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1. Introduction

The support vector machine (SVM) [1, 2] produces state-of-the-art results in a wide
range of applications, with theoretical guarantees. SVM solves a quadratic programming
problem (QPP), ensuring that the optimal solution achieved is really the unique global
solution. So, SVM establishes a more reasonable classifier and it has a wide range of
applications [3–7]. SVM determines an optimal separating hyperplane that maximizes
the margin between two classes of data samples. The structural risk minimization (SRM)
idea is used in SVM to improve generalization ability, but it has a high computational
complexity because it requires solving a single large size QPP.

To accelerate the computational complexity of SVM, Jayadeva [8] developed a method
called a novel twin support vector machine (TSVM) for binary classification. TSVM
solving two smaller QPPs separately which makes the approach four times faster than
the SVM that solves one large QPP. In the last decade, TSVM has been extensively stud-
ied and improved, such as twin parametric margin SVM (TPMSVM) [9], twin bounded
SVM (TBSVM) [10], weighted Lagrangian TSVM (WLTSVM) [11], least squares TSVM
(LSTSVM) [12–14], large scale TSVM [15], Sparse pinball TSVM [16], and so on. To
implement the SRM idea in TSVM and avoid the singularity problem, some researchers
[17, 18] added an extra regularization term to the objective function in TSVM primal
problems. Recently some classifiers based on TSVM such as the GPin-TSVM have been
proposed by Panup [19] which lower sensitivity to noise and to handle losing sparsity.
The optimal solutions of GPin-TSVM are obtained by solving a pair of quadratic pro-
gramming problems (QPPs) and the matrics appearing in the formulation of GPin-TSVM
are positive semi-definite. It is possible that these matrics mat not be well condition in
some situations. To take care of possible ill-conditioning of these matrics, we improve the
classification performance of GPin-TSVM, called improved version of twin support vector
machine with generalized pinball (GPin-ITSVM) by adding an extra regularization term
to the objective function of GPin-TSVM in primal problems. The primary advantage of
GPin-ITSVM over GPin-TSVM is that the matrices in the dual formulation of the pro-
posed GPin-ITSVM are positive definite. Our GPin-ITSVM has the following appealing
advantages:

• For pattern classification, we adding an extra regularization term to the ob-
jective function of GPin-TSVM in primal problems, called improved TSVM with
generalized pinball (GPin-ITSVM) which ensures the quality yields high testing
accuracy.
• The UCI benchmark datasets is chosen to show the performance of our pro-
posed GPin-ITSVM, which is compared to the state-of-the-art TSVM, TBSVM,
and GPin-TSVM. Numerical testing on datasets from UCI benchmarks illustrate
that the prediction accuracy of our proposed GPin-ITSVM is superior to that of
existing classifiers.
• We determine the applicability of our proposed GPin-ITSVM to Weizmann
activity recognition applications compare with TSVM, TBSVM and generalized
pinball TSVM (GPin-TSVM). Moreover, we have used the automatic feature
extractor by use of 5 types of Convolution Neural Network (CNN) models which
are ResNet50, ResNet152V2, InceptionV3, InceptionResNetV2 and Xception and
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the softmax layer of CNN is replaced by binary classifier (TSVM, TBSVM, GPin-
TSVM and GPin-ITSVM).

Section 2 briefly reviews TSVM, TBSVM, and generalized pinball TSVM. We present
an GPin-ITSVM in Section 3. Section 4 show the efficiency of our proposed GPin-TSVM
by using UCI Machine Learning Repository is compared to TSVM, TBSVM and GPin-
TSVM and the application of the proposed GPin-ITSVM algorithms in human activity
recognition applications. Section 5 concludes the paper.

2. Preliminaries

In this section, we present a brief description of TSVM [8], TBSVM [? ] and GPin-
TSVM [19] formulations.

2.1. Twin Support Vector Machine

Consider a binary classification problem of m1 positive class and m2 negative class.
Further, let A ∈ Rm1×n and B ∈ Rm2×n be the matrices containing the feature vectors
of the samples of class +1 and −1, respectively. TSVM [8] need to find two non-parallel
hyperplanes defined as follows:

x⊤w1 + b1 = 0 and x⊤w2 + b2 = 0 (2.1)

where w1, w2 ∈ Rn and b1, b2 ∈ R. Here, each hyperplane is closer to one of the two
classes and is at least one distance from the other. Hence, the twin support vector
machine (TSVM) based on hinge loss function leads to the following pair of QPPs:

min
w1,b1,ξ

1

2
∥Aw1 + e1b1∥2 + c1e

⊤
2 ξ

s.t. − (Bw1 + e2b1) + ξ ≥ e2, ξ ≥ 0, (2.2)

and

min
w2,b2,ξ

1

2
∥Bw2 + e2b2∥2 + c2e

⊤
1 ξ

s.t. (Aw2 + e1b2) + ξ ≥ e1, ξ ≥ 0, (2.3)

where c1 and c2 are positive penalty parameters, ξ is a slack variable and e1 and e2 are
vectors of ones of appropriate dimensions. By introducing the Lagrangian multipliers α
and β, the dual of QPPs (2.2) and (2.3) can be represented respectively as follows:

min
α

1

2
α⊤G(H⊤H)G⊤α− e⊤1 α

s.t. 0 ≤ α ≤ c1e1, (2.4)

where G =
[
B e1

]
, H =

[
A e2

]
, and

min
β

1

2
β⊤H(G⊤G)H⊤β − e⊤2 β

s.t. 0 ≤ β ≤ c2e2. (2.5)

