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1. Introduction

Many years ago, fixed point theory played an important role in various problems occur-
ring in different areas of mathematics. It is beneficial for solving various equations for a
self-mapping f of the type fx = x in a metric space. One of the problems in mathematics
is to discuss the existence of a unique solution of integral equations, which are solved by
the well-known fixed point result, namely the Banach contraction principle [1]. Later,
many mathematicians generalized the Banach contraction principle in many directions
(see [2–13] and references therein). In 1970, Ćirić [14, 15] established fixed point results

for Ćirić contraction mappings and quasi-contraction mappings, which are the generaliza-
tion of the Banach contraction principle. In 2003, Ran and Reurings [16] established fixed
point results in partially ordered metric spaces and showed some applications to matrix
equations. In 2012, Wardowski [17] introduced the concept of an F -contraction mapping
and proved the fixed point result for F -contraction mappings in complete metric spaces
as follows.

Definition 1.1 ([17]). A mapping T from a metric space (X, d) into itself is said to be
an F -contraction mapping if there exist τ > 0 and F ∈ F such that

∀x, y ∈ X [ d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)) ], (1.1)

where F is the family of all functions F : R+ → R satisfying the following properties:

(F1): F is strictly increasing;
(F2): for each sequence {αn} of positive numbers, we obtain

lim
n→∞

αn = 0 if and only if lim
n→∞

F (αn) = −∞;

(F3): there exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0.

The following ones are examples of functions belonging to F .

• F1(α) = lnα for all α > 0;
• F2(α) = α+ lnα for all α > 0;
• F3(α) = − 1√

α
for all α > 0;

• F4(α) = ln(α2 + α) for all α > 0.

Theorem 1.2 ([17]). Let (X, d) be a complete metric space and let T : X → X be an F -
contraction mapping. Then T has a unique fixed point in X. Moreover, for each x0 ∈ X,
the Picard sequence {Tnx0} is convergent to the fixed point of T .

On the other hand, Guo and Lakshmikantham [18] first introduced the notion of a
coupled fixed point and proved the existence and uniqueness results of a coupled fixed
point in complete metric spaces. Later, Harjani et al. [19] improved and generalized the
notion of a coupled fixed point by defining the following new notion.

Definition 1.3 ([19]). Let S be a nonempty set and α : S → S be a given mapping.
An element (u, v) ∈ B(S), where B(S) stands for the set of all bounded real-valued
functions on S, is called an α-coupled fixed point of a mapping G : B(S)×B(S) → B(S)
if G(u, v) = u and G(u(α), v(α)) = v.

Moreover, they proved the existence and uniqueness of an α-coupled fixed point in
complete metric spaces and applied it to a dynamic programming.

Subsequently, Işik and Sintunavarat [20] improved the notion of α-coupled fixed point
and a new results as follows:
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Definition 1.4 ([20]). Let S be a nonempty set and α : S → S be a given mapping. An
element (u, v) ∈ B(S), where B(S) stands for the set of all bounded real-valued functions
on S, is called an α-coupled common fixed point of mappings K,G : B(S)×B(S) → B(S)
if K(u, v) = G(u, v) = u and K(u(α), v(α)) = G(u(α), v(α)) = v.

In this paper, we establish a new common fixed point theorem for F -contraction map-
pings and show that our common fixed point theorem can be extended to an α-coupled
common fixed point theorem F -contraction mappings. Furthermore, we apply our results
to a dynamic programming and show some new applications for solving the existence and
uniqueness of coupled systems of functional equations.

2. Auxiliary notions

Throughout this paper, X, R+, N and N0 denote a nonempty set, the set of positive
real numbers, the set of positive integers and the set of nonnegative integers, respectively.
Also, we use the notation B(S) stands for the set of all bounded real-valued functions on a
fixed nonempty set S. Supremum metric on B(S) is a mapping d : B(S)×B(S) → [0,∞)
defined by

d(f, g) = sup
x∈S

|fx− gx|

for all f, g ∈ B(S).

Remark 2.1. B(S) endowed with the supremum metric d is a complete metric space.

Definition 2.2. Any pair of self-mappings f and g on a nonempty set X have a common
fixed point if fx = gx = x.

3. Main results

In this section, we use a function F ∈ F to establish the new common fixed point
results in complete metric spaces. We start our consideration by giving the following
useful lemma.

Lemma 3.1. Let (X, d) be a metric space and let f and g be self-mappings on X. Suppose
that there are τ > 0 and F ∈ F such that

∀x, y ∈ X [ d(fx, gy) > 0 =⇒ τ + F (d(fx, gy)) ≤ F (d(x, y)) ]. (3.1)

If z is a fixed point of f or z is a fixed point of g, then z is a common fixed point of f
and g.

Proof. First, we prove that if z is a fixed point of g, then z is a fixed point of f . Prove
by contradiction that z is not a fixed point of f . Then d(fz, gz) = d(fz, z) > 0. Now a
contradiction is appeared from the contractive condition (3.1). Hence, z is also a fixed
point of f and then z is a common fixed point of f and g. Similarly, it is easy to prove
that if z is a fixed point of f , then z is a common fixed point of f and g.

