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1. Introduction

The Yamabe problem in differential geometry concerns the existence of Riemannian
metrics with constant scalar curvature, and takes its name from the mathematician Hide-
hiko Yamabe in 1960. In differential geometry, the Yamabe flow is an intrinsic geometric
flow a process which deforms the metric of a Riemannian manifold. The fixed points of
the Yamabe flow are metrics of constant scalar curvature in the given conformal class first
introduced by R. S. Hamilton [3] by the following equation

∂

∂t
g(t) = −r(t)g(t), (1.1)

where r(t) denotes the scalar curvature of the metric g(t). Yamabe soliton corresponds
to self-similar solution of the Yamabe flow.

In dimension n = 2 the Yamabe flow is equivalent to the Ricci flow define by equation
(2.22). However min dimension n > 2 the Yamabe and Ricci flow do not agree, since
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the first one preserve the conformal class of the metric but the Ricci flow does not in
general. The concept of Yamabe flow as a tool for constructing metrics of constant scalar
curvature in a given conformal class of Riemannian matrices on (Mn, g), where (n ̸= 3).

A Riemannian manifold (M, g) is a Yamabe soliton if it admits a vector field X such
that

LXg = 2(r − λ)g, (1.2)

where LX denotes the Lie derivative in the direction of the vector field X, r is the scalar
curvature of the metric g and λ is a real number. Moreover, a vector filed X is called
a soliton field. In the following, we denotes the Yamabe soliton satisfying In higher
dimensions, Ricci solitons and Yamabe solitons have different behaviors. For instance,
since any soliton vector field is a conformal vector field, if the scalar curvature is constant
then it must be necessarily zero unless the soliton vector field is Killing [14], (Corollary
2.2(i)]). Yamabe solitons on three dimensional Sasakian manifolds and Kenmotsu man-
ifolds were studied, respectively by R. Sharma ([6], [7]) and Y. Wang [12]. In [5] S. kundu
also studied, Yamabe soliton in α-Sasakian manifold. Moreover, in [2] Erken, also, studied
Yamabe soliton on three-dimensional normal para-contact metric manifolds.

In 1976, Sato [9] introduced the notion of almost para-contact manifolds. Before
Sato, Takahashi [11], defined almost contact manifolds (in particular, Sasakian mani-
folds) equipped with an associated pseudo-Riemannian metric. In [4] Kaneyuki et al.
defined the notion of almost paracontact structure on pseudo-Riemannian manifold of
dimension n = (2m + 1). Later Zamkovoy [15] showed that any almost paracontact
structure admits a pseudo-Riemannian metric with signature (n + 1;n). The notion of
para-Kenmotsu manifold was introduced by Welyczko [13]. This structure is a analogy
of Kenmotsu manifold in para-contact geometry. para-Kenmotsu (briefly SP-Kenmotsu)
and special para-Kenmotsu (briefly SP-Kenmotsu) manifolds with solitons was studied
by Blaga [1] and Siddiqi [8, 10] and others. Motivated by the above studies in this
paper, we study Yamabe solitons in para-Kenmotsu manifolds (n > 2) satisfying some
geometric properties with conformal Killing vector field, like flatness, semi-symmetry,
pseudo-symmetry, Ricci-pseudo-symmetry and Einstein semi-symmetry, using projective
curvature and Weyl-conformal curvature tensor.

2. Preliminaries

An smooth manifold (Mn, g) (n > 2) is said to be an almost paracontact metric
manifold [5], if it admits a (1, 1)-tensor field ϕ, a structure vector field ξ, a 1-form η and
g is pseudo-Riemannian metric such that

ϕ2X = X − η(X)ξ, (2.1)

η(ξ) = 1, (2.2)

g(ξ, ξ) = 1, (2.3)

η(X) = g(X, ξ), (2.4)
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g(ϕX, ϕY ) = −g(X,Y ) + η(X)η(Y ) (2.5)

for all vector fields X, Y on χ(M).

dη(X,Y ) = g(X,ϕY ) (2.6)

for every X,Y ∈ χ(M), then we say that M(ϕ, ξ, η, g) is an almost paracontact metric
manifold. Also, we have

ϕξ = 0, η(ϕX) = 0. (2.7)

If an almost paracontact metric manifold satisfies

(∇Xϕ)(Y ) = g(ϕX, Y )− η(Y )ϕX, (2.8)

where ∇ denotes the Levi-Civita connection with respect to g, then M is called a almost
para-Kenmotsu manifold [9].