A new sample point x ∈ Rn is assigned to class i(i = +1 or − 1) by

class(i) = arg min
i=1,2

|x⊤wi + bi|
∥wi∥

. (2.6)
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2.2. Twin bounded Support Vector Machine

Shao et al. [10] proposed an improved TSVM also named as twin bounded support
vector machine and also used regularization term into the TSVM. The primal problems
of the TBSVM is given as follows:

min
w1,b1,ξ

1

2
∥Aw1 + e1b1∥2 + c1e

⊤
2 ξ +

c3
2

(
∥w1∥2 + b21

)

s.t. − (Bw1 + e2b1) + ξ ≥ e2, ξ ≥ 0, (2.7)

and

min
w2,b2,ξ

1

2
∥Bw2 + e2b2∥2 + c2e

⊤
1 ξ +

c4
2

(
∥w2∥2 + b22

)

s.t. (Aw2 + e1b2) + ξ ≥ e1, ξ ≥ 0, (2.8)

where c1, c2, c3 and c4 are positive penalty parameters, ξ is a slack variable, and e1 and
e2 are vectors of ones of appropriate dimensions. 1

2

(
∥w1∥ + b21

)
and 1

2

(
∥w2∥ + b22

)
are

the extra regularization terms which minimize the training error. By introducing the
Lagrangian multipliers, the dual of QPPs (2.7) and (2.8) can be represented respectively
as follows:

min
α

1

2
α⊤H(G⊤G+ c3I)

−1H⊤α− e⊤2 α

s.t. 0 ≤ α ≤ c1e2 (2.9)

and

min
β

1

2
β⊤G(H⊤H + c4I)

−1G⊤β − e⊤1 β

s.t. 0 ≤ β ≤ c2e1. (2.10)

Once we obtain the solutions of problems (2.9) and (2.10), a new sample point x ∈ Rn is
assigned to class i(i = +1 or − 1) by using (2.6) similar to the TSVM.
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2.3. Twin support vector machine with generalized pinball loss (GPin-
TSVM)

Panup et al. [19] develpoed TSVM using the generalized pinball loss to address the
shortcomings of hinge loss. GPin-TSVM is noise insensitive, sparse and performs predic-
tion. They obtain the following pair of QPPs:

min
w1,b1,ξ

1

2
∥Aw1 + e1b1∥2 + c1e

⊤
2 ξ

s.t. − (Bw1 + e2b1) ≥ e2 −
1

τ1
(ξ + e2ϵ1), (2.11)

− (Bw1 + e2b1) ≤ e2 +
1

τ2
(ξ + e2ϵ2),

ξ ≥ 0,

and

min
w2,b2,ξ

1

2
∥Bw2 + e2b2∥2 + c2e

⊤
1 ξ

s.t. Aw2 + e1b2 ≥ e1 −
1

τ1
(ξ + e1ϵ1), (2.12)

Aw2 + e1b2 ≤ e1 +
1

τ2
(ξ + e1ϵ2),

ξ ≥ 0,

where τ1, τ2, ϵ1 and ϵ2 are non-negative parameters, c1 and c2 are positive penalty param-
eters, ξ is a slack variable, and e1 and e2 are vectors of ones of appropriate dimensions. By
introducing the Lagrange multipliers, the dual of QPPs (2.11) and (2.12) can be derived
respectively as follows:

min
α,λ

1

2
λ⊤Q(P⊤P )−1Q⊤λ− λ⊤e2(1 +

ϵ2
τ2

) + α⊤e2

(
ϵ1
τ1

+
ϵ2
τ2

)

s.t. 0 ≤
(

1

τ1
+

1

τ2

)
α− λ

τ2
≤ c1e2, (2.13)

α ≥ 0,α− λ ≥ 0.

min
ω,µ

1

2
µ⊤P (Q⊤Q)−1P⊤µ− µ⊤e1(1 +

ϵ4
τ4

) + ω⊤e1

(
ϵ3
τ3

+
ϵ4
τ4

)

s.t. 0 ≤
(

1

τ3
+

1

τ4

)
ω − µ

τ4
≤ c2e1, (2.14)

ω ≥ 0, µ ≥ 0.

Similarly, a new sample point x ∈ Rn is assigned to class i(i = +1 or − 1) by using (2.6).

3. Proposed an Improved twin support vector machine with gen-
eralized pinball loss (GPin-ITSVM)

In this section, we propose an GPin-ITSVM base on GPin-TSVM. We improve the per-
formance of GPin-TSVM by including a regularization term into the objective function.
Our proposed GPin-ITSVM implements the structural risk minimization principle that
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also generates optimal results, while minimizing error and maximizing the the general-
ization ability of the classifier. We discuss GPin-ITSVM in both the linear and nonlinear
cases.

