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1. INTRODUCTION

The Yamabe problem in differential geometry concerns the existence of Riemannian
metrics with constant scalar curvature, and takes its name from the mathematician Hide-
hiko Yamabe in 1960. In differential geometry, the Yamabe flow is an intrinsic geometric
flow a process which deforms the metric of a Riemannian manifold. The fixed points of
the Yamabe flow are metrics of constant scalar curvature in the given conformal class first
introduced by R. S. Hamilton [3] by the following equation

= glt) = —r(t)a(0), (1)

where r(t) denotes the scalar curvature of the metric g(¢). Yamabe soliton corresponds
to self-similar solution of the Yamabe flow.

In dimension n = 2 the Yamabe flow is equivalent to the Ricci flow define by equation
(2.22). However min dimension n > 2 the Yamabe and Ricci flow do not agree, since

© 2020 By TaCS-CoE, All rights reserve.

centerofxceence ~ Published by Center of Excellence in Theoretical and Computational Science (TaCS-CoE)
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the first one preserve the conformal class of the metric but the Ricci flow does not in
general. The concept of Yamabe flow as a tool for constructing metrics of constant scalar
curvature in a given conformal class of Riemannian matrices on (M™, g), where (n # 3).

A Riemannian manifold (M, g) is a Yamabe soliton if it admits a vector field X such
that

Lxg=2(r—Ng, (1.2)

where L£x denotes the Lie derivative in the direction of the vector field X, r is the scalar
curvature of the metric g and A is a real number. Moreover, a vector filed X is called
a soliton field. In the following, we denotes the Yamabe soliton satisfying  In higher
dimensions, Ricci solitons and Yamabe solitons have different behaviors. For instance,
since any soliton vector field is a conformal vector field, if the scalar curvature is constant

then it must be necessarily zero unless the soliton vector field is Killing [14], (Corollary
2.2(i)]). Yamabe solitons on three dimensional Sasakian manifolds and Kenmotsu man-
ifolds were studied, respectively by R. Sharma ([6], [7]) and Y. Wang [12]. In [5] S. kundu

also studied, Yamabe soliton in a-Sasakian manifold. Moreover, in [2] Erken, also, studied
Yamabe soliton on three-dimensional normal para-contact metric manifolds.

In 1976, Sato [J] introduced the notion of almost para-contact manifolds. Before
Sato, Takahashi [11], defined almost contact manifolds (in particular, Sasakian mani-
folds) equipped with an associated pseudo-Riemannian metric. In [1] Kaneyuki et al.
defined the notion of almost paracontact structure on pseudo-Riemannian manifold of
dimension n = (2m + 1). Later Zamkovoy [15] showed that any almost paracontact
structure admits a pseudo-Riemannian metric with signature (n + 1;7n). The notion of
para-Kenmotsu manifold was introduced by Welyczko [13]. This structure is a analogy
of Kenmotsu manifold in para-contact geometry. para-Kenmotsu (briefly SP-Kenmotsu)
and special para-Kenmotsu (briefly SP-Kenmotsu) manifolds with solitons was studied
by Blaga [1] and Siddiqi [3, 10] and others. Motivated by the above studies in this
paper, we study Yamabe solitons in para-Kenmotsu manifolds (n > 2) satisfying some
geometric properties with conformal Killing vector field, like flatness, semi-symmetry,
pseudo-symmetry, Ricci-pseudo-symmetry and Einstein semi-symmetry, using projective
curvature and Weyl-conformal curvature tensor.

2. PRELIMINARIES

An smooth manifold (M™,g) (n > 2) is said to be an almost paracontact metric

manifold [5], if it admits a (1, 1)-tensor field ¢, a structure vector field &, a 1-form n and
g is pseudo-Riemannian metric such that
¢*X = X —n(X)¢, (2.1)
n€) =1, (2.2)
9(&:¢) =1, (2.3)
n(X) = g(X,¢), (2.4)
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9(0X,¢Y) = —g(X,Y) +n(X)n(Y) (2.5)
for all vector fields X, Y on x(M).
dn(X,Y) = g(X, ¢Y) (2.6)

for every XY € x(M), then we say that M(¢,&,n,g) is an almost paracontact metric
manifold. Also, we have

6€ =0, n(9X) = 0. (2.7)
If an almost paracontact metric manifold satisfies
(Vxo)(Y) = 9(¢X.Y) —n(Y)oX, (2.8)

where V denotes the Levi-Civita connection with respect to g, then M is called a almost
para-Kenmotsu manifold [9].
An almost paracontact metric manifold is para-Kenmotsu if and only if

Vxé = X —n(X)e. (2.9)

Moreover the curvature tensor R, the Ricci tensor S and the Ricci operator @ in a para-
Kenmotsu manifold M with respect to the Levi-Civita connection satisfy [13]