An almost paracontact metric manifold is para-Kenmotsu if and only if

∇Xξ = X − η(X)ξ. (2.9)

Moreover the curvature tensor R, the Ricci tensor S and the Ricci operator Q in a para-
Kenmotsu manifold M with respect to the Levi-Civita connection satisfy [13]

R(X,Y, Z,W ) = [g(X,Z)g(Y,W )− g(Y, Z)g(X,W )], (2.10)

η(R(X,Y )Z) = [g(X,Z)η(Y )− g(Y, Z)η(X)], (2.11)

R(X,Y )ξ = η(X)Y − η(Y )X, (2.12)

R(ξ,X)Y = η(Y )X − g(X,Y )ξ, (2.13)

R(ξ,X)ξ = −R(X, ξ)ξ = X − η(X)ξ, (2.14)

S(X,Y ) = −(n− 1)g(X,Y ), (2.15)

S(X, ξ) = −(n− 1)η(X), (2.16)

QX = −(n− 1)(X), (2.17)

Qξ = −(n− 1)ξ, (2.18)

where g(QX,Y ) = S(X,Y ).

S(ϕX, ϕY ) = S(X,Y ) + (n− 1)η(X)η(Y ). (2.19)
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Definition 2.1. A para-Kenmotsu manifold M is said to be η-Einstein manifold if its
Ricci tensor S is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (2.20)

where a and b are scalar.

Definition 2.2. A vector field V on a Riemannian manifold (Mn, g) (n > 2) is said to
be conformal Killing vector field if it satisfies

LV g = ρg, (2.21)

where ρ is some scalar function.

For an n-dimensional almost contact metric manifold (n > 2) the Weyl-conformal
curvature tensor C is given by:

C(X,Y )Z = R(X,Y )Z − 1

(n− 2)
[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ]

+
r

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ] (2.22)

C(ξ,X)Y =

[
1− 2(n− 1)

(n− 2)
− r

(n− 1)(n− 2)

]
[η(Y )X − g(X,Y )] (2.23)

C(ξ,X)ξ =

[
1− 2(n− 1)

(n− 2)
− r

(n− 1)(n− 2)

]
[X − η(X)ξ] (2.24)

C(ξ, ξ)X = 0. (2.25)

3. Yamabe soliton in Weyl-Conformally flat para-Kenmotsu
manifold

We use the following definition:

Definition 3.1. An n-dimensional (n > 2) para-Kenmotsu manifold is called Weyl-
conformally flat if C(X,Y )Z = 0 for any vector fields X,Y, Z.

we consider a para-Kenmotsu manifold which is Weyl-conformally flat. Then from
(2.1) and (2.14) we have

R(X,Y )Z =
1

(n− 2)
[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ]

+
r

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ].

(3.1)

Taking inner product with U on both side in (??), we get

R(X,Y, Z, U) =
1

(n− 2)
[S(Y, Z)g(X,U)− S(X,Z)g(Y, U)

+ g(Y, Z)S(X,U)− g(X,Z)S(Y, U)]

+
r

(n− 1)(n− 2)
[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)],

(3.2)
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where g(R(X,Y )Z,U) = R(X,Y,W,U) and S(X,Y ) = g(QX,Y ).
Putting X = U = ei and summing over i = 1, 2..., n in (3.2), we get the following
equations

S(Y, Z) =
n(n− 1)

(n− 2)
g(Y, Z). (3.3)

r =
n2(n− 1)

(n− 2)
. (3.4)

Therefore, we can state the following :

Theorem 3.2. A Weyl-conformally flat para-Kenmotsu manifold scalar curvature is pos-

itive i.e., n2(n−1)
(n−2) .

Let (M, g) be an n-dimenisonal (n > 2) para-Kenmotsu manifold and Let (g, V, λ) be
a Yamabe soliton on M . If V is conformal Killing vector filed, then by the definitions of
conformal Killing vector filed we have

LV g(X,Y ) = ρg(X,Y ) (3.5)

where ρ is some scalar function and from equation (3.1), we have

r =

(
λg − 1

2
LV g

)
. (3.6)

From equations (9.1) and (3.11), we get

r = −
(
λ− ρ

2

)
g(X,Y ). (3.7)

Taking inner product (2.14) with W and using equations (2.15) and (3.12), we obtain

C(X,Y, Z,W ) = 0. (3.8)

This shows that a para-Kenmotsu manifold M is Weyl-conformally flat.
Conversely, let M be an n-dimensional Weyl-conformally flat para-Kenmotsu manifold

and (g, V, λ) be a Yamabe soliton on M (n > 2), then from (7.1), we have

r =
n2(n− 1)

(n− 2)
. (3.9)

Substituting this in (3.1), we get

(LV g)(Y, Z) = ρg(Y, Z)− η(Y )(Z). (3.10)

Where ρ = −2
[
−λ+ n2(n−1)

(n−2)

]
i.e V is conformal Killing.