3.1. Linear case

The GPin-ITSVM can be represented as follows:

min
w1,b1,ξ

1

2
∥Aw1 + e1b1∥2 + c1e

⊤
2 ξ +

c3
2

(
∥w1∥2 + b21

)

s.t. − (Bw1 + e2b1) ≥ e2 −
1

τ1
(ξ + e2ϵ1), (3.1)

− (Bw1 + e2b1) ≤ e2 +
1

τ2
(ξ + e2ϵ2),

ξ ≥ 0,

and

min
w2,b2,ξ

1

2
∥Bw2 + e2b2∥2 + c2e

⊤
1 ξ +

c4
2

(
∥w2∥2 + b22

)

s.t. Aw2 + e1b2 ≥ e1 −
1

τ1
(ξ + e1ϵ1), (3.2)

Aw2 + e1b2 ≤ e1 +
1

τ2
(ξ + e1ϵ2),

ξ ≥ 0

where τ1, τ2, ϵ1 and ϵ2 are non-negative parameters, c1, c2, c3 and c4 are positive penalty
parameters, ξ is a slack variable, and e1 and e2 are vectors of ones of appropriate dimen-
sions. To obtain the solutions of (3.1) and (3.2), we convert them to the dual form. We
consider (3.1) for this purpose and introduce the corresponding Lagrange function with
Lagrange multipliers α ≥ 0,β ≥ 0 and γ ≥ 0 as follows:

L(w1, b1, ξ,α,β, γ) =
1

2
(Aw1 + e1b1)

⊤(Aw1 + e1b1) + c1e
⊤
2 ξ +

c3
2

(
∥w1∥2 + b21

)

− α⊤(− (Bw1 + e2b1)− e2 +
1

τ1
(ξ + e1ϵ1)

)
− β⊤ξ (3.3)

− γ⊤((Bw1 + e2b1) + e2 +
1

τ2
(ξ + e2ϵ2)

)
.
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Applying the the KarushKuhnTucker (KKT) optimality conditions [20] on (3.3), we get:

∂L
∂w1

= A⊤(Aw1 + e1b1) + c3w1 + α⊤B − γ⊤B = 0, (3.4)

∂L
∂b1

= e⊤1 (Aw1 + e1b1) + c3b1 + α⊤e2 − γ⊤e2 = 0, (3.5)

∂L
∂ξ

= c1e2 −
α

τ1
− β − γ

τ2
= 0, (3.6)

α⊤(− (Bw1 + e2b1)− e2 +
1

τ1
(ξ + e1ϵ1)

)
= 0, (3.7)

β⊤ξ = 0, (3.8)

γ⊤((Bw1 + e2b1) + e2 +
1

τ2
(ξ + e2ϵ2)

)
= 0. (3.9)

By combining equations (3.4) and (3.5), we can obtain
[
A⊤

e⊤1

] [
A e1

] [w1

b1

]
+ c3

[
w1

b1

]
+

[
B⊤

e⊤2

]
(α− γ) = 0. (3.10)

Define λ = α − γ, P =
[
A e1

]
and Q =

[
B e2

]
. With these notations, the equation

(3.10) can be rewritten as follows:

P⊤P

[
w1

b1

]
+ c3

[
w1

b1

]
+Q⊤λ = 0, i.e.,

[
w1

b1

]
= −(P⊤P + c2I)

−1Q⊤λ. (3.11)

Using equation (3.3) and the above KKT optimality conditions, we can obtain the dual
of (3.1) as follows:

min
α,λ

1

2
λ⊤Q(P⊤P + c3I)

−1Q⊤λ− λ⊤e2(1 +
ϵ2
τ2

) + α⊤e2

(
ϵ1
τ1

+
ϵ2
τ2

)

s.t. c1e2 −
(

1

τ1
+

1

τ2

)
α− β − λ

τ2
= 0, (3.12)

α ≥ 0,β ≥ 0,α− λ ≥ 0.

In a similar manner, we can obtain the dual problem of (3.2) as follows:

min
ω,µ

1

2
µ⊤P (Q⊤Q+ c4I)

−1P⊤µ− µ⊤e1(1 +
ϵ2
τ2

) + ω⊤e1

(
ϵ1
τ1

+
ϵ2
τ2

)

s.t. c2e1 −
(

1

τ1
+

1

τ2

)
ω − η − µ

τ2
= 0, (3.13)

ω ≥ 0, η ≥ 0,ω − µ ≥ 0,

where ω ≥ 0, η ≥ 0 and µ ≥ 0 are Lagrange multipliers. After the solution of the QPPs
(3.12) and (3.13) are found, the optimal separating hyperplanes are given by:
[
w1

b1

]
= −(P⊤P + c3I)

−1Q⊤λ

and
[
w2

b2

]
= (Q⊤Q+ c4I)

−1P⊤µ. (3.14)
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A new sample x ∈ Rn is assigned to class i(i = +1 or − 1) depending on which of the
two hyperplanes in (2.1) is closer to x, i.e.,

class(i) = arg min
i=1,2

|x⊤wi + bi|
∥wi∥

. (3.15)

3.2. Nonlinear case

We use a kernel trick [21] to extend the linear GPin-ITSVM to the nonlinear case. Some
nonlinear kernel functions map the input data into a high-dimensional feature space. If
K(·, ·) is the predefined kernel function, then the nonparallel hyperplanes in the kernel-
generated space can be written as follows:

K(x⊤, D⊤)u1 + b1 = 0 and K(x⊤, D⊤)u2 + b2 = 0, (3.16)

where D =

[
Am1×n

Bm1×n

]
, u1, u2 ∈ Rm and K is an arbitrary kernel function. The corre-

sponding problems for the nonlinear case of the problem (3.1) and (3.2) are

min
u1,b1,ξ

1

2
∥K(A,D⊤)u1 + e1b1∥+ c1e

⊤
2 ξ +

c3
2

(
∥w1∥2 + b21

)

s.t. − (K(B,D⊤)u1 + e2b1) ≥ e2 −
1

τ1
(ξ + e2ϵ1), (3.17)

− (K(B,D⊤)u1 + e2b1) ≤ e2 +
1

τ2
(ξ + e2ϵ2),

ξ ≥ 0,

and

min
u2,b2,ξ

1

2
∥K(B,D⊤)u2 + e2b2∥+ c2e

⊤
1 ξ +

c4
2

(
∥w2∥2 + b22

)

s.t. K(A,D⊤)u2 + e1b2 ≥ e1 −
1

τ1
(ξ + e1ϵ1), (3.18)

K(A,D⊤)u2 + e1b2 ≤ e1 +
1

τ2
(ξ + e1ϵ2),

ξ ≥ 0.

By introducing the Lagrange function in QPP (3.17), we get that

L(u1, b1,ξ,α,β, γ) =
1

2
(K(A,D⊤)u1 + e1b1)

⊤(K(A,D⊤)u1 + e1b1) + c1e
⊤
2 ξ

+
c3
2

(
∥u1∥2 + b21

)
− α⊤(− (K(B,D⊤)u1 + e2b1)− e2 +

1

τ1
(ξ + e1ϵ1)

)

− β⊤ξ − γ⊤((K(B,D⊤)u1 + e2b1) + e2 +
1

τ2
(ξ + e2ϵ2)

)
. (3.19)
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Applying the KKT optimality conditions on (3.19), we get:

∂L
∂u1

= K(A,D⊤)⊤(K(A,D⊤)u1 + e1b1) + c3u1 + α⊤K(B,D⊤)− γ⊤K(B,D⊤) = 0,

(3.20)

∂L
∂b1

= e⊤1 (K(A,D⊤)u1 + e1b1) + c3b1 + α⊤e2 − γ⊤e2 = 0,

(3.21)

∂L
∂ξ

= c1e2 −
α

τ1
− β − γ

τ2
= 0,

(3.22)

α⊤(− (K(B,D⊤)u1 + e2b1)− e2 +
1

τ1
(ξ + e1ϵ1)

)
= 0,

(3.23)

β⊤ξ = 0,
(3.24)

γ⊤((K(B,D⊤)u1 + e2b1) + e2 +
1

τ2
(ξ + e2ϵ2)

)
= 0.

(3.25)

By combining equations (3.20) and (3.21), we can obtain
[
K(A,D⊤)⊤

e⊤1

] [
K(A,D⊤) e1

] [u1

b1

]
+ c3

[
u1

b1

]
+

[
K(B,D⊤)⊤

e⊤2

]
(α− γ) = 0. (3.26)

Define H =
[
K(A,D⊤) e1

]
and G =

[
K(B,D⊤) e2

]
. With these notations, the

equation (3.26) can be rewritten as follows:

H⊤H

[
u1

b1

]
+ c3

[
u1

b1

]
+G⊤(α− γ) = 0, i.e.,

[
u1

b1

]
= −(H⊤H + c3I)

−1G⊤(α− γ).

Finally, the dual of QPP (3.17) can be derived as:

min
α,γ

1

2
(α− γ)⊤G(H⊤H + c3I)

−1G⊤(α− γ)− (α− γ)⊤e2(1 +
ϵ2
τ2

) + α⊤e2

(
ϵ1
τ1

+
ϵ2
τ2

)

s.t.
α

τ1
+

γ

τ2
≤ c1e1, (3.27)

α ≥ 0,α− γ ≥ 0.

Similarly, we can obtain the dual of QPP (3.18) as follows:

min
ω,µ

1

2
(ω − µ)⊤H(G⊤H + c4I)

−1G⊤(ω − µ)− (ω − µ)⊤e1(1 +
ϵ2
τ2

) + ω⊤e1

(
ϵ1
τ1

+
ϵ2
τ2

)

s.t.
ω

τ1
+

µ

τ2
≤ c2e1, (3.28)

ω ≥ 0,ω − µ ≥ 0.

After the solutions of QPPs (3.27) and (3.28) are found, the optimal separating hyper-
planes are given by:
[
u1

b1

]
= −(H⊤H + c3I)

−1G⊤(α− γ)
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and

[
u2

b2

]
= (G⊤G+ c4I)

−1H⊤(ω − µ). (3.29)

Once we obtain the solutions (3.29), a new sample point x ∈ Rn is assigned to class
i(i = +1 or − 1) by

class(i) = arg min
i=1,2

|K(x,D⊤)⊤ui + bi|
∥ui∥

. (3.30)

.

Algorithm 1 Our GPin-ITSVM can be obtained by performing the following steps:

Input: Parameter values for c1, c2, c3, c4, τ1, τ2, ϵ1, ϵ2 and σ.

1: Choose a kernel function K.
2: Define H =

[
K(A,D⊤) e1

]
and G =

[
K(B,D⊤) e2

]
.

3: Solve the QPPs (3.27) and (3.28), and obtain their solutions.

4: Calculate the perpensicular distances |K(x,D⊤)⊤u1+b1|
∥u1∥ and |K(x,D⊤)⊤u2+b2|

∥u2∥ for a new
sample point.