R(X,Y,ZW) = [g(X, Z)g(Y, W) — g(Y, Z)g(X, W)], (2.10)
n(R(X,Y)Z) = [9(X, Z)n(Y) = (Y, Z)n(X)], (2.11)
R(X,Y)¢ = n(X)Y —n(Y)X, (2.12)
R X)Y =n(Y)X — g(X,Y)E, (2.13)
R(§, X)€ = —R(X,§)§ = X —n(X)E, (2.14)
S(X,Y) = —(n—1)g(X,Y), (2.15)
S(X,€) = —(n— n(X), (2.16)
QX = —(n—1)(X), (2.17)
Q¢ =—(n—1)¢, (2.18)
where g(QX,Y) = S(X,Y).
S(¢X,9Y) = S(X,Y) + (n — L)n(X)n(Y). (2.19)
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Definition 2.1. A para-Kenmotsu manifold M is said to be n-Einstein manifold if its
Ricci tensor S is of the form

S(X,Y) =ag(X,Y) + bn(X)n(Y), (2.20)
where a and b are scalar.
Definition 2.2. A vector field V' on a Riemannian manifold (M™,g) (n > 2) is said to
be conformal Killing vector field if it satisfies
Lvg = pg, (2.21)
where p is some scalar function.

For an n-dimensional almost contact metric manifold (n > 2) the Weyl-conformal
curvature tensor C' is given by:

C(X,Y)Z =R(X,Y)Z — ﬁ[S(Y, 2)X — S(X,2)Y + g(Y, Z2)QX — g(X, Z)QY]
+m[9(x Z)X — g(X, Z)Y] (2.22)
cexy = 1-20 - X e e
cexs= 1= T2 - - nong (224)
C(€,6)X =0. (2.25)

3. YAMABE SOLITON IN WEYL-CONFORMALLY FLAT PARA-KENMOTSU
MANIFOLD

We use the following definition:

Definition 3.1. An n-dimensional (n > 2) para-Kenmotsu manifold is called Weyl-
conformally flat if C'(X,Y)Z = 0 for any vector fields X,Y, Z.

we consider a para-Kenmotsu manifold which is Weyl-conformally flat. Then from
(2.1) and (2.14) we have

R(X,Y)Z = ( : ) [SY,2)X = S(X, 2)Y + (Y, 2)QX — g(X, Z)QY]
e (3.1)
Taking inner product with U on both side in (??), we get
R(X.Y.2.U) = s (S0 2)9(X.V) = S(X. Z)g(¥.0)
+9(Y,2)S(X,U) — g(X, Z)S(Y,U)] (3.2)
+ m[g(x 2)9(X,U) —g(X, Z)g(Y, U],
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where g(R(X,Y)Z,U) = R(X,Y,W,U) and S(X, ) 9(QX,Y).

Putting X = U = e¢; and summing over i = 1,2...,n in (3.2), we get the following
equations

n(n—1)
(n—2)

n%(n—1)

=l (34)

S(Y, Z) = g(Y, 2). (3.3)

Therefore, we can state the following :

Theorem 3.2. A Weyl-conformally flat para-Kenmotsu manifold scalar curvature is pos-
n?(n—1)

itive 1.e., RN

Let (M, g) be an n-dimenisonal (n > 2) para-Kenmotsu manifold and Let (g, V, \) be
a Yamabe soliton on M. If V is conformal Killing vector filed, then by the definitions of
conformal Killing vector filed we have

Lvg(X,Y) = pg(X,Y) (3.5)
where p is some scalar function and from equation (3.1), we have
1
_ (Ag _ 2gvg> . (3.6)
From equations (9.1) and (3.11), we get
- (/\ - g) 9(X,Y). (3.7)
Taking inner product (2.14) with W and using equations (2.15) and (3.12), we obtain
C(X,Y,Z,W) =0, (3.8)

This shows that a para-Kenmotsu manifold M is Weyl-conformally flat.
Conversely, let M be an n-dimensional Weyl-conformally flat para-Kenmotsu manifold
and (g,V,\) be a Yamabe soliton on M (n > 2), then from (7.1), we have
n?(n —1)
=——". 3.9
L ) (3.9)
Substituting this in (3.1), we get
(Evg)(K Z) = pg(Y,Z) —n(Y)(Z). (3.10)
n?(n—

Where p = -2 { A+ = o= ) i.e V is conformal Killing.

If an n-dimensional (n > 2)Wely-conformally flat para-Kenmotsu manifold M admits
a Yamabe soliton (g,&, A), then from equation (3.1) we have

o = —(Leg)(X,Y) + 22g(X,Y). (3.11)

On an n-dimensional para-Kenmotsu manifold M, from equation (2.9) and (3.2), we
obtain

r=A+1g(X,Y) = n(X)n(Y). (3.12)
Then from equations (7.1) and (3.12), we get

{nQ(n —1)—-A+1)(n-2)
(n—2)

9(X.Y) +n(X)n(Y) =0, (3.13)
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Putting X = £ in equation (3.13), we get
n%(n—1)
CEDR

Since, A is positive here. Therefore we can state the following theorem:

A= (3.14)

Theorem 3.3. Let (g,V,\) be a Yamabe soliton in an n-dimensional para-Kenmotsu
manifold M (n > 2). Then M is Weyl-conformally flat if and only if V is conformally
killing. Further (g,&,\) is expanding.

