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1. Introduction

In 1982, Hamilton [8] introduced the concept of Ricci flow and proved its existence. The
Ricci flow is an evolution equation for the metrics on a Remannian manifold given by

∂

∂t
g = −2Ric,

where g is the Riemannian metric and Ric denotes the Ricci tensor.
A self-similar solution to the Ricci flow (see, [8], [13]) is called Ricci soliton [9] if it move
only by a one parameter family of diffeomorphism and scaling. The Ricci soliton equation
is given by

LV g + 2Ric+ 2τ1g = 0, (1.1)

where L, g, Ric, V and τ1 denote the Lie derivative, Riemannian metric, Ricci tensor,
a complete vector field and a real scalar on a Riemannian manifold M respectively. A
Ricci soliton (g, V, τ1) is said to be shrinking, steady and expanding according as τ1 is
negative, zero and positive respectively. A Ricci soliton with V = 0 reduced to Einstein
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equation. It became more important when Grigory Perelman applied Ricci solitons to
solve the long standing Poincaré conjecture posed in 1904.

Fischer [7] initiated the concept of conformal Ricci flow, which is a variation of the
classical Ricci flow equation that modifies the unit volume constraint of that equation to
a scalar curvature constraint. The conformal Ricci flow on a smooth closed connected
oriented n-manifold M is defined by the equation

∂g

∂t
+ 2

(
Ric+

g

n

)
= −pg, r(g) = −1, (1.2)

where p is a non-dynamical field (time dependent scalar field), r(g) is the scalar curvature
of the n-dimensional manifold. The conformal Ricci flow equations are analogous to the
Navier-Stokes equations of fluid mechanics and because of this analogy the time dependent
scalar field p is called a conformal pressure and, as for the real physical pressure in fluid
mechanics that serves to maintain the incompressibility of the fluid, the conformal pressure
serves as a Lagrange multiplier to conformally deform the metric flow so as to maintain the
scalar curvature constraint. The equilibrium points of the conformal Ricci flow equations
are Einstein metrics with Einstein constant − 1

n . Thus the conformal pressure p is zero at
an equilibrium point and positive otherwise.

In 2015, Basu and Bhattacharyya [2] introduced the idea of conformal Ricci soliton
defined by the equation as

LV g + 2Ric = [2τ1 − (p+
2

n
)]g, (1.3)

where τ1 is constant. This equation is the generalization of the Ricci soliton equation and
it also satisfies the conformal Ricci flow equation.

In 2009, Jong Taek Cho and Makoto Kimura introduced the notion of η-Ricci soliton
[14], given by the equation

LV g + 2Ric = 2τ1g + 2τ2η ⊗ η, (1.4)

for constants τ1 and τ2.
In 2018, M. D. Siddiqi [12] introduced the notion of Conformal η-Ricci soliton as

LV g + 2Ric+ [2τ1 − (p+
2

n
)]g + 2τ2η ⊗ η = 0, (1.5)

where LV is the Lie derivative along the vector field V , Ric is the Ricci tensor, τ1 and τ2
are constants, p is a scalar non-dynamical field (time dependent scalar field) and n is the
dimension of manifold.
A solution to the Yamabe flow, g(t), is called a Yamabe soliton if there exists a smooth
function γ(t) and a 1-parameter family of diffeomorphisms {ψ(t)} of M such that

g(t) = γ(t)ψ∗t (g0),

with γ(0)=1 and ψ0=idM . Here, the Yamabe flow, which is the parabolic analogue of
the Yamabe equation, is defined as

d

dt
g(t) = −σ(t)g(t), g(0) = g0. (1.6)

We notice that Yamabe flow has been studied extensively by the several authors (see,
[1],[3],[4],[10],[11],[6]). On substituting g(t) = γ(t)ψ∗t (g0), into (1.6), and evaluating it at
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t=0, we get

(σ − τ1)g =
1

2
LV g, (1.7)

where τ1=γ́(0), V is the vector field generated by the 1-parameter family {ψ(t)} and
LV g denotes the Lie-derivative of the metric g along the vector field V , σ is the scalar
curvature. It is called shrinking, steady or expanding if τ1 > 0, steady if τ1 = 0 or τ1 < 0
respectively.
In this context we define the notion of η-Yamabe soliton as

1

2
LV g = (σ − τ1)g − τ2η ⊗ η, (1.8)

where τ1 and τ2 are contants and η is a 1-form. Moreover if τ2=0, the above equation
reduces to (1.7) and so the η-Yamabe soliton becomes Yamabe soliton.