5: Assign the new sample point to class i(i = +1 or − 1) by (3.30).

4. Numerical experiments

In this section, classification performance of the proposed method in terms of accuracy
is compared with other related methods, viz. hinge loss twin support vector machine
(TSVM), hinge loss twin bounded support vector machine (TBSVM) and generalized
pinball loss TSVM (GPin-TSVM) on UCI Machine Learning Repository [22] and Hu-
man Activity Recognition applications have been proposed. We have used 10-fold cross
validation for all experiments.

All experiments are implemented in Python 3.9.5. on Windows 8 running on a 1.9 GHz
laptop with 4 GB RAM with system configuration Intel Core i5+ Duo CPU E7500 (2.93
GHz) with 4 GB of RAM. To derive the nonlinear case, we use the radial basis function

kernel K(x, y) = exp{−∥x−y∥2

2σ }.

4.1. Parameters Selection

In each algorithm, we used the grid search technique [24] to optimize the tradeoff pa-
rameters and kernel parameter. We have selected values of parameter σ, ci, i = 1, . . . , 4
from the set {10i|i = −2,−1, 0, 1, 2}. The values of τ1 and τ2 are taken from {0.5, 0.75, 1},
The value of ϵ1 and ϵ2 in the experiments are chosen from {0.1, 0.25, 0.5, 0.75, 1} and the
experimental results are the average accuracy and standard deviation, and each exper-
iments time consists of testing time, and the unit of time is seconds. The bold values
indicate best mean of accuracy (in %).
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Table 1. Description of UCI datasets.
Datasets #Feature #Sample Imbalance ratio
Breast 10 110 1.23
Sonar 60 208 1.14
Appendicitis 7 106 4.05
Spectf Heart 44 267 3.73
Monk-2 6 432 1.12
Monk-3 6 432 1.12
Australian 14 690 1.25
Heart Statlog 13 270 1.25
Ionosphere 33 351 1.79
Bupa 6 345 1.38
Diabetes 8 768 1.87
Pima-Indian 8 768 1.87

4.2. UCI datasets

We also perform experiments on 12 benchmark datasets available at the UCI machine
learning repository [22]. In classification problems, imbalanced datasets lead to erroneous
classification. Imbalance ratio [23] defined as the ratio of the number of data points in
the majority class to the number of samples in the minority class.

Imbalance ratio =
number of data points on ’majority class’

number of data points on ’minority class’
.

The descriptions of the datasets are given in Table 1. The optimal parameters using in
linear and nonlinear cases are shown in Tables 3 and Table 6, respectively.

Table 2. Accuracy obtained on the UCI datasets by 10-fold cross vali-
dation using linear case.
Datasets TSVM TBSVM GPin-TSVM GPin-ITSVM

Time (s) Time (s) Time (s) Time (s)
Breast 69.02±8.61 69.02±8.61 70.83±9.78 72.65±12.86

0.0145 0.0162 0.0465 0.0451
Sonar 67.76±6.16 78.33±7.27 74.95±9.15 78.33±6.72

0.0389 0.0360 0.1782 0.1769
Appendicitis 85.73±16.79 85.09±10.11 87.64±14.07 88.82±12.45

0.0160 0.0165 0.0614 0.0510
Spectf Heart 78.03±8.53 80.30±8.82 80.32±8.08 80.76±9.36

0.0649 0.0375 0.3931 0.3732
Monk-2 75.92±8.30 76.38±8.78 81.73±5.47 81.73±5.64

0.1743 0.1688 1.5150 1.6041
Monk-3 76.35±5.68 76.35±5.68 80.29±5.49 80.53±6.39

0.1138 0.0887 0.9924 1.2302
Australian 86.09±3.56 86.23±3.38 86.81±3.69 86.81±3.69

0.5241 0.5180 6.1842 6.0457
Average Accuracy 76.98 78.81 80.36 81.37
Average Time 0.1352 0.1259 1.3386 1.3608
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Table 3. The optimal parameters in linear case.

Datasets
TSVM TBSVM GPin-TSVM GPin-ITSVM

c1, c2 c1, c2, c3, c4
c1, c2,

τ1, τ2, ϵ1, ϵ2

c1, c2, c3, c4,
τ1, τ2, ϵ1, ϵ2

Breast 0.01,0.01 0.01, 0.01, 0.1,0.1
0.01,0.01,

0.75,0.5,0.25,0.25
1,10,0.1,0.1,
1,1,0.1,0.25

Sonar 0.1,0.01 0.01, 0.01, 10,1
0.1,1,

0.75,1,0.25,0.25
0.1,0.1,10,1,
1,0.75,0.5,0.75

Appendicitis 0.01,0.01 1,1,100,1
0.1,0.1,

1,1,0.75,0.5
0.1,0.1,10,1,
1,0.75,0.5,0.5

Spectf Heart 0.01,0.1 10,10,100,0.01
0.1,0.1,

1,0.5,0.5,0.5
0.1,0.1,10,0.01,
1,0.75,0.5,0.25

Monk-2 0.1,0.1 0.1,0.1,10,1
0.1,0.1,

0.75,1,0.5,0.25
0.1,0.1,10,1,
0.75,1,0.5,0.25

Monk-3 0.01,0.01 0.01,0.01,0.01,0.01
0.01,0.01,

0.75,0.5,0.25,0.25
1,10,0.1,0.1,
1,1,0.1,0.5

Australian 1,0.1 1,0.1,0.01,0.01
1,0.1,

1,0.5,0.1,0.1
1,0.1,0.01,0.1,
1,0.5,0.1,0.1

Table 4. Average ranks of different algorithms on UCI dataset with
linear case.