4. YAMABE SOLITON IN WEYL-SEMI-SYMMETRIC PARA-KENMOTSU MAN-
IFOLD

Definition 4.1. An n-dimensional para-Kenmotsu manifold M is called Weyl-semi-
symmetric if R.C' = 0.

Let us assume Weyl-semi-symmetric para-Kenmotsu manifold. Then from the defini-
tion (4.1), we have

(R(X,Y).C)(U, V)W =0. (4.1)
Now, equation (4.1) can be express as
R(X,Y)C(U V)W - C(R(X,Y)U V)W — C(U,R(X,Y)V)W

_ C(U,V)R(X, Y)W = 0. (42)
Putting X = U = ¢ in (4.2) and using (2.12), we get
n(CEVIW)Y —g(Y, O, VIW)E = CY, V)W +n(Y)C(E, V)W (4.3)
—n(Y)CE Y)W +g(Y,V)C(EHOW —n(W)C(E, V)Y +eg(Y,W)C(E,V)E = 0.
Using (2.22), (2.23), (2.24) and (2.25) in (4.3), we get
R(Y, V)W = [g(Y, W)V — g(V,W)Y] (4.4)
Taking inner product with Z of (4.4), we have
g(RY, V)W, Z) = [g(Y,W)g(V, Z) — g(V,W)g(Y, Z)] (4.5)
Taking V = W = e; and summing over i = 1,2,...,n in (4.5), we get the following
equations
S(Y,Z)=—-(n—1)9(Y, Z) (4.6)
r=—-n(n-—1). (4.7)

Hence we state the following :

Theorem 4.2. A Weyl semi-symmetric para-Kenmotsu manifold with a negative scalar
curvature i.e., —n(n — 1).

Let (M, g) be an n-dimensional para-Kenmotsu manifold and Let (g, V, A) be a Yamabe
soliton on M. If V is conformal Killing vector filed, then by the definitions of conformal
Killing vector filed we have

Lyg(X,Y) = pg(X,Y) (4.8)
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where p is some scalar function and from equation (3.2), we have
1
From equations (4.8) and (4.9), we get

r= (/\ + g) g(X,Y). (4.10)

Then equation (4.2), we have

R.C =R(X,Y)C(U V)W - C(R(X,Y)U V)W — C(U,R(X,Y)V)W

— C(U,V)R(X,Y)W = 0. (4.11)

Using (2.15) and (4.10), we get
R.C=0. (4.12)

This shows that n-dimensional para-Kenmotsu manifold M is Weyl semi-symmetric.
Conversely, Let M be a Weyl semi-symmetric para-Kenmotsu manifold and (g, V, \)
be a Yamabe soliton on M. then from (4.6), we have

r=—-n(n-—1). (4.13)
Putting this in (3.1) we get
where p = (=2n(n — 1) + ) i.e V is conformal killing.
If an n-dimensional Wely-conformally flat para-Kenmotsu manifold M admits Yamabe
soliton (g, &, A), then from equation (3.1) we have

2r = (Leg)(X,Y) 4+ (2N)g(X,Y). (4.15)

On an n-dimensional para-Kenmotsu manifold M, from equation (2.9) and (3.2), we
obtain

r=A+1)g(X,Y) = n(X)nY). (4.16)
Then from equations (4.13) and (4.15), we get
[-n(n—1)— A+ D]g(X,Y)+n(X)n(Y)=0. (4.17)
Putting X = ¢ in equation (4.17), we get
A=n(n-—1). (4.18)
Since, A is positive here. Therefore we can state the following theorem:

Theorem 4.3. Let (g,V,\) be a Yamabe soliton in an n-dimensional para-Kenmotsu
manifold M. Then M is Weyl semi-symmetric if and only if V is conformally killing.
Further deduce that (g,&, \) is expanding.
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5. YAMABE SOLITON IN EINSTEIN SEMI-SYMMETRIC PARA-KENMOTSU MAN-
IFOLD

Now, we have the following definition:

Definition 5.1. An n-dimensional (¢)-Kenmotsu manifold M is called Einstein semi-
symmetric if R.F = 0, where F is the Einstein tensor defined by

B(X,Y) = S(X,Y) = Zg(X,Y), (5.1)
where S is the Ricci tensor and r is the scalar curvature.

