represents the total

computational cost per iteration along with LU decomposition having solution of two
triangular system(based on flops).

Table 3, below, summarizes the requirements for each solver and comparison of the
efficiency indices of the four methods.
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Table 3. Comparison Efficiency Indices of different methods.

Iterative methods M41 M44 OM1 ELM
Number of steps: 2 2 3 2
Rate of convergence: 4 4 4 4
Number of function evaluations: n+ n2 n+ n2 3n+ n2 2n+ 2n2

Traditional Efficiency Index(TEI): 41/(n+2n2) 41/(n+2n2) 41/(3n+n2) 41/(2n
2+2n)

Flops-like Efficiency index(FEI): 41/((10n3/3) + 4n2 + n) 41/((7n
3/3)+4n2+n) 41/((2n3/3) + 7n2 + 3n) 41/((2n3/3)+8n2+2n)

Table 4. Traditional and Flops Efficiency Index for the four methods
from n = 2 to n = 20.

Variable M41 M44 OM1 ELM
n TEI FEI TEI FEI TEI FEI TEI FEI

2 1.15e+00 1.03e+00 1.15e+00 1.02e+00 1.15e+00 1.04e+00 1.12e+00 1.03e+00
3 1.91e-01 3.10e-02 1.91e-01 3.92e-02 2.22e-01 1.03e-01 1.67e-01 3.03e-02
4 1.11e-01 1.42e-02 1.11e-01 1.84e-02 1.11e-01 5.88e-02 1.00e-01 1.40e-02
5 7.27e-02 7.70e-02 7.27e-02 1.01e-02 1.00e-01 3.81e-02 6.67e-02 7.60e-03
6 5.13e-02 4.60e-03 5.13e-02 6.10e-03 7.41e-02 9.70e-03 4.76e-02 4.60e-03
7 3.81e-02 3.00e-03 3.81e-02 4.00e-03 5.71e-02 2.67e-02 3.57e-02 3.00e-03
8 2.94e-02 2.00e-03 2.94e-02 2.70e-03 4.55e-02 1.97e-02 2.78e-02 1.40e-03
9 2.34e-02 1.40e-03 2.34e-02 2.00e-03 3.70e-02 1.20e-02 2.22e-02 1.10e-03
10 1.90e-02 1.10e-03 1.90e-02 1.50e-03 3.08e-02 9.80e-03 1.82e-02 1.10e-03
11 1.58e-02 8.11e-04 1.58e-02 1.10e-03 2.60e-02 8.10e-03 1.52e-02 8.00e-04
12 1.33e-02 6.30e-04 1.33e-02 9.00e-04 2.22e-02 6.80e-03 1.28e-02 6.00e-04
13 1.14e-02 4.99e-04 1.14e-02 7.00e-04 1.92e-02 5.80e-03 1.10e-02 5.00e-04
14 9.90e-03 4.02e-04 9.90e-03 6.00e-04 1.68e-02 5.00e-03 9.50e-03 4.00e-04
15 8.60e-03 3.29e-04 8.60e-03 5.00e-04 1.48e-02 4.40e-03 8.30e-03 3.00e-04
16 7.60e-03 2.72e-04 7.60e-03 4.00e-04 1.32e-02 3.80e-03 7.40e-03 3.00e-04
17 6.70e-03 2.28e-04 6.70e-03 3.00e-04 1.18e-02 3.40e-03 6.50e-03 2.00e-04
18 6.00e-03 1.93e-04 6.00e-03 3.00e-04 1.06e-02 3.00e-03 5.80e-03 2.00e-04
19 5.40e-03 1.64e-04 5.40e-03 2.00e-04 9.60e-03 2.70e-03 5.30e-03 2.00e-04
20 4.90e-03 1.41e-04 4.90e-03 2.00e-04 8.70e-03 2.50e-03 4.80e-03 1.00e-04
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Table 4, is the comparison of traditional efficiency and Flops-like efficiency indices for
n = 2 to n = 20 for the four methods. Reports from the results in the Table and figures
3 and 4, the shows that ELM is very competative and efficient.
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Figure 3. Performance profile of M41, M44, OM4 and ELM. methods
with respect to traditional efficiency index for n = 2 to n = 20
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Figure 4. Performance profile of M41, M44, OM4 and ELM. methods
with respect to Flops-like efficiency index for n = 2 to n = 20

6. Conclusion

In this paper, we have proposed a two- step fourth-order globally convergent method.
The method shows its robutness more especially when solving singular problems. It also
competes with some existing fourth-order methods in terms of less number of iteration
and cpu-time. It numerically excels in both traditional efficiency as well as flops-like
efficiency indices. Though it involves derivative computation but is highly efficient for
solving medium-scale problems.
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