If an n-dimensional (n > 2)Wely-conformally flat para-Kenmotsu manifold M admits
a Yamabe soliton (g, ξ, λ), then from equation (3.1) we have

2r = −(Lξg)(X,Y ) + 2λg(X,Y ). (3.11)

On an n-dimensional para-Kenmotsu manifold M , from equation (2.9) and (3.2), we
obtain

r = (λ+ 1) g(X,Y )− η(X)η(Y ). (3.12)

Then from equations (7.1) and (3.12), we get[
n2(n− 1)− (λ+ 1)(n− 2)

(n− 2)

]
g(X,Y ) + η(X)η(Y ) = 0. (3.13)
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Putting X = ξ in equation (3.13), we get

λ =
n2(n− 1)

(n− 2)
. (3.14)

Since, λ is positive here. Therefore we can state the following theorem:

Theorem 3.3. Let (g, V, λ) be a Yamabe soliton in an n-dimensional para-Kenmotsu
manifold M (n > 2). Then M is Weyl-conformally flat if and only if V is conformally
killing. Further (g, ξ, λ) is expanding.

4. Yamabe soliton in Weyl-semi-symmetric para-Kenmotsu man-
ifold

Definition 4.1. An n-dimensional para-Kenmotsu manifold M is called Weyl-semi-
symmetric if R.C = 0.

Let us assume Weyl-semi-symmetric para-Kenmotsu manifold. Then from the defini-
tion (4.1), we have

(R(X,Y ).C)(U, V )W = 0. (4.1)

Now, equation (4.1) can be express as

R(X,Y )C(U, V )W − C(R(X,Y )U, V )W − C(U,R(X,Y )V )W

− C(U, V )R(X,Y )W = 0.
(4.2)

Putting X = U = ξ in (4.2) and using (2.12), we get

η(C(ξ, V )W )Y − g(Y,C(ξ, V )W )ξ − C(Y, V )W + η(Y )C(ξ, V )W

− η(Y )C(ξ, Y )W + g(Y, V )C(ξ, ξ)W − η(W )C(ξ, V )Y + εg(Y,W )C(ξ, V )ξ = 0.
(4.3)

Using (2.22), (2.23), (2.24) and (2.25) in (4.3), we get

R(Y, V )W = [g(Y,W )V − g(V,W )Y ] (4.4)

Taking inner product with Z of (4.4), we have

g(R(Y, V )W,Z) = [g(Y,W )g(V, Z)− g(V,W )g(Y, Z)] (4.5)

Taking V = W = ei and summing over i = 1, 2, ..., n in (4.5), we get the following
equations

S(Y, Z) = −(n− 1)g(Y, Z) (4.6)

r = −n(n− 1). (4.7)

Hence we state the following :

Theorem 4.2. A Weyl semi-symmetric para-Kenmotsu manifold with a negative scalar
curvature i.e., −n(n− 1).

Let (M, g) be an n-dimensional para-Kenmotsu manifold and Let (g, V, λ) be a Yamabe
soliton on M . If V is conformal Killing vector filed, then by the definitions of conformal
Killing vector filed we have

LV g(X,Y ) = ρg(X,Y ) (4.8)
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where ρ is some scalar function and from equation (3.2), we have

r =
1

2
LV g + λg. (4.9)

From equations (4.8) and (4.9), we get

r =
(
λ+

ρ

2

)
g(X,Y ). (4.10)

Then equation (4.2), we have

R.C = R(X,Y )C(U, V )W − C(R(X,Y )U, V )W − C(U,R(X,Y )V )W

− C(U, V )R(X,Y )W = 0.
(4.11)

Using (2.15) and (4.10), we get

R.C = 0. (4.12)

This shows that n-dimensional para-Kenmotsu manifold M is Weyl semi-symmetric.
Conversely, Let M be a Weyl semi-symmetric para-Kenmotsu manifold and (g, V, λ)

be a Yamabe soliton on M . then from (4.6), we have

r = −n(n− 1). (4.13)

Putting this in (3.1) we get

(LV g)(X,Y ) = ρg(X,Y ), (4.14)

where ρ = (−2n(n− 1) + λ) i.e V is conformal killing.
If an n-dimensional Wely-conformally flat para-Kenmotsu manifold M admits Yamabe
soliton (g, ξ, λ), then from equation (3.1) we have

2r = (Lξg)(X,Y ) + (2λ)g(X,Y ). (4.15)

On an n-dimensional para-Kenmotsu manifold M , from equation (2.9) and (3.2), we
obtain

r = (λ+ 1) g(X,Y )− η(X)η(Y ). (4.16)

Then from equations (4.13) and (4.15), we get

[−n(n− 1)− (λ+ 1)]g(X,Y ) + η(X)η(Y ) = 0. (4.17)