Let is assume that an n-dimensional Einstein semi-symmetric para-Kenmotsu manifold
M. Then from the definition 5.1, we have

(R(X,Y).E)(Z,W) =0. (5.2)
Equation (5.2) can be written as
ERX,Y)Z, W)+ E(Z,RX,Y)W)=0 (5.3)

Now, using (5.1) in (5.3), we get
S(R(X,Y)Z, W)+ S(Z,R(X,Y)W)

= Z[g(R(X,Y)Z,W) + g(Z, R(X, Y)W)] = 0. (5-4)

Replacing X = W = e; where {e;} is an orthonormal basis of the tangent space at
each point of the manifold and talking summation over ¢ = 1,2, ...n we get the following
equations

S(X,Z) = —%g(X, Z) (5.5)
and

r=20 (5.6)
Hence, we state the following:

Theorem 5.2. Scalar curvature of an n-dimensional Finstein semi-symmetric para-
Kenmotsu manifold M is vanish.

Now, let us consider an n-dimensional para-Kenmotsu manifold M and let data (g, V, \)
be a Yamabe soliton on M. If V is conformal killing. Then by the definition

(Lvg)(X,Y) = pg(X,Y) (5.7)
for some scalar function p and from (3.1), we have
1
From (5.7) and (5.9), we get
1
A= 3o (5.9)

Then from (5.3), we have
RE = S(R(X,Y)Z,W) + S(Z, (R(X,Y)W)

- %[Q(R(X7 Y)Z, W) +9(Z, R()(7 Y)W)] (5.10)
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Using (2.15) and (5.9) in (5.10), we get
R.E =0. (5.11)

This shows that an n-dimensional para-Kenmotsu manifold M is Einstein semi-symmetric.
Conversely, let an n-dimensional Einstein semi-symmetric para-Kenmotsu manifold M
and (g, V, ) be a Yamabe soliton on M, then using (5.5) in (3.1) we get

where p = 2\ i.e V is conformal killing.

Now, if an n-dimensional Einstein semi-symmetric para-Kenmotsu manifold M admits
Yamabe soliton (g,&,\), then from the equation (3.1), we have

r=A\+1)g(X,Y)—n(X)n(Y). (5.13)
Then from (5.5) and (5.13), we get
[r— A+ 1D]g(X,Y) +n(X)n(Y) =0 (5.14)

Putting X = ¢ in (5.13), we get
A=0 (5.15)
Hence, A is zero . Therefore we can state the following theorem:

Theorem 5.3. Let (g,V,\) be a Yamabe soliton in an n-dimensional para-Kenmotsu
manifold M. Then M is Finstein semi-symmetric if and only if V is conformal killing.
Further deduce that (g,&, \) is steady.

6. YAMABE SOLITON IN PROJECTIVELY FLAT PARA-KENMOTSU MANIFOLD

Definition 6.1. The projective curvature tenosr P in an n-dimensional para-Kenmotsu
manidold M is defined by

P(X,Y)Z =R(X,Y)Z — Y, 2)QX — g(X, 2)QY] (6.1)

1
m[g(
for any X,Y,Z on M, where Q is the Ricci operator defined by S(X,Y) = ¢(QX.Y).
The manifold is said to be projectively flat if P vanishes identically on M i e.

P(X,Y)Z =0. (6.2)

We consider an n-dimensional para-Kenmotsu manifold which is projectively flat that
is P(X,Y)Z = 0. Then from the definition (6.1) and equation (7.1) we have

R(X,Y)Z = [9(Y, 2)QX — g(X, Z)QY]. (6.3)

(n—1)
Taking inner product with U of equation (7.5), we get

R(X,)Y,Z,U) = [g(Y,2)S(X,U) — g(X, Z2)S(Y,U)], (6.4)

(n—1)
where R(X,Y,Z,U) = g(R(X,Y)Z,U) and S(X,Y) = g(QX,Y). Taking X = U = ¢;
and summing over ¢ = 1,2, ...n in (7.6), we obtain the following equations

S(Y,Z)=—ng(Y, Z). (6.5)

r=—n? (6.6)

Hence we can state the following:
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Theorem 6.2. The scalar curvature of a projectively flat n-dimensional para-Kenmotsu
manifold M is negative i.e., —n?2.

Let an n-dimensional para-Kenmotsu manifold M and Let (g, V, \) be a Yamabe soliton
on M. If V is conformal killing vector filed, then by the definition

(Lvg)(X,Y) = pg(X,Y) (6.7)

for some scalar function p, by (3.1), we have

1
r= Mg+ 5Lvg). (6.8)
From (7.8) and (7.9), we get
1
r=A+ 509X Y). (6.9)
Taking inner product (7.1) with W and by the virtue of (2.15) and (7.10), we obtain
P(X,Y,Z,W) =0, (6.10)

This shows that an n-dimensional para-Kenmotsu manifold M is projectively flat.
Conversely, let M be a projectively flat n-dimensional para-Kenmotsu manifold and
(9, V,A) be a Yamabe soliton on M, then from (3.1), we have

r=—n? (6.11)
Substituting this in (3.1), we get
(Lvg)(X,Y) = pg(Y, Z). (6.12)