Datasets TSVM TBSVM GPin-TSVM GPin-ITSVM
Breast 3.5 3.5 2 1
Sonar 4 1.5 3 1.5

Appendicitis 3 4 2 1
Spectf Heart 4 3 2 1

Monk-2 4 3 1.5 1.5
Monk-3 3.5 3.5 2 1

Australian 4 3 1.5 1.5
Average Rank 3.71 3.07 2.00 1.21

Table 2 shows the mean and standard deviation of evaluation accuracy for a linear
kernel on 7 distinct UCI datasets using TSVM, TBSVM, GPin-TSVM, and our proposed
GPin-ITSVM. We can see that the our proposed GPin-ITSVM slightly outperforms GPin-
TSVM in terms of accuracy. As can be seen from Table 2, TSVM and TBSVM have much
faster computational complexity than other models, while our proposed GPin-ITSVM
and GPin-TSVM similar computational complexity. Results for a nonlinear kernel on 6
distinct UCI datasets are given in Table 5. For the nonlinear kernel, the accuracy of the
GPin-ITSVM classifier for 6 distinct UCI datasets is also greater than the others classifier.
At the same time, TBSVM takes the least computational complexity on all UCI datasets
in both lineat and nonlinear case.
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Table 5. Accuracy obtained on the UCI datasets by 10-fold cross vali-
dation using nonlinear case.
Datasets TSVM TBSVM GPin-TSVM GPin-ITSVM

Time (s) Time (s) Time (s) Time (s)
Appendicitis 86.09±13.93 87.00±12.68 87.73±12.31 87.91±11.21

0.0310 0.0259 0.0741 0.0640
Heart Statlog 84.44±7.73 83.70±9.69 84.81±7.67 84.81±7.11

0.0730 0.0709 0.3804 0.4901
Ionosphere 96.02±2.58 96.02±2.61 95.15±4.05 95.16±3.39

0.1375 0.1484 1.0246 1.0515
Bupa 70.43±8.43 71.88±8.92 71.59±9.97 72.75±8.48

0.1474 0.1006 0.5793 0.6299
Diabetes 76.06±5.46 76.97±4.48 76.84±5.87 77.23±5.24

1.1095 1.0586 9.6623 11.7026
Pima 76.70±3.31 77.09±3.57 76.83±3.54 77.22±3.70

1.1001 1.1887 11.0425 10.3058
Average Accuracy 81.62 82.11 82.16 82.51
Average Time 0.4331 0.4322 3.8696 4.3081

Table 6. The optimal parameters in nonlinear case.

Datasets
TSVM TBSVM GPin-TSVM GPin-ITSVM

c1, c2,σ c1, c2, c3, c4,σ
c1, c2,σ,

τ1, τ2, ϵ1, ϵ2

c1, c2, c3, c4,σ,
τ1, τ2, ϵ1, ϵ2

Appendicitis 0.01,0.01,0.1 0.1,0.1,10,1,0.1
1,1,0.1,

1,0.75,0.5,1
0.1,0.1,10,1,0.1,
1,0.75,0.5,0.5

Heart Statlog 1,1,0.1 0.1,0.1,10,1,0.1
1,10,0.01,

1,0.5,0.1,0.5
0.1,0.1,10,1,0.01,
0.75,0.5,0.5,0.25

Ionosphere 0.1,1,0.1 0.1,1,0.01,0.1,0.1
0.1,0.1,0.01,
1,1,0.5,0.5

0.1,0.1,0.1,0.1,0.01,
1,1,0.5,0.25

Bupa 0.1,0.1,0.01 0.1,0.1,0.01,0.1,0.01
0.1,0.1,0.01,
1,0.75,0.5,0.25

0.1,0.1,0.01,0.1,0.01,
1,1,0.5,0.25

Diabetes 0.1,0.1,0.01 0.1,0.1,0.01,0.1,0.1
0.1,0.1,0.01,
1,0.75,0.5,0.25

0.1,0.1,0.01,0.1,0.01,
1,1,0.5,0.25

Pima 0.1,0.1,0.1 0.1,0.1,0.01,0.01,0.01
0.1,0.1,0.01,
1,0.75,0.5,0.25

0.1,0.1,0.01,0.1,0.01,
1,1,0.5,0.25

Table 7. Average ranks of different algorithms on UCI dataset with
nonlinear case.

Datasets TSVM TBSVM GPin-TSVM GPin-ITSVM
Appendicitis 4 3 2 1
Heart Statlog 3 4 1.5 1.5
Ionosphere 1.5 1.5 4 3

Bupa 4 2 3 1
Diabetes 4 2 3 1
Pima 4 2 3 1

Average Rank 3.42 2.42 2.75 1.58
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Figure 1. Samples from Weizmann activity recognition dataset.