Putting X = ξ in equation (4.17), we get

λ = n(n− 1). (4.18)

Since, λ is positive here. Therefore we can state the following theorem:

Theorem 4.3. Let (g, V, λ) be a Yamabe soliton in an n-dimensional para-Kenmotsu
manifold M . Then M is Weyl semi-symmetric if and only if V is conformally killing.
Further deduce that (g, ξ, λ) is expanding.
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5. Yamabe soliton in Einstein semi-symmetric para-Kenmotsu man-

ifold

Now, we have the following definition:

Definition 5.1. An n-dimensional (ε)-Kenmotsu manifold M is called Einstein semi-
symmetric if R.E = 0, where E is the Einstein tensor defined by

E(X,Y ) = S(X,Y )− r

n
g(X,Y ), (5.1)

where S is the Ricci tensor and r is the scalar curvature.

Let is assume that an n-dimensional Einstein semi-symmetric para-Kenmotsu manifold
M . Then from the definition 5.1, we have

(R(X,Y ).E)(Z,W ) = 0. (5.2)

Equation (5.2) can be written as

E(R(X,Y )Z,W ) + E(Z,R(X,Y )W ) = 0 (5.3)

Now, using (5.1) in (5.3), we get

S(R(X,Y )Z,W ) + S(Z,R(X,Y )W )

− r

n
[g(R(X,Y )Z,W ) + g(Z,R(X,Y )W )] = 0.

(5.4)

Replacing X = W = ei where {ei} is an orthonormal basis of the tangent space at
each point of the manifold and talking summation over i = 1, 2, ...n we get the following
equations

S(X,Z) = − r

n
g(X,Z) (5.5)

and

r = 0 (5.6)

Hence, we state the following:

Theorem 5.2. Scalar curvature of an n-dimensional Einstein semi-symmetric para-
Kenmotsu manifold M is vanish.

Now, let us consider an n-dimensional para-Kenmotsu manifoldM and let data (g, V, λ)
be a Yamabe soliton on M . If V is conformal killing. Then by the definition

(LV g)(X,Y ) = ρg(X,Y ) (5.7)

for some scalar function ρ and from (3.1), we have

r =

[
λg +

1

2
LV g

]
. (5.8)

From (5.7) and (5.9), we get

λ =
1

2
ρ. (5.9)

Then from (5.3), we have

R.E = S(R(X,Y )Z,W ) + S(Z, (R(X,Y )W )

− r

n
[g(R(X,Y )Z,W ) + g(Z,R(X,Y )W )].

(5.10)
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Using (2.15) and (5.9) in (5.10), we get

R.E = 0. (5.11)

This shows that an n-dimensional para-Kenmotsu manifoldM is Einstein semi-symmetric.
Conversely, let an n-dimensional Einstein semi-symmetric para-Kenmotsu manifold M

and (g, V, λ) be a Yamabe soliton on M , then using (5.5) in (3.1) we get

(LV g)(X,Y ) = ρg(X,Y ) (5.12)

where ρ = 2λ i.e V is conformal killing.
Now, if an n-dimensional Einstein semi-symmetric para-Kenmotsu manifold M admits
Yamabe soliton (g, ξ, λ), then from the equation (3.1), we have

r = (λ+ 1)g(X,Y )− η(X)η(Y ). (5.13)

Then from (5.5) and (5.13), we get

[r − (λ+ 1)]g(X,Y ) + η(X)η(Y ) = 0 (5.14)

Putting X = ξ in (5.13), we get

λ = 0 (5.15)

Hence, λ is zero . Therefore we can state the following theorem:

Theorem 5.3. Let (g, V, λ) be a Yamabe soliton in an n-dimensional para-Kenmotsu
manifold M . Then M is Einstein semi-symmetric if and only if V is conformal killing.
Further deduce that (g, ξ, λ) is steady.

6. Yamabe soliton in projectively flat para-Kenmotsu manifold

Definition 6.1. The projective curvature tenosr P in an n-dimensional para-Kenmotsu
manidold M is defined by

P (X,Y )Z = R(X,Y )Z − 1

(n− 1)
[g(Y, Z)QX − g(X,Z)QY ] (6.1)

for any X,Y, Z on M , where Q is the Ricci operator defined by S(X,Y ) = g(QX,Y ).
The manifold is said to be projectively flat if P vanishes identically on M i e.