Where p = —2[n? + A] that is V is conformal Killing.
Further, If a Projectively flat n-dimensional para-Kenmotsu manifold M admits Yamabe
soliton (g, &, A), then from virtue of equations (3.1) and (2.9), we get

r=A+1)g(X,Y) = n(X)n(Y). (6.13)
Then from equations (7.7) and (9.3), we get
[r = (A+1)g(X,Y) +n(X)n(Y) = 0. (6.14)

Substituting X = ¢ in (9.4), we get
A= —2n? (6.15)
Hence X is negative. Therefore we can state the following theorem:

Theorem 6.3. Let (g, V,\) be an Yamabe soliton in an n-dimensional para-Kenmotsu
manifold M. Then M is projectively flat if and only if V' is conformally killing. Further
(g9,&, A) is shrinking.

7. YAMABE SOLITON IN WEYL PSEUDO-SYMMETRIC PARA-KENMOTSU MAN-
I[FOLD

Definition 7.1. An n-dimensional para-Kenmotsu manifold M is called Weyl pseudo-
symmetric if the tensors R.C' and Q(g,C) are linearly dependent. This is equivalent
to

R.C = LcQ(g,C) (7.1)

/ Bangmod Int. J. Math. & Comp. Sci., 2020



48 Mohd Danish Siddiq

holding on the set Us = {x € M : C # 0 at x}, where L¢ is some function on Ugs and
Q(g,5), (X ANY) are respectively defined as

Qg,9) = (X Ay Y).5)(U, V) (7.2)

(X 7y V) = g(Y, Z)X — g(X, Z)Y. (7.3)
for all X,Y,U and V € TM".

Let us consider n-dimensional Weyl pseudo-symmetric para-Kenmotsu manifold M.
Then from definition (7.1), we have

(R(X,Y)C) U, V)W = LelQ(g, C) (U, V,W; X, V). (7.4)
Equation (7.4) can be written as
R(X,Y)C(U, V)W - C(R(X,Y)U, V)W - C(U,R(X,Y)V)W
~ C(UV)R(X, Y)W = Lc[(X ANY)C(U V)W — C(X AY)U, V)W (7.5)
- CU,(XAYV)IW -CU V)X AY)WV].
Putting X = U = ¢ in (7.5) and using (2.13), (2.14), (7.2) and (7.3), we get
(Lo + 1)[g(Y, C(&, VIW)E = n(C(E, VIW)Y + C(Y, V)W
—(Y)CEVIW 4 n(VICE Y)W — g(Y, V)C(E,OW (7.6)
+n(W)C(E V)Y —g(Y,W)C(&,V)E] = 0.
Using (2.22), (2.23), (2.24) and (2.25) in (7.6), we get

[Le + 1[RY, V)W + g(V,IV)Y — g(Y,W)V] = 0. (7.7)
Therefore, either
Lo=—-1 or R(Y.V)=g(Y,W)V —g(V,W)Y. (7.8)
Taking inner product with Z of (7.8), we get
RY,V.W,2) =g(Y,W)g(V.Z) — g(V.W)g(Y, Z) (7.9)

Taking V' = W = e; and summing over ¢ = 1,2,.....n in (7.9), we obtain the following
equations
and

r=-n(n-—1) (7.11)
Hence, we state the following
Theorem 7.2. The scalar curvature of a Weyl pseudo-symmetric para-Kenmotsu mani-
fold in negative i.e., —n(n — 1) with Lo # —1.

Let a n-dimensional Weyl pseudo-symmetric para-Kenmotsu manifold M admits Yam-
abe soliton on (g,&, A). Then from equations (3.13) and (7.11), we have

[=n(n = 1) = (A + D]g(X,Y) +n(X)n(Y) = 0. (7.12)
Substitution of X = ¢ in (9.12), we get the relation:
A=-n(n-1). (7.13)

Therefore, A is negative. Hence we state the following theorem:
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Theorem 7.3. A Yamabe soliton in (g,&, \) n-dimensional Weyl-semi-symmetric para-
Kenmotsu manifold M is shrinking provided Lo # —1.

8. YAMABE SOLITON IN PARTIALLY RICCI-PSEUDO-SYMMETRIC PARA-KENMOTSU
MANIFOLD

Definition 8.1. An n-dimensional para-Kenmotsu manifold M is called partially Ricci-
pseudo-symmetric if and only if the relation

R.S = f(p)Q(9,5) (8.1)

holds on the set A= {x € M : Q(g,S5) # 0 at z}, where f € C*°(M) for p € A.
R.S is defined as

(R(X,Y).5)(U,V)=-S(R(X,Y)U,V) - S(U RX,Y)V (8.2)
forall X,Y,U and V € TM".

