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Abstract Thresholding is a basic method for image segmentation. First, we plot a histogram of image

to a quantum state. The quantum state represents pixel intensities, and the density matrix represents

their probability distribution. Secondly, we plot a histogram of the segment image to a quantum state.

The quantum state represents pixel intensities of classes. Finally, we obtain the optimal thresholding by

quantum Renyi entropy which explains physical interpretation in quantum language.
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1. Introduction

Biomedical imaging is a technique and process of producing visual representations of
areas inside the human body to diagnose medical problems and treatment planning. It has
a huge impact on public health. Medical image segmentation is one of the most important
parts that helps the doctor to obviously see the region of interest (ROI) of the normal,
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diseased anatomy and express the target. It has an important effect on image analysis
[1–5]. Digital imaging systems for medical diagnosis are important in health care. Initial
digital methods are Magnetic Resonance Imaging (MRI) or Computed Tomography (CT).
Radiography is nowadays equipped with digital sensors. Image processing is the popular
techniques used for dividing the digital image into multiple parts. The medical image
segmentation has played a vital role in scientific research, with the fundamental step to
analyze images and extract the data from imaging. In this paper, we focus on Positron
Emission Tomography (PET), which is an imaging technique that allow the doctor to see
how the organs and tissues are working. The image will collect areas of intensive chemical
activity, which is helpful because certain diseases have a higher level of chemical activity.
Areas of the disease will show up as bright spots on the PET scan.

In this case, we study Parkinson’s disease to make sure how much the concentration of
radioactivity is stored in the brain tissue. Parkinson’s disease (PD) affects the nerve cells
in the midbrain, which is called substantia nigra (putamen and caudate) that produces
dopamine which symptoms include muscle rigidity, tremors, and changes in speech and
gait. There are several studies on subtle morphological alterations such as atrophy in the
putamen and caudate [6–8] After diagnosis, treatments can help relieve symptoms. The
objective of segmentation is we want to know the concentration of radioactivity, which is
an uptake in brain tissue. Therefore, it is necessary to adopt image segmentation methods
to help us to extract the real data from PET imaging. There are so many different ways
to perform medical image segmentation, for example, image segmentation applications
include imaging data analysis [9–21].

Thresholding is a simple method of image segmentation. There are many advantages
such as fast processing and smaller storage space. Quantum mechanisms have been intro-
duced the image processing. There are several applications of quantum image processing
such as quantum edge detection [22] and quantum image segmentation [23].

In this paper, we solve the thresholding problem by using quantum state space. The
details of the image are represented by the quantum state. We choose the optimal thresh-
old based on the quantum Renyi entropy. The paper is explained as follows: Section 2
gives a description of the image thresholding, Section 3 introduces the criteria of thresh-
old such as between-class variance [24], Shannon entropy [25] and global quantum Renyi
entropy, Section 4 provides the experimental results and the last Section is the conclusion.

2. Thresholding

Thresholding [26] is a process in which a group of thresholds are chosen under some
criteria, and elements are divided into classes according to the following rule:

`→ Ci if thi−1 ≤ ` < thi

where ` ∈ [a, b] represents the level of elements, {thi : i = 1, . . . ,M − 1} is the set
of thresholds and {Ci : i = 1, . . . ,M} is the set of classes. Note that th0 = a and
thM = b+ 1.

Proposition 2.1. Suppose that the level of elements is an integer. Assume that {Ci :
i = 1, . . . ,M} the set of classes is defined by {thi : i = 1, . . . ,M −1} the set of thresholds.
Then also {Ci : i = 1, . . . ,M} the set of classes is defined by {dthie : i = 1, . . . ,M − 1}
the set of thresholds.

Proof. Since the level of elements is an integer, {Ci : i = 1, . . . ,M} the set of classes is
defined by {thi : i = 1, . . . ,M − 1} or {dthie : i = 1, . . . ,M − 1} set of thresholds.
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3. Criteria of Threshold

In this section, we assume that we divide finite elements into classes by thresholding.
Note that TH is a collection of the set of the threshold, i is index classes, ` is level of
elements, p` is the probability distribution of element at `-level, ωi is the probability of
occurrence of a class, and µi is the mean of a class. So we have

ωi =
∑

thi−1≤`<thi
p` and µi =

∑
thi−1≤`<thi

p`
ωi
`,

where p` is the probability distribution of element. Remark, if ωi = 0, then we define
µi = 0 and p`

ωi
= 0.