P (X,Y )Z = 0. (6.2)

We consider an n-dimensional para-Kenmotsu manifold which is projectively flat that
is P (X,Y )Z = 0. Then from the definition (6.1) and equation (7.1) we have

R(X,Y )Z =
1

(n− 1)
[g(Y, Z)QX − g(X,Z)QY ]. (6.3)

Taking inner product with U of equation (7.5), we get

R(X,Y, Z, U) =
1

(n− 1)
[g(Y, Z)S(X,U)− g(X,Z)S(Y, U)], (6.4)

where R(X,Y, Z, U) = g(R(X,Y )Z,U) and S(X,Y ) = g(QX,Y ). Taking X = U = ei
and summing over i = 1, 2, ...n in (7.6), we obtain the following equations

S(Y, Z) = −ng(Y, Z). (6.5)

r = −n2 (6.6)

Hence we can state the following:
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Theorem 6.2. The scalar curvature of a projectively flat n-dimensional para-Kenmotsu
manifold M is negative i.e., −n2.

Let an n-dimensional para-Kenmotsu manifoldM and Let (g, V, λ) be a Yamabe soliton
on M . If V is conformal killing vector filed, then by the definition

(LV g)(X,Y ) = ρg(X,Y ) (6.7)

for some scalar function ρ, by (3.1), we have

r = (λg +
1

2
LV g). (6.8)

From (7.8) and (7.9), we get

r = (λ+
1

2
ρ)g(X,Y ). (6.9)

Taking inner product (7.1) with W and by the virtue of (2.15) and (7.10), we obtain

P (X,Y, Z,W ) = 0. (6.10)

This shows that an n-dimensional para-Kenmotsu manifold M is projectively flat.
Conversely, let M be a projectively flat n-dimensional para-Kenmotsu manifold and

(g, V, λ) be a Yamabe soliton on M , then from (3.1), we have

r = −n2. (6.11)

Substituting this in (3.1), we get

(LV g)(X,Y ) = ρg(Y, Z). (6.12)

Where ρ = −2[n2 + λ] that is V is conformal Killing.
Further, If a Projectively flat n-dimensional para-Kenmotsu manifold M admits Yamabe
soliton (g, ξ, λ), then from virtue of equations (3.1) and (2.9), we get

r = (λ+ 1))g(X,Y )− η(X)η(Y ). (6.13)

Then from equations (7.7) and (9.3), we get

[r − (λ+ 1))g(X,Y ) + η(X)η(Y ) = 0. (6.14)

Substituting X = ξ in (9.4), we get

λ = −2n2. (6.15)

Hence λ is negative. Therefore we can state the following theorem:

Theorem 6.3. Let (g, V, λ) be an Yamabe soliton in an n-dimensional para-Kenmotsu
manifold M . Then M is projectively flat if and only if V is conformally killing. Further
(g, ξ, λ) is shrinking.

7. Yamabe soliton in Weyl pseudo-symmetric para-Kenmotsu man-

ifold

Definition 7.1. An n-dimensional para-Kenmotsu manifold M is called Weyl pseudo-
symmetric if the tensors R.C and Q(g, C) are linearly dependent. This is equivalent
to

R.C = LCQ(g, C) (7.1)
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holding on the set UC = {x ∈ M : C ̸= 0 at x}, where LC is some function on UC and
Q(g, S), (X ∧ Y ) are respectively defined as

Q(g, S) = ((X ∧g Y ).S)(U, V ) (7.2)

(X ∧g Y ) = g(Y, Z)X − g(X,Z)Y. (7.3)

for all X,Y, U and V ∈ TMn.

Let us consider n-dimensional Weyl pseudo-symmetric para-Kenmotsu manifold M .
Then from definition (7.1), we have

(R(X,Y )C)(U, V )W = LC [Q(g, C)(U, V,W ;X,Y )]. (7.4)

Equation (7.4) can be written as

R(X,Y )C(U, V )W − C(R(X,Y )U, V )W − C(U,R(X,Y )V )W

− C(U, V )R(X,Y )W = LC [(X ∧ Y )C(U, V )W − C((X ∧ Y )U, V ))W

− C(U, (X ∧ Y )V )W − C(U, V )(X ∧ Y )W ].

(7.5)

Putting X = U = ξ in (7.5) and using (2.13), (2.14), (7.2) and (7.3), we get

[LC + 1][g(Y,C(ξ, V )W )ξ − η(C(ξ, V )W )Y + C(Y, V )W

− η(Y )C(ξ, V )W + η(V )C(ξ, Y )W − g(Y, V )C(ξ, ξ)W

+ η(W )C(ξ, V )Y − g(Y,W )C(ξ, V )ξ] = 0.

(7.6)

Using (2.22), (2.23), (2.24) and (2.25) in (7.6), we get

[LC + 1][R(Y, V )W + g(V,W )Y − g(Y,W )V ] = 0. (7.7)

Therefore, either

LC = −1 or R(Y, V ) = g(Y,W )V − g(V,W )Y. (7.8)

Taking inner product with Z of (7.8), we get

R(Y, V,W,Z) = g(Y,W )g(V, Z)− g(V,W )g(Y, Z) (7.9)

Taking V = W = ei and summing over i = 1, 2, .....n in (7.9), we obtain the following
equations

S(Y, Z) = −(n− 1)g(Y, Z) (7.10)

and

r = −n(n− 1) (7.11)

Hence, we state the following

Theorem 7.2. The scalar curvature of a Weyl pseudo-symmetric para-Kenmotsu mani-
fold in negative i.e., −n(n− 1) with LC ̸= −1.