Let us consider n-dimensional partially Ricci-pseudo symmetric para-Kenmotsu man-
ifold M. Then from the definition (9.1), we have

(R(X,Y).9)(2,U) = f(p)(X Ay Y).9)(Z,U)] (8.3)
From (7.2), (7.3) and (9.2), it follows that
( (X, Y)Z,U)+ S(Z,R(X,Y)U)
(
)

FOIS(X Ay Y)Z,0) 4 S(Z, (X A, V)] (84)

Taking Y = U = ¢ in (9.4), we have
(R(X>§)Za€) +5(Z, R(X, £)§) (8.5)

F)ISUX NG €)Z,8) + S(Z, (X Ag E)E)]-
Applying (2.16) and (9.2) in (9.5), we obtain
— (n=n(R(X,8)Z,§) +n(X)S5(2,€) - 5(X, Z) (8.6)
= f(pM(2)S(X,§) —9(X, 2)5(&,€) + S(X, Z) = n(X)S(Z,¢)].

Using (2.10) and (2.16) in (9.6), we get

(n =1 {n(2)n(X) - 9(X, 2)} = S(X, Z) = (n = D)n(X)n(Z) ®.7)

= f)[=(n—=)nX)n(Z2) + (n — 1)g(X, Z) + S(X, Z) + (n — )n(X)n(Z)].
This can be written as
—[S(X,2) + (n — 1)g(X, Z2)] = f(p)[S(X,Z) + (n — 1)g9(X, Z)]. (8.8)

Thus, we have

[f(p) +1][S(X, Z2) + (n — 1)g(X, Z)] = 0. (8.9)
This can be hold only if either
flp)=-1 or S(X,Z)=—-(n-1)g9(X,2) (8.10)
Also ,
flp)=-1 or r=-n(n-1). (8.11)

Hence, we state the following
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Theorem 8.2. The scalar curvature r of a partially Ricci pseudo-symmetric para-Kenmotsu
manifold in negative i.e., —n(n — 1) with f(p) # —1.

Let a n-dimensional partially Ricci pseudo-symmetric para-Kenmotsu manifold M ad-
mits Yamabe soliton on (g,&, A). Then from equations (3.13) and (9.11), we have

[-n(n—1) = (A+1)]g(X,Y) +n(X)n(Y) = 0. (8.12)
Substitution of X = ¢ in (9.12), we get the relation:
A=-n(n-1). (8.13)

Therefore, A is negative. Hence we state the following theorem:

Theorem 8.3. A Yamabe soliton in (g,&, \) n-dimensional partially Ricci pseudo-symmetric
para-Kenmotsu manifold M is shrinking provided f(p) # —1.

9. YAMABE SOLITON IN PARTIALLY RICCI-PSEUDO-SYMMETRIC PARA-KENMOTSU
MANIFOLD

Definition 9.1. An n-dimensional para-Kenmotsu manifold M is called partially Ricci-
pseudo-symmetric if and only if the relation

R.S = f(p)Q(g,S) (9.1)

holds on the set A ={z € M : Q(g,5) # 0 at x}, where f € C>°(M) for p € A.
R.S is defined as

(R(X,Y).5)(U,V)=-S(R(X,Y)U,V) - S(URX,Y)V (9.2)
forall X,Y,U and V € TM™.

Let us consider n-dimensional partially Ricci-pseudo symmetric para-Kenmotsu man-
ifold M. Then from the definition (9.1), we have

(R(X,Y).5)(2,U) = f(p)(X Ay Y).5)(Z,U)] (9-3)
From (7.2), (7.3) and (9.2), it follows that
S(R(X,Y)Z,U)+ S(Z,R(X,Y)U)

= FWIS(X g YV)Z,U) + S(Z, (X Ay YIU)). o4
Taking Y = U = ¢ in (9.4), we have
S(R(X,8)Z,§) + 5(Z, R(X, §)E) (©.5)
= f(P)SUX Ng §)Z,8) + S(Z, (X Ng E)E)]-
Applying (2.16) and (9.2) in (9.5), we obtain
— (n=Dn(R(X,8)Z,§) +n(X)5(Z,€) — S(X, 2) (9.6)

= f(p)[U(Z)S(X7§) - g(X, Z>S(€7£) + S(X7 Z) - U(X)S(Z7f)]
Using (2.10) and (2.16) in (9.6), we get
(n—=1) {n(Z)n(X) —9(X,2)} = S(X, Z) — (n— L)n(X)n(Z)
= fP)[=(n—n(X)n(Z) + (n — 1)g(X, Z) + S(X, Z) + (n — \)n(X)n(Z)].
(9.7)
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This can be written as

—[S(X,2) + (n—1)g(X, Z)] = f(p)[S(X,Z) + (n — 1)g(X, Z)]. (9.8)
Thus, we have

[f(p) +1][S(X, Z) + (n — 1)g(X, Z)] = 0. (9.9)
This can be hold only if either

flp)=-1 or S(X,Z)=—-(n-1)9(X,2) (9.10)
Also ,

flp)=-1 or r=-n(n-1). (9.11)

Hence, we state the following

Theorem 9.2. The scalar curvature r of a partially Ricci pseudo-symmetric para-Kenmotsu
manifold in negative i.e., —n(n — 1) with f(p) # —1.