4.3. Statistical Analysis

The Friedman test with post hoc tests [25] is primarily used in the following section
to evaluate the statistical significance of the proposed GPin-ITSVM in comparison to
TSVM, TBSVM, and GPin-TSVM. The Friedman test is a statistical test method that
employs ranks the algorithms differently for each data set, with the best method receiving
the smallest rank value. The accuracy of the related classifiers on each dataset is ranked,
and the classifier with the highest accuracy has the smallest rank ri. The Friedman
statistic is

X 2
F =

12N

k(k + 1)

[∑

j

R2
j −

k(k + 1)2

4

]
,

FF =
(N − 1)X 2

F

N(k − 1)− X 2
F

,

where Rj = 1
N

∑N
j=1 rj , FF is F -distribution with a degree of freedom (k − 1)(N − 1), k

is the number of algorithms and N number of datasets.

4.3.1. Linear case

Under the null hypothesis, which states that all the algorithms are equivalent. Accord-
ing to the Table 4, we obtain X 2

F = 15.29 and FF = 16.07. The critical value of F (3, 18)
for a significance level of 0.05 is 3.16, and 16.07 > 3.16, so the null hypothesis is rejected.
That is, there significant difference among the 4 classifiers. Furthermore, as shown in
Table 4, the proposed Improve Pin-GTSVM achieved a lower average rank. On the UCI
datasets, the classification performance of the proposed GPin-ITSVM outperforms the
other classifiers.

4.3.2. Nonlinear case

From Table 7, we have X 2
F = 9.43 and FF = 5.50. We see that the critical value of

F (3, 15) for a significance level of 0.05 is 3.29 and 5.50 > 3.29, so the null hypothesis
is rejected. This imply that there are significant difference among the four algorithms.
From Table 7, it is seen that the proposed Improve Pin-GTSVM achieved a lower average
rank, that is it outperforms the other classifiers.
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4.4. Human Activity Recognition

In this section, we discuss the application of the proposed GPin-ITSVM to the hu-
man activity recognition. Human activity recognition is a hot topic in computer vision
research. We conduct experiments on the well-known Weizmann activity recognition
dataset [26]. This data consists of 84 videos that correspond to ten actions, which were
performed by nine different people. The ten actions are walk (walking), run (running),
jump (jumping), side (striding sideways), bend (bending), jack (jumping-back), skipping,
pjump (jumping in place) wave1 (waving with one hand) and wave2 (waving with both
hands). Figure 1 illustrates some examples of actions from the Weizmann dataset. We
compare the performance between TSVM, TBSVM, GPin-TSVM, and GPin-ITSVM on
a pair of activity classes.

Figure 2. Illustration of CNN model.

One of the most important aspects of our cognition system success is feature extraction.
Traditional feature extraction by hand is a tedious and time-consuming procedure that
does not work with raw images, but features can be recovered directly from raw images
using automatic extraction algorithms. We have used an automatic extraction algorithm
called Convolutional Neural Networks (CNN) for feature extraction. CNN utilize local
feature detectors applied to the entire image to measure the correspondence between in-
dividual image patches and signature patterns in the training set. In this subsection, we
combines a powerful CNN with proposed algorithm for human activity recognition using
the Weizmann activity recognition dataset, where TSVM, TBSVM, GPin-TSVM, and
proposed GPin-ITSVM are a binary classifier. In addition, we considered 5 types of CNN
models which are ResNet50, ResNet152V2, InceptionV3, InceptionResNetV2 and Xcep-
tion. According to the Keras website, these proposed 5 CNN Models are highly accurate.
Keras is the most widely used Python-based deep learning framework. Utilize the Ten-
sorFlow platform’s full deployment capabilities. Moreover, we compare the performance
between TSVM, TBSVM, GPin-TSVM, and proposed GPin-ITSVM on Weizmann activ-
ity recognition dataset. An illustration of CNN model is shown in Figure 2. The influence
of optimal bianary classifier parameters on the classification results of Weizmann activity
recognition dataset has been presented in Table 8.
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(a) run vs. jump (b) walk vs. run

(c) jump vs. pjump (d) wave1 vs. wave2

Figure 3. The classification performance of TSVM, Pin-SVM, GPin-
TSVM and GPin-ITSVM on Weizmann activity recognition datasets.

The experimental results in Figure 3 demonstrate that the recognition accuracy of
100% over jump vs. pjump and wave1 vs. wave2 datasets are InceptionV3 and Inception-
ResNetV2 CNN combined with our GPin-ITSVM, TSVM, TBSVM and GPin-TSVM.
However, InceptionResNetV2 combined with binary classification models have higher
recognition accuracy than other CNN models for run vs. jump dataset, i.e., Inception-
ResNetV2 CNN combined with our GPin-ITSVM and GPin-TSVM provided recognition
accuracy of 98.80% which is greater than the recognition accuracy of 98.32% and 98.68%
of InceptionResNetV2 CNN combined with TSVM and TBSVM classifier, respectively.
Finally, the maximum recognition accuracy for walk vs. run dataset is 93.24% which
is given by InceptionV3 CNN combined with our GPin-ITSVM and GPin-TSVM, while
Xception CNN have higher recognition accuracy than other CNN models for TSVM and
TBSVM, i.e., 92.55%. After analysing the results, we can observe that the CNN models
combined with the our GPin-ITSVM presented a better performance when compared with
the others, achieving higher recognition accuracy. It can be observed in this situation that
the CNN combined with our GPin-ITSVM is more useful from the others when compared
with the TSVM and TBSVM.
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Table 8. The optimal parameters for Weizmann activity recognition datasets.