Let a n-dimensional Weyl pseudo-symmetric para-Kenmotsu manifold M admits Yam-
abe soliton on (g, ξ, λ). Then from equations (3.13) and (7.11), we have

[−n(n− 1)− (λ+ 1)]g(X,Y ) + η(X)η(Y ) = 0. (7.12)

Substitution of X = ξ in (9.12), we get the relation:

λ = −n(n− 1). (7.13)

Therefore, λ is negative. Hence we state the following theorem:
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Theorem 7.3. A Yamabe soliton in (g, ξ, λ) n-dimensional Weyl-semi-symmetric para-
Kenmotsu manifold M is shrinking provided LC ̸= −1.

8. Yamabe soliton in partially Ricci-pseudo-symmetric para-Kenmotsu

manifold

Definition 8.1. An n-dimensional para-Kenmotsu manifold M is called partially Ricci-
pseudo-symmetric if and only if the relation

R.S = f(p)Q(g, S) (8.1)

holds on the set A = {x ∈ M : Q(g, S) ̸= 0 at x}, where f ∈ C∞(M) for p ∈ A.
R.S is defined as

(R(X,Y ).S)(U, V ) = −S(R(X,Y )U, V )− S(U,R(X,Y )V (8.2)

for all X,Y, U and V ∈ TMn.

Let us consider n-dimensional partially Ricci-pseudo symmetric para-Kenmotsu man-
ifold M . Then from the definition (9.1), we have

(R(X,Y ).S)(Z,U) = f(p)[(X ∧g Y ).S)(Z,U)] (8.3)

From (7.2), (7.3) and (9.2), it follows that

S(R(X,Y )Z,U) + S(Z,R(X,Y )U)

= f(p)[S((X ∧g Y )Z,U) + S(Z, (X ∧g Y )U)].
(8.4)

Taking Y = U = ξ in (9.4), we have

S(R(X, ξ)Z, ξ) + S(Z,R(X, ξ)ξ)

= f(p)[S((X ∧g ξ)Z, ξ) + S(Z, (X ∧g ξ)ξ)].
(8.5)

Applying (2.16) and (9.2) in (9.5), we obtain

− (n− 1)η(R(X, ξ)Z, ξ) + η(X)S(Z, ξ)− S(X,Z)

= f(p)[η(Z)S(X, ξ)− g(X,Z)S(ξ, ξ) + S(X,Z)− η(X)S(Z, ξ)].
(8.6)

Using (2.10) and (2.16) in (9.6), we get

(n− 1) {η(Z)η(X)− g(X,Z)} − S(X,Z)− (n− 1)η(X)η(Z)

= f(p)[−(n− 1)η(X)η(Z) + (n− 1)g(X,Z) + S(X,Z) + (n− 1)η(X)η(Z)].
(8.7)

This can be written as

−[S(X,Z) + (n− 1)g(X,Z)] = f(p)[S(X,Z) + (n− 1)g(X,Z)]. (8.8)

Thus, we have

[f(p) + 1][S(X,Z) + (n− 1)g(X,Z)] = 0. (8.9)

This can be hold only if either

f(p) = −1 or S(X,Z) = −(n− 1)g(X,Z) (8.10)

Also ,

f(p) = −1 or r = −n(n− 1). (8.11)

Hence, we state the following
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Theorem 8.2. The scalar curvature r of a partially Ricci pseudo-symmetric para-Kenmotsu
manifold in negative i.e., −n(n− 1) with f(p) ̸= −1.

Let a n-dimensional partially Ricci pseudo-symmetric para-Kenmotsu manifold M ad-
mits Yamabe soliton on (g, ξ, λ). Then from equations (3.13) and (9.11), we have

[−n(n− 1)− (λ+ 1)]g(X,Y ) + η(X)η(Y ) = 0. (8.12)

Substitution of X = ξ in (9.12), we get the relation:

λ = −n(n− 1). (8.13)

Therefore, λ is negative. Hence we state the following theorem:

Theorem 8.3. A Yamabe soliton in (g, ξ, λ) n-dimensional partially Ricci pseudo-symmetric
para-Kenmotsu manifold M is shrinking provided f(p) ̸= −1.