Let a n-dimensional partially Ricci pseudo-symmetric para-Kenmotsu manifold M ad-
mits Yamabe soliton on (g,&, A). Then from equations (3.13) and (9.11), we have

[=n(n —1) = (A + D]g(X,Y) +n(X)n(Y) = 0. (9-12)
Substitution of X = ¢ in (9.12), we get the relation:
A=-—n(n-1). (9.13)

Therefore, A is negative. Hence we state the following theorem:

Theorem 9.3. A Yamabe soliton in (g,&, \) n-dimensional partially Ricci pseudo-symmetric
para-Kenmotsu manifold M is shrinking provided f(p) # —1.

10. YAMABE SOLITONS IN WEYL RICCI-PSEUDO SYMMETRIC PARA-KENMOTSU
MANIFOLD

Definition 10.1. An n-dimensional para-Kenmotsu manifold M is called Weyl Ricci-
pseudo-symmetric if the tensors C.S and Q(g, S) are linearly dependent. This is equivalent
to

C.S=LsQ(g,95) (10.1)
holding the set Us ={x € M: C#0 at =z}, where Lg is some function on Ug.

Let us consider an n-dimensional Weyl Ricci-pseudo-symmetric para-Kenmotsu mani-
fold M. Then from definition (10.1), we have

(C(X,Y).8)(U, V)= LsQ(g,S). (10.2)
Equation (10.2) can be express as
SCX, VU V)+SU,C(X,Y)V)
=Ls[S(XAY)U,V)+ S(U,(X ANY)V)].
Putting X =V = ¢ in (10.3), we get
S(CEYV)UE) +S(U,CE,Y)E) = Ls[S(EAYV)U,E + S(U,(EAY)E)] (10.4)

(10.3)

/ Bangmod Int. J. Math. & Comp. Sci., 2020



52 Mohd Danish Siddiq

Using (2.16), (2.17), (2.24), (2.25) and (7.3) in (10.4), we obtain

2(n—1) T

(=2 m-Dn-2)

This can be hold only if either

2(n—1) r
Jr

(n—=2) = (n—=1)(

{LS +1- S(Y,U) + (n—1)g(Y,U) =0 (10.5)

Lg = { p— 1] or S(Y,U)=—(n—-1)g(Y,U). (10.6)
Also,

r=—-n(n—1) (10.7)
Hence, we state the following:

Theorem 10.2. The scalar curvature r of a Weyl Ricci pseudo-symmetric para-Kenmotsu

manifold in negative i.e., —n(n — 1) with Lg # 2((77:21)) + (n—l)r(n—Z) — 1].

Let a n-dimensional Weyl Ricci pseudo-symmetric para-Kenmotsu manifold M admits
Yamabe soliton on (g,&, A). Then from equations (3.13), (10.6) and (10.7), we have

[=n(n = 1) = (A + D]g(X,Y) +n(X)n(Y) = 0. (10.8)
Substitution of X = ¢ in (10.8), we get the relation:
A= -—n(n-1). (10.9)

Therefore, \ is negative. Hence we state the following theorem:

Theorem 10.3. A Yamabe soliton in (g, &, A) n-dimensional Weyl Ricci pseudo-symmetric

para-Kenmotsu manifold M is shrinking provided Lg # [2((:__21)) + (n_l)r(n_2) — 1.

11. EXAMPLE OF PARA-KENMOTSU MANIFOLDS ADMITTING YAMABE SOLI-
TON

Example 11.1. Let the three dimensional manifold M = [(x,y, z) € R3 | z # 0], where
(7,9, ) are the cartesian coordinates in R3. Choosing the vector fields

0 0 0

:%a 62:%7 63:_57
which are linearly independent at each point of M. Set
0 0 0
=-®d —®d =—— = —dz.
o) 5‘® x+0x® Y, a7 " 2

Let g be the Riemannian metric define by

g=(dr@dr—dy®dy) +dz®dz

€1

glei,e3) = glez,e3) = g(ez,e2) =0, gler, e1) = g(ez, e2) = g(es, e3) = 1,
where € = +1. That is the form of the metric becomes Let 1 be the 1-form defined by
n(Z) = g(Z, e3) for any vector field Z on TM and ¢ be the (1,1) tensor field defined by
o(e1) = eq, o(e2) = ey, ¢(e3) = 0. Then by the linearity property of ¢ and g, we
have

$°Z=7-n(Z)es, nles)=1  g(¢pZ,¢W)=g(Z,W)—n(Z)n(W)
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for any vector fields Z, W on M.

Let V be the Levi-Civita connection with respect to the metric g. Then we have
le1,e2] = [e1,e3] = [ea,e3] = 0.
The Riemannian connection V with respect to the metric g is given by
29(VxY,Z) = Xg(Y,Z)+Yg(Z,X) — Zg(X.Y) + g([X,Y], Z)
—9([Y, 2], X) + 9(1Z, X], Y).