2. Hypersurfaces of a complex space form

Definition 2.1. A Kähler manifold M̂n+1 is called a complex space form if it has constant
holomorphic sectional curvature.

The Riemannian curvature tensor R̂ of a complex space form as follows

R̂(X,Y )Z = κ[g(Y,Z)X − g(X,Z)Y

+ g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ].
(2.1)

Let Mn be a hypersurface of a complex space form M̂n+1 with constant holomorphic
sectional curvature 4κ and N a unit normal vector field on Mn such that N=Jξ. We
define a metric g on Mn as

g(X,Y ) = ĝ(ιX, ιY ),

for any X, Y ∈ TM . The Riemannian metric g is said the induced metric from ĝ
on M̂n+1(4κ) and the ι is called an isometric immersion and denotes by J the almost
complex structure of the ambient manifold and by A the shape operator with respect to
N=Jξ of Mn. For any vector field X ∈ χ(M) the decomposition holds:

JX = φX + η(X)N. (2.2)

The structure (φ, η, ξ, g) is an almost contact metric structure on Mn such that

φ2 = Id+ ηξ, η(ξ) = 1, φξ = 0, ηφ = 0. (2.3)

and

ĝ(φX, φY ) = ĝ(X,Y )− η(X)η(Y ), η(X) = ĝ(X, ξ). (2.4)

A CR-submanifold is a submanifold Mn tangent to ξ that admits an invariant distribution
D whose orthogonal complementary distribution D⊥ is anti-invariant, that is, TM=D⊕
D⊥ with condition φ(Dp) ⊂ Dp for all p ∈ M and φ(D⊥p ) ⊂ T⊥p M for all p ∈ M , where

D= span{X1, ..., Xm, φX1, ..., φXm} and D⊥=span(ξ) such that m=n−1
2 .

The Gauss and Weingarten formula between M̂n+1(4κ) and Mn are given as

∇̂XY = ∇XY + g(AX,Y )N, ∇̂XN = −AX +DXN, (2.5)
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for any tangent vector fields X, Y , where ∇̂ and ∇ denote the Levi-Civita connection of
(M̂n+1(4k), ĝ) and (M, g), respectively. From (2.2) and ∇̂J=0, we obtain

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = φAX. (2.6)

Again from (2.2), we have the Gauss and Codazzi equations

g(R(X,Y, Z), U) = κ[g(Y,Z)X − g(X,Z)Y

+ g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ]

+ g(AY,Z)AX − g(AX,Z)AY,

(2.7)

(∇XA)Y − (∇YX) = κ[η(X)φY − η(Y )φX − 2g(φX, Y )ξ], (2.8)

Ric(X,Y ) = κ[(2n+ 1)g(X,Y )− 3η(X)η(Y )]

+ (traceA)g(AX,Y )− g(AX,AY ),
(2.9)

for any tangent vector fields X,Y ,Z on M , where R and Ric are the curvature and Ricci
tensors of M , respectively.
As per the assumption, it follows that A=0, or AX=πX for all X ∈ T (M), provided
π 6= 0. Thus, equation (2.9), reduces for AX=πX, that

Ric(ei, ej) = (n− 1)π2δi,j , (i, j = 1, . . . , n− 1), (2.10)

Ric(ξ, ξ) = (n− 1)π2, (2.11)

Ric(ei, ξ) = 0, (i = 1, . . . , n− 1). (2.12)

We recall the following theorem (see M. Djorić and M. Okumura [5]):

Theorem 2.2. Let Mn be a hypersurface of a complex space form M̂n+1(4κ). If the shape

operator A for N has only one eigenvalue, then M̂n+1 is a complex Euclidean space.