In our main result, we use the utility of functions in the class F to consider in terms
of a common fixed point, which is a generalization of Wardowski’s fixed point result [17].

Bangmod Int. J. Math. & Comp. Sci., 2021



SOME COMMON FIXED POINT THEOREMS FOR F -CONTRACTION MAPPINGS 129

Theorem 3.2. Let (X, d) be a complete metric space and let f and g be self-mappings
on X. If there are τ > 0 and F ∈ F such that

∀x, y ∈ X [ d(fx, gy) > 0 =⇒ τ + F (d(fx, gy)) ≤ F (d(x, y)) ]. (3.2)

Then f and g have a unique common fixed point.

Proof. Let x0 ∈ X. Define the sequence {xn} in X by

x2n+1 = fx2n

and

x2n+2 = gx2n+1

for all n ∈ N0. If x2n = x2n+1 for some n ∈ N0, then x2n = fx2n and so x2n is a
fixed point of f . It follows from Lemma 3.1 that x2n is a common fixed point of f and
g, that is, x2n = fx2n = gx2n. Similarly, if x2n+1 = x2n+2 for some n ∈ N0, then
x2n+1 = fx2n+1 = gx2n+1. So we may assume that xn ̸= xn+1 for all n ∈ N0.

Let n = 2m+ 1, where m ∈ N0. By (3.2), we have

F (d(xn, xn+1)) = F (d(x2m+1, x2m+2))

= F (d(fx2m, gx2m+1))

≤ F (d(x2m, x2m+1))− τ

= F (d(fx2m−1, gx2m))− τ

≤ F (d(x2m−1, x2m))− 2τ

...

≤ F (d(x0, x1))− (2m+ 1)τ

= F (d(x0, x1))− nτ.

By a similar method, for n = 2m, where m ∈ N0, we get

F (d(xn, xn+1)) ≤ F (d(x0, x1))− (2m)τ

= F (d(x0, x1))− nτ.

Thus, for each n ∈ N, we have

F (d(xn, xn+1)) ≤ F (d(x0, x1))− nτ. (3.3)

From (3.3), we obtain

lim
n→∞

F (d(xn, xn+1)) = −∞, (3.4)

and it follows from (F2) that

lim
n→∞

d(xn, xn+1) = 0. (3.5)

From (F3), there exists k ∈ (0, 1) such that

lim
n→∞

[d(xn, xn+1)]
k F (d(xn, xn+1)) = 0. (3.6)

From the inequality (3.3), we obtain

[d(xn, xn+1)]
kF (d(xn, xn+1))−[d(xn, xn+1)]

kF (d(x0, x1)) ≤ −[d(xn, xn+1)]
knτ ≤ 0.

(3.7)
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for all n ∈ N. Letting n → ∞ in (3.7) and using (3.5) and (3.6), we have

lim
n→∞

n[d(xn, xn+1)]
k = 0. (3.8)

From the equality (3.8), there is n1 ∈ N such that n[d(xn, xn+1)]
k ≤ 1 for all n ≥ n1.

Then

d(xn, xn+1) ≤
1

n1/k
. (3.9)

for all n ≥ n1. Now, we will show that {xn} is a Cauchy sequence in X. Let m > n ≥ n1.
Using the triangle inequality and (3.9), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . .+ d(xm−1, xm)

≤
m−1∑
i=n

1

i1/k
.

Since
∑∞

i=n
1

i1/k
< ∞, it follows that {xn} is a Cauchy sequence inX. By the completeness

of X, there exists an element x∗ in X such that xn → x∗ as n → ∞.
Next, we claim that x∗ is a common fixed point of f and g. If Ω := {n ∈ N :

d(fx2n, gx
∗) = 0} is an infinite set, then a subsequence {x2n+1 = fx2n}n∈Ω of {x2n+1}n∈N

converges to gx∗ as n → ∞ and so x∗ = gx∗. In the other hand, if N \ Ω is an infinite
set, for each n ∈ N \ Ω, we have d(fx2n, gx

∗) > 0. This implies that

F (d(x2n+1, gx
∗)) = F (d(fx2n, gx

∗))

≤ F (d(x2n, x
∗))− τ

< F (d(x2n, x
∗)).

Again, by (F1) we obtain that

d(x2n+1, gx
∗) < d(x2n, x

∗)

for all n ∈ N with d(fx2n, gx
∗) > 0. It yields that

d(x2n+1, gx
∗) ≤ d(x2n, x

∗)

for all n ∈ N. Letting limit n → ∞ in the above inequality, we get d(x∗, gx∗) = 0 and
then x∗ = gx∗. Therefore, x∗ is a fixed point of g. From bothe cases, by Lemma 3.1, we
obtain x∗ is a common fixed point of f and g.

Finally, we will show that x∗ is a unique common fixed point of f and g. Suppose that
y∗ is a common fixed point of f and g with x∗ ̸