From above equation which is known as Koszul’s formula, we have

Ve, €3 = €1, Ve, €3 = e2, Vese3 =0,
veleQ = 0) v€262 = 637 V6362 - 62)
Velel = —€3, V6261 = 07 V€3el = €7.

Using the above relations, for any vector field X on M, we have
Vx¢ = (X —n(X)¢)

for £ € es. Hence the manifold M under consideration is a para-Kenmotsu manifold of
dimension three.

Thus it can be easily seen that (M3, $,£,n) is a para-Kenmotsu manifold. Hence one
can easily obtain by simple calculation that the curvature tensor, Ricci tensor components
and scalar curvature are as follows

R(ey,e2)es = eq, R(e1,e3)es = —ey, R(ea,e1)e; = —ea,
R(eq,e3)es = —ea, R(es,e1)er = es, R(e3,e2)es = —es,

and
S(ey,e1) = S(ea,e2) =0, S(es,es,) = —2.

Thus the scalar curvature r is constant. Therefore we have

r=S(e1,e1) + S(ea,ea) + S(es, es,) = —2.

From the expression (1.2) we have
2[g(eq, e:) = nlei)n(ei)] = 2(r — Mg(es, e5) = 0

for all 4 € {1,2,3}, and we have
2(1 = dig) — 2(r — N)g(ei, €) =0

for all i € {1,2,3},
we get A =1 (i.e. A > 0). Thus the data (g,&, \) is a Yamabe soliton on (M3, ¢,£,1,9),
i.e, expanding.

/ Bangmod Int. J. Math. & Comp. Sci., 2020



54

Mohd Danish Siddiq

REFERENCES

[1]

2]

[12]

[13]

[14]

[15]

A. M. Blaga, n-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl.
20 (2015), 1-13.

K. Erken, Yamabe solitons on three-dimensional normal almost para-contact metric
manifolds, arXiv. 1709.04882V2v2 [math. DG] 2017.

R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity,
(Santa Cruz. CA, 1986), Contemp. Math. 71, Amer. Math. Soc., (1988), 237-262.

S. Kaneyuki and F. L. Williams, Almost paracontact and parahodge structure on
manifolds, Nagoya Math. J., 99, (1985), 173-187.

S. Kundu, On Yamabe Soliton, Irish Math. Soc. Bull., 77, (2016), 51-60.

R. Sharma, Certain results on K-contact and (k, p)-contact manifolds, J. Geom.,
89(1-2) (2008), 138-147.

R. Sharma, A 3-Dimensional Sasakian Metric as a Yamabe Soliton, Intenational
Journal of Geometric Methods in Modern Physics, 09, (04), June 2012 ., 1220003 (5

pages).

M. D. Siddiqi, Generalized Yamabe solitons on Trans-Sasakian manifolds, Matem-
atika Instituti Byulleteni Bulletin of Institute of Mathematics, 3(2020), 77-85.

I. Sato, On a structure similar to the almost contact structure I, Tensor N.S, 30,
(1976), 219-224.

J. B. Jun, M. D. Siddiqi, Almost Quasi-Yamabe Solitons on Lorentzian concircular
structure manifolds- [(LC'S),,], Honam Mathematical Journal, 42(3) (2020), 521-536.

Takahashi, T., Sasakian manifold with pseudo-Riemannian metric, Thoku Math. J.,
21(2), (1969), 644-653.

Y. Wang, Yamabe solitons on three-dimensional Kenmotsu manifolds, Bull. Belg.
Math. Soc. Simon Stevin, 23, (2016), 345-355.

J. Welyczko, Slant curves in 3-dimensional normal almost paracontact metric
manifolds, Mediter, J. Math., (2013).

W. Kuhnel, H. B Rademacher, Conformal vector fields on pseudo-Rienmannian
spaces, Differ. Geom. Appl., 7, (1997), 237-250.

S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob. Anal.
Geom. 36(1), (2009), 37-60.

J ! Bangmod Int. J. Math. & Comp. Sci., 2020



	Introduction
	Preliminaries
	Yamabe soliton in Weyl-Conformally flat para-Kenmotsu manifold
	Yamabe soliton in Weyl-semi-symmetric para-Kenmotsu manifold
	Yamabe soliton in Einstein semi-symmetric para-Kenmotsu manifold
	Yamabe soliton in projectively flat para-Kenmotsu manifold
	Yamabe soliton in Weyl pseudo-symmetric para-Kenmotsu manifold
	Yamabe soliton in partially Ricci-pseudo-symmetric para-Kenmotsu manifold
	Yamabe soliton in partially Ricci-pseudo-symmetric para-Kenmotsu manifold
	Yamabe solitons in Weyl Ricci-pseudo symmetric para-Kenmotsu manifold
	example of para-Kenmotsu manifolds admitting Yamabe soliton