9. Yamabe soliton in partially Ricci-pseudo-symmetric para-Kenmotsu
manifold

Definition 9.1. An n-dimensional para-Kenmotsu manifold M is called partially Ricci-
pseudo-symmetric if and only if the relation

R.S = f(p)Q(g, S) (9.1)

holds on the set A = {x ∈ M : Q(g, S) ̸= 0 at x}, where f ∈ C∞(M) for p ∈ A.
R.S is defined as

(R(X,Y ).S)(U, V ) = −S(R(X,Y )U, V )− S(U,R(X,Y )V (9.2)

for all X,Y, U and V ∈ TMn.

Let us consider n-dimensional partially Ricci-pseudo symmetric para-Kenmotsu man-
ifold M . Then from the definition (9.1), we have

(R(X,Y ).S)(Z,U) = f(p)[(X ∧g Y ).S)(Z,U)] (9.3)

From (7.2), (7.3) and (9.2), it follows that

S(R(X,Y )Z,U) + S(Z,R(X,Y )U)

= f(p)[S((X ∧g Y )Z,U) + S(Z, (X ∧g Y )U)].
(9.4)

Taking Y = U = ξ in (9.4), we have

S(R(X, ξ)Z, ξ) + S(Z,R(X, ξ)ξ)

= f(p)[S((X ∧g ξ)Z, ξ) + S(Z, (X ∧g ξ)ξ)].
(9.5)

Applying (2.16) and (9.2) in (9.5), we obtain

− (n− 1)η(R(X, ξ)Z, ξ) + η(X)S(Z, ξ)− S(X,Z)

= f(p)[η(Z)S(X, ξ)− g(X,Z)S(ξ, ξ) + S(X,Z)− η(X)S(Z, ξ)].
(9.6)

Using (2.10) and (2.16) in (9.6), we get

(n− 1) {η(Z)η(X)− g(X,Z)} − S(X,Z)− (n− 1)η(X)η(Z)

= f(p)[−(n− 1)η(X)η(Z) + (n− 1)g(X,Z) + S(X,Z) + (n− 1)η(X)η(Z)].

(9.7)
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This can be written as

−[S(X,Z) + (n− 1)g(X,Z)] = f(p)[S(X,Z) + (n− 1)g(X,Z)]. (9.8)

Thus, we have

[f(p) + 1][S(X,Z) + (n− 1)g(X,Z)] = 0. (9.9)

This can be hold only if either

f(p) = −1 or S(X,Z) = −(n− 1)g(X,Z) (9.10)

Also ,

f(p) = −1 or r = −n(n− 1). (9.11)

Hence, we state the following

Theorem 9.2. The scalar curvature r of a partially Ricci pseudo-symmetric para-Kenmotsu
manifold in negative i.e., −n(n− 1) with f(p) ̸= −1.

Let a n-dimensional partially Ricci pseudo-symmetric para-Kenmotsu manifold M ad-
mits Yamabe soliton on (g, ξ, λ). Then from equations (3.13) and (9.11), we have

[−n(n− 1)− (λ+ 1)]g(X,Y ) + η(X)η(Y ) = 0. (9.12)

Substitution of X = ξ in (9.12), we get the relation:

λ = −n(n− 1). (9.13)

Therefore, λ is negative. Hence we state the following theorem:

Theorem 9.3. A Yamabe soliton in (g, ξ, λ) n-dimensional partially Ricci pseudo-symmetric
para-Kenmotsu manifold M is shrinking provided f(p) ̸= −1.

10. Yamabe solitons in Weyl Ricci-pseudo symmetric para-Kenmotsu
manifold

Definition 10.1. An n-dimensional para-Kenmotsu manifold M is called Weyl Ricci-
pseudo-symmetric if the tensors C.S andQ(g, S) are linearly dependent. This is equivalent
to

C.S = LSQ(g, S) (10.1)

holding the set US = {x ∈ M : C ̸= 0 at x}, where LS is some function on US .

Let us consider an n-dimensional Weyl Ricci-pseudo-symmetric para-Kenmotsu mani-
fold M . Then from definition (10.1), we have

(C(X,Y ).S)(U, V ) = LSQ(g, S). (10.2)

Equation (10.2) can be express as

S(C(X,Y )U, V ) + S(U,C(X,Y )V )

= LS [S((X ∧ Y )U, V ) + S(U, (X ∧ Y )V )].
(10.3)

Putting X = V = ξ in (10.3), we get

S(C(ξ, Y )U, ξ) + S(U,C(ξ, Y )ξ) = LS [S((ξ ∧ Y )U, ξ + S(U, (ξ ∧ Y )ξ)] (10.4)
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Using (2.16), (2.17), (2.24), (2.25) and (7.3) in (10.4), we obtain[
LS + 1− 2(n− 1)

(n− 2)
− r

(n− 1)(n− 2)

]
S(Y, U) + (n− 1)g(Y, U) = 0 (10.5)

This can be hold only if either

LS =

[
2(n− 1)

(n− 2)
+

r

(n− 1)(n− 2)
− 1

]
or S(Y, U) = −(n− 1)g(Y, U). (10.6)

Also,

r = −n(n− 1) (10.7)

Hence, we state the following:

Theorem 10.2. The scalar curvature r of a Weyl Ricci pseudo-symmetric para-Kenmotsu

manifold in negative i.e., −n(n− 1) with LS ̸=
[
2(n−1)
(n−2) + r

(n−1)(n−2) − 1
]
.