3.1. Between-Class Variance

In 1979, Otsu presented the discriminant criterion based on between-class variance
[24]. Otsu’s algorithm chooses the optimal thresholds by maximizing the function:

arg max
(th1,...,thM−1)∈TH

M∑
i,j=1

ωiωj(µi − µj)2. (3.1)

3.2. Shannon Entropy

In 1985, Kapur presented the discriminant criterion based on Shannon entropy [25].
Kapur’s algorithm chooses the optimal thresholds by maximizing the function:

arg max
(th1,...,thM−1)∈TH

M∑
i=1

H(Ci), (3.2)

Note that H(Ci) is the Shannon entropy, which is defined as:

H(Ci) = −
∑

thi−1≤`<thi

p`
ωi
log2

p`
ωi

.

Remark, if ωi = 0, then we define H(Ci) = 0.

3.3. Global Quantum Renyi Entropy (GQRE)

We present the discriminant criterion based on global quantum Renyi entropy. It look
like global quantum Von Neumann entropy maximization [27] where a = 0.

We represent the histogram of elements with the following:

|I >=
∑

a≤`≤b

√
p`|θ` > ⊗|` >,

where we encode the `-th level to |θ` >= cos(θ`)|0 > + sin(θ`)|1 >, which belongs to
the first subsystem (labelled as ”A”), by creating a bijective relationship between them,
namely

θ` = π
2

`
b−a , ` ∈ [a, b],

and |` > is the second subsystem (labelled as ”B”), which denotes the indices of the
element. The density matrix for the first subsystem A defined by:

ρ =
∑

a≤`≤b
p`|θ` >< θ`|.

It contains information about the probability distribution of elements.
We represent the histogram of the segmented element with the following:
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|I ′ >=
M∑
i=1

(
√
ωi|θ′i > ⊗

∑
thi−1≤`<thi

√
p`
ωi
|i >

)
,

where we encode the i-th class to |θ′i >= cos(θ′i)|0 > + sin(θ′i)|1 >, which belongs to
the first subsystem (labelled as ”A′”), by creating a bijective relationship between them,
namely

θ′i = π
2
µi
b−a .

|i > is the second subsystem (labelled as ”B′”), which denotes the indices of the element

in the class. Remark, if ωi = 0, then we define
√

p`
ωi

= 0. The density matrix for the first

subsystem A′ defined by:

ρ′ =
M∑
i=1

ωi|θ′i >< θ′i|.

It contains information about the probability of the occurrence of classes. So the quantum
Renyi entropy of ρ′ [28, 29]:

Sα(ρ′) = 1
1−αIn(Tr(ρ′

α

)) = 1
1−α ln(λα1 + λα2 ),

where λ1 and λ2 are eigenvalues of ρ′ such that α ∈ [0, 1)∪(1,∞). The optimal thresholds
are maximizing function:

arg max
(th1,...,thM−1)∈TH

Sα(ρ′). (3.3)

It is called the ”Global Quantum Renyi Entropy”.

Remark 3.1. [29] Let {αn} be a sequence that converges to 1. Then {Sαn(ρ)} is a
sequence of quantum Renyi entropy converse to S(ρ) quantum Von Neumann entropy :

S(ρ) = −Tr(ρlnρ) = −λ1ln(λ1)− λ2ln(λ2),

where λ1 and λ2 are eigenvalues of ρ.

4. Experiment

4.1. Test Images

The cameraman picture with size 256 × 256 was tested, see Figures 1 and 2. This
picture is small in size and has less number of pixel level. We divide it into 2 classes,
and compute the value of the criteria. See Figures 3, 5, 7, 9, 11, 13 and 15. Then we
get results. See Figures 4, 6, 8, 10, 12, 14 and 16. Table 1 shows the time of computing
algorithms.

Figure 1. Original Figure 2. Histogram
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Figure 3. Otsu’s Criteria Figure 4. Otsu’s Result

Figure 5. Kapur’s Criteria Figure 6. Kapur’s Result

Figure 7. Global Quan-
tum Renyi Entropy Criteria
(α = 0.8)

Figure 8. Global Quan-
tum Renyi Entropy Result
(α = 0.8)

Figure 9. Global Quan-
tum Renyi Entropy Criteria
(α = 0.9)

Figure 10. Global Quan-
tum Renyi Entropy Result
(α = 0.9)
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Figure 11. Global Quan-
tum Von Neumann Entropy
Criteria