3. Main Results

Basically, we consider conformal η-Ricci solitons and η-Yamabe solitons on hypersurface
Mn of a complex space form M̂n+1(4κ) restricted to the shape operator A with respect
to N=Jξ has only one eigenvalues. The main purpose of this section is to prove the
following:

Theorem 3.1. Let Mn be a hypersurface of complex space form Cn+1 with AX=πX.Then
a conformal η-Ricci soliton (g, V, τ1, τ2) with potential field V=ψξ is always shrinking
Ricci soliton.

Proof. Let the hypersurface Mn of a complex space form M̂n+1 admitting conformal
η-Ricci soliton. Then from (1.5), we have

LV g + 2Ric+ [2τ1 − (p+
2

n
)]g + 2τ2η ⊗ η = 0, (3.1)

We substitute

V = ψξ, (ψ : M → <, ψ 6= 0). (3.2)
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With the definition of Lie derivative and using (2.6), we obtain

(Lψξg)(X,Y ) = dψ(X)η(Y ) + dψ(Y )η(X). (3.3)

From (3.3) we easily compute that

(Lψξg)(ξ, ξ) = 2dψ(ξ), (3.4)

(Lψξg)(ξ, ei) = dψ(ei), (i = 1, 2, . . . , n− 1), (3.5)

(Lψξg)(ei, ej) = 0, (i, j = 1, 2, . . . , n− 1), (3.6)

With the help of (2.10), (2.11), (2.12), (3.4), (3.5) and (3.6), equation (3.1) equivalent to

dψ(ξ) = −[τ1 + τ2 + (n− 1)π2 − 1

2
(p+

2

n
)], (3.7)

dψ(ei) = 0, (i = 1, 2, . . . , n− 1), (3.8)

[(n− 1)π2 + τ1 +
1

2
(p+

2

n
)]δi,j = 0, (i, j = 1, 2, . . . , n− 1), (3.9)

It is clear from (3.9), that τ1 = −[(n− 1)π2 + 1
2 (p+ 2

n )]. So we have our result.

Also, we have the corollary

Corollary 3.2. Let Mn be a hypersurface of complex space form Cn+1 with AX=πX.Then
a conformal Ricci soliton (g, V, τ1, τ2) with potential field V=ψξ is always shrinking Ricci
soliton.

Theorem 3.3. Let Mn be a hypersurface of complex space form Cn+1 with A=0.Then a
conformal η-Ricci soliton (g, V, τ1, τ2) with potential field V=ψξ is always expanding Ricci
soliton.

Proof. Let the hypersurface Mn(n ≥ 3) in a complex space form M̂n+1(4κ) admitting
conformal η-Ricci soliton with A=0. Then from (2.9), we get Ric(X,Y )=0, we calculate

dψ(ξ) = −[τ1 + τ2 −
1

2
(p+

2

n
)], (3.10)

dψ(ei) = 0, (i = 1, 2, . . . , n− 1), (3.11)

[2τ1 − (p+
2

n
)]δi,j = 0, (i, j = 1, 2, . . . , n− 1), (3.12)

It is clear from (3.12), that τ1 = 1
2 (p+ 2

n ). This finishes the proof of Theorem 3.2.

We have the following corollary.

Corollary 3.4. Let Mn be a hypersurface of complex space form Cn+1 with A=0.Then a
conformal Ricci soliton (g, V, τ1, τ2) with potential field V=ψξ is always expanding Ricci
soliton.
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Proof. It is well know that ∇g = 0. Since [2τ1 − (p + 2
n )], defined in equation (1.5), is a

constant, therefore ∇[(2τ1− (p+ 2
n )]g = 0. It means LV g+ 2Ric is parallel. Therefore we

conclude that LV g+ 2Ric = Φ (say) is a constant multiple of the metric tensor g, that is,

(LV g + 2Ric)(X,Y ) = Φ(X,Y ) = Φ(X,Y )g(X,Y ),

Taking

V = ψξ, (ψ : M → <, ψ 6= 0).