Datasets CNN models TSVM TBSVM GPin-TSVM GPin-ITSVM

c1, c2 c1, c2, c3, c4
c1, c2,

τ1, τ2, ϵ1, ϵ2

c1, c2, c3, c4,
τ1, τ2, ϵ1, ϵ2

run vs. jump ResNet50 0.01,0.01 0.01, 0.01, 1,1
0.1,0.1,

1,0.75,0.1,0.1
0.01,0.01,1,1,
1,0.5,0.1,0.1

ResNet152V2 0.01,0.01 0.01, 0.01, 0.01,0.01
0.01,0.01,
1,1,0.1,0.1

0.1,0.1,0.01,0.01,
1,0.75,0.1,0.1

InceptionV3 0.1,0.1 0.01, 0.01, 0.01,0.01
0.1,0.1,

1,0.75,0.1,0.1
0.01,0.01,1,1,
1,0.5,0.1,0.1

InceptionResNetV2 0.1,0.1 0.01, 0.01, 1,1
0.1,0.1,

1,0.75,0.1,0.1
0.01,0.01,1,1,
1,0.5,0.1,0.1

Xception 0.01,0.01 0.01, 0.01, 0.01,0.01
0.1,0.1,

1,0.75,0.1,0.1
0.1,0.1,0.01,0.01,

1,1,0.1,0.1

walk vs. run ResNet50 0.1,1 1, 1, 100,100
1,1,

1,1,0.1,0.1
1,1,100,100,
1,1,0.1,0.1

ResNet152V2 0.1,0.1 1, 1, 0.01,0.01
0.01,0.01,
1,1,0.1,0.1

0.1,0.1,0.01,0.01,
1,1,0.1,0.1

InceptionV3 1,1 0.1, 0.01, 0.01,0.01
0.01,0.01,
1,1,0.1,0.1

0.1,0.1,0.01,0.01,
1,1,0.1,0.1

InceptionResNetV2 0.1,0.1 0.1, 0.1, 0.01,0.01
0.1,0.1,

1,1,0.1,0.1
0.1,0.1,0.01,0.01,
1,1,0.25,0.25

Xception 0.1,0.1 1, 1, 0.01,0.01
0.1,0.1,

1,1,0.1,0.1
0.1,0.1,0.01,0.01,

1,1,0.1,0.1

jump vs. pjump ResNet50 0.01,0.01 0.01, 0.01, 0.1,0.1
1,1,

1,1,0.1,0.1
0.01,0.01,0.1,0.1,

1,1,0.1,0.1

ResNet152V2 1,1 1,1, 1,1
1,1,

1,1,0.1,0.1
0.01,0.01,0.1,0.1,

1,1,0.1,0.1

InceptionV3 0.1,0.1 0.01, 0.01, 1,1
0.01,0.01,
1,1,0.1,0.1

0.1,0.1,0.01,0.01,
1,1,0.1,0.1

InceptionResNetV2 0.01,0.01 0.01, 0.01, 1,1
0.01,0.01,
1,1,0.1,0.1

0.01,0.01,1,1,
1,1,0.1,0.1

Xception 0.01,0.01 0.1, 0.1, 1,1
1,1,

1,1,0.1,0.1
0.01,0.01,1,1,
1,1,0.1,0.1

wave1 vs. wave2 ResNet50 0.1,0.1 1, 1, 1,1
0.1,0.1,

1,1,0.75,0.75
0.1,0.1,1,1,
1,1,0.75,0.75

ResNet152V2 0.1,0.1 0.1, 0.1, 0.1,0.1
0.1,0.1,

1,1,0.1,0.1
0.1,0.1,1,1,
1,1,0.1,0.1

InceptionV3 1,1 0.1, 0.01, 0.01,0.01
0.01,0.01,
1,1,0.1,0.1

0.1,0.1,0.01,0.01,
1,1,0.1,0.1

InceptionResNetV2 0.1,0.1 0.1, 0.1, 1,1
0.1,0.1,

1,1,0.1,0.1
0.1,0.1,1,1,
1,1,0.1,0.1

Xception 0.1,0.1 1, 1, 0.01,0.01
0.1,0.1,

1,1,0.1,0.1
0.1,0.1,1,1,
1,1,0.1,0.1

5. Conclusions

In this paper, an improved version of twin support vector machine with generalized
pinball (GPin-ITSVM) is proposed. By using a new improved version of twin support
vector machine with generalized pinball, we reformulated the GPin-ITSVM problems as a
quadratic programming problems. The primary advantage of GPin-ITSVM is that avoids
the singularity problem when solving the dual quadratic programming problems. Numer-
ical experiments are carried out on 12 UCI benchmark datasets to investigate the validity
of our proposed algorithm. The results show that the our GPin-ITSVM outperforms oth-
ers. Furthermore, this novel method can be used in a variety of fields, including human
activity recognition. In addition, the use of this approach in Weizmann activity recog-
nition applications is investigated, and the automatic feature extractor makes use of 5
types of Convolution Neural Network (CNN) models which are ResNet50, ResNet152V2,
InceptionV3, InceptionResNetV2 and Xception. The results demonstrated that the our
GPin-ITSVM is beneficial for the recognition accuracy.
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