Let a n-dimensional Weyl Ricci pseudo-symmetric para-Kenmotsu manifold M admits
Yamabe soliton on (g, ξ, λ). Then from equations (3.13), (10.6) and (10.7), we have

[−n(n− 1)− (λ+ 1)]g(X,Y ) + η(X)η(Y ) = 0. (10.8)

Substitution of X = ξ in (10.8), we get the relation:

λ = −n(n− 1). (10.9)

Therefore, λ is negative. Hence we state the following theorem:

Theorem 10.3. A Yamabe soliton in (g, ξ, λ) n-dimensional Weyl Ricci pseudo-symmetric

para-Kenmotsu manifold M is shrinking provided LS ̸=
[
2(n−1)
(n−2) + r

(n−1)(n−2) − 1
]
.

11. example of para-Kenmotsu manifolds admitting Yamabe soli-
ton

Example 11.1. Let the three dimensional manifold M = [(x, y, z) ∈ R3 | z ̸= 0], where
(x, y, z) are the cartesian coordinates in R3. Choosing the vector fields

e1 =
∂

∂x
, e2 =

∂

∂y
, e3 = − ∂

∂z
,

which are linearly independent at each point of M. Set

ϕ =
∂

∂
⊗ dx+

∂

∂x
⊗ dy, ξ = − ∂

∂Z
, η = −dz.

Let g be the Riemannian metric define by

g = (dx⊗ dx− dy ⊗ dy) + dz ⊗ dz

g(e1, e3) = g(e2, e3) = g(e2, e2) = 0, g(e1, e1) = g(e2, e2) = g(e3, e3) = 1,

where ϵ = ±1. That is the form of the metric becomes Let η be the 1-form defined by
η(Z) = g(Z, e3) for any vector field Z on TM and ϕ be the (1, 1) tensor field defined by
ϕ(e1) = e2, ϕ(e2) = e1, ϕ(e3) = 0. Then by the linearity property of ϕ and g, we
have

ϕ2Z = Z − η(Z)e3, η(e3) = 1 g(ϕZ, ϕW ) = g(Z,W )− η(Z)η(W )
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for any vector fields Z,W on M .

Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

[e1, e2] = [e1, e3] = [e2, e3] = 0.

The Riemannian connection ∇ with respect to the metric g is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y ) + g([X,Y ], Z)

− g([Y, Z], X) + g([Z,X], Y ).

From above equation which is known as Koszul’s formula, we have

∇e1e3 = e1, ∇e2e3 = e2, ∇e3e3 = 0,

∇e1e2 = 0, ∇e2e2 = e3, ∇e3e2 = e2,

∇e1e1 = −e3, ∇e2e1 = 0, ∇e3e1 = e1.

Using the above relations, for any vector field X on M , we have

∇Xξ = (X − η(X)ξ)

for ξ ∈ e3. Hence the manifold M under consideration is a para-Kenmotsu manifold of
dimension three.

Thus it can be easily seen that (M3, ϕ, ξ, η) is a para-Kenmotsu manifold. Hence one
can easily obtain by simple calculation that the curvature tensor, Ricci tensor components
and scalar curvature are as follows

R(e1, e2)e2 = e1, R(e1, e3)e3 = −e1, R(e2, e1)e1 = −e2,

R(e2, e3)e3 = −e2, R(e3, e1)e1 = e3, R(e3, e2)e2 = −e3,

and

S(e1, e1) = S(e2, e2) = 0, S(e3, e3,) = −2.

Thus the scalar curvature r is constant. Therefore we have

r = S(e1, e1) + S(e2, e2) + S(e3, e3,) = −2.

From the expression (1.2) we have

2[g(ei, ei)− η(ei)η(ei)]− 2(r − λ)g(ei, ei) = 0

for all i ∈ {1, 2, 3}, and we have

2(1− δi3)− 2(r − λ)g(ei, ei) = 0

for all i ∈ {1, 2, 3} ,
we get λ = 1 (i.e. λ > 0). Thus the data (g, ξ, λ) is a Yamabe soliton on (M3, ϕ, ξ, η, g),
i.e, expanding.
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