Using (2.10), (2.11), (2.12), (3.4), (3.5) and (3.6), we obtain Φ(X,Y ) as follows

Φ(ξ, ξ) = 2dψ(ξ) + 2(n− 1)π2, (3.13)

Φ(ξ, ei) = dψ(ei), (i = 1, . . . , n− 1), (3.14)

Φ(ei, ej) = 2(n− 1)π2δij , (i, j = 1, . . . , n− 1). (3.15)

By virtue of (3.14),(3.15) and (3.16), equation (3.1) turn up

dψ(ξ) = −[(n− 1)π2 + τ1 + τ2 −
1

2
(p+

2

n
)], (3.16)

dψ(ei) = 0, (i = 1, 2, . . . , n− 1), (3.17)

[2(n− 1)π2 + 2τ1 − (p+
2

n
)]δi,j = 0, (i, j = 1, 2, . . . , n− 1), (3.18)

It is clear from (3.18), that τ1 = [ 12 (p + 2
n ) − (n − 1)π2]. Thus we are in a condition to

write the following.

Theorem 3.5. If the symmetric tensor Lψξg + 2Ric=Φ is parallel on the hypersur-
face of complex space form Cn+1 with with AX=πX.Then a conformal η-Ricci soliton
(g, V, τ1, τ2) with potential field V=ψξ to be
(i) expanding if 1

2

(
p+ 2

n

)
> (n− 1)π2,

(ii) shrinking if 1
2

(
p+ 2

n

)
< (n− 1)π2,

(iii) steady if 1
2

(
p+ 2

n

)
= (n− 1)π2.

In view of Theorem 3.3. We have the following corollary

Corollary 3.6. If the symmetric tensor Lψξg+2Ric=Φ is parallel on the hypersurface of
complex space form Cn+1 with with AX=πX.Then a conformal Ricci soliton (M, g, V, τ1)
with potential field V=ψξ to be
(i) expanding if 1

2

(
p+ 2

n

)
> (n− 1)π2,

(ii) shrinking if 1
2

(
p+ 2

n

)
< (n− 1)π2,

(iii) steady if 1
2

(
p+ 2

n

)
= (n− 1)π2.

Again, we consider A=0, then from (2.9), we have Ric(X,Y )=0. Let the hypersurface

Mn(n ≥ 3) in a complex space form M̂n+1(4κ) admitting conformal η-Ricci soliton, then
we can find Φ(X,Y ), i.e.,

Φ(ξ, ξ) = 2dψ(ξ), (3.19)
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Φ(ξ, ei) = dψ(ei), (i = 1, . . . , n− 1), (3.20)

Φ(ei, ej) = 0, (i, j = 1, . . . , n− 1). (3.21)

Using above these fact the equation (3.1), reduces to

dψ(ξ) = −[τ1 + τ2 −
1

2
(p+

2

n
)], (3.22)

dψ(ei) = 0, (i = 1, 2, . . . , n− 1), (3.23)

[2τ1 − (p+
2

n
)]δi,j = 0, (i, j = 1, 2, . . . , n− 1), (3.24)

It is clear from (3.24), that τ1=[ 12 (p + 2
n )]. Thus we are in a condition to write the

following

Theorem 3.7. If the symmetric tensor Lψξg + 2Ric=Φ is parallel on the hypersurface
of complex space form Cn+1 with with A=0.Then a conformal η-Ricci soliton (g, V, τ1, τ2)
with potential field V = ψξ to be always expanding.

Corollary 3.8. If the symmetric tensor Lψξg + 2Ric=Φ is parallel on the hypersurface
of complex space form Cn+1 with with A=0.Then a conformal Ricci soliton (g, V, τ1) with
potential field V = ψξ to be always expanding.

At last, we mention the following result

Theorem 3.9. If the hypersurface of complex space form Cn+1 with AX=πX admitting
η-Yamabe soliton (g, V, τ1, τ2) with potential field V = ψξ then the scalar curvature is
constant.

Proof. With the help of (3.4),(3.5) and (3.6), the equation (1.7) transform that

dψ(ξ) = σ − (τ1 + τ2), (3.25)

dψ(ei) = 0, (i = 1, 2, . . . , n− 1), (3.26)

(σ − τ1)δi,j = 0, (i, j = 1, 2, . . . , n− 1), (3.27)

It is clear from (3.27), that σ=τ1. Now as τ1 are constant, so σ is also constant. Therefore
proof is completed.

Also, we have the following corollary

Theorem 3.10. If the hypersurface of complex space form Cn+1 with AX=πX admitting
Yamabe soliton (g, V, τ1) with potential field V=ψξ then V is a Killing vector field.
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