Figure 12. Global Quan-
tum Von Neumann Entropy
Result

Figure 13. Global Quan-
tum Renyi Entropy Criteria
(α = 1.1)

Figure 14. Global Quan-
tum Renyi Entropy Result
(α = 1.1)

Figure 15. Global Quan-
tum Renyi Entropy Criteria
(α = 1.2)

Figure 16. Global Quan-
tum Renyi Entropy Result
(α = 1.2)

Criteria Time (sec)
Between-Class Variance 0.039049
Shannon Entropy 0.039827
Global Quantum Renyi Entropy (α = 0.8) 0.038152
Global Quantum Renyi Entropy (α = 0.9) 0.037357
Global Quantum Von Neumann Entropy 0.039463
Global Quantum Renyi Entropy (α = 1.1) 0.038237
Global Quantum Renyi Entropy (α = 1.2) 0.039148

Table 1. Time
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4.2. Brain X-Ray

Brain X-Ray with size 336 × 336 was tested, see Figure 17. We want a bright area
in Figure 17. Figure 18 is a rescaled brain X-ray. Figure 19 and 20 are histograms of
Figure 17 and 18, respectively. we want to separate three groups without zero pixels or
background. The first group is noisy, the second area of the brain is not bright, and the
third area of the brain is bright. Since the original image has a lot of the number of pixel
level (intensive chemical) and are separated into three groups, then the process of finding
the threshold will be very slow. Therefore, we need to find a threshold from the rescaling
image. Although we use thresholding, we necessary delete small areas in the image after
thresholding. See Figures 21, 22, 23, 24, 25, 26 and 27. Figures 28 and 29 are reference
image for comparing algorithms. Table 2 shows the time of computing algorithms, PSNR
and SNR.

Figure 17. Original Brain Figure 18. Rescale Brain

Figure 19. Histogram
Original Brain

Figure 20. Histogram
Rescale Brain
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(a) (b) (c)

Figure 21. Figure (a), (b) and (c) show the Otsu’s criteria, thresholding
result and result without noise, respectively.

(a) (b) (c)

Figure 22. Figure (a), (b) and (c) show the Kapur’s criteria, thresh-
olding result and result without noise, respectively.

(a) (b) (c)

Figure 23. Figure (a), (b) and (c) show the Global Quantum Renyi
Entropy criteria (α = 0.8), thresholding result and result without noise,
respectively.
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(a) (b) (c)

Figure 24. Figure (a), (b) and (c) show the Global Quantum Renyi
Entropy criteria (α = 0.9), thresholding result and result without noise,
respectively.

(a) (b) (c)

Figure 25. Figure (a), (b) and (c) show the Global Quantum Von Neu-
mann Entropy criteria, thresholding result and result without noise, re-
spectively.
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(a) (b) (c)

Figure 26. Figure (a), (b) and (c) show the Global Quantum Renyi
Entropy criteria (α = 1.1), thresholding result and result without noise,
respectively.

(a) (b) (c)

Figure 27. Figure (a), (b) and (c) show the Global Quantum Renyi
Entropy criteria (α = 1.2), thresholding result and result without noise,
respectively.

Figure 28. Reference Area Figure 29. Reference Brain
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Criteria Time (sec) PSNR SNR
Between-Class Variance 4.252742 31.6596 7.9733
Shannon Entropy 4.814529 26.2509 2.5645
Global Quantum Renyi Entropy (α = 0.8) 2.028647 36.3647 12.6783
Global Quantum Renyi Entropy (α = 0.9) 1.908024 36.3647 12.6783
Global Quantum Von Neumann Entropy 2.313753 36.3647 12.6783
Global Quantum Renyi Entropy (α = 1.1) 2.157493 36.3647 12.6783
Global Quantum Renyi Entropy (α = 1.2) 2.543781 36.3647 12.6783

Table 2. Compare

5. Conclusion

We solve the image thresholding problem by using quantum Renyi entropy. First, we
plot histogram of elements to a quantum state. The quantum state represents elements
intensities and the density matrix represents their probability distribution. Secondly, we
plot histogram of the segment elements to a quantum state which represents elements
intensities of classes. The optimal threshold is divided into classes that is the largest
quantum information. We presented new criteria called global quantum Renyi entropy
maximization. It determines the optimal thresholds in the quantum language. Some-
times, elements have a lot of the number of pixel level and we want to separate them into
many groups. Thus the process of finding threshold become very slow. Therefore, we find
a threshold from the rescaling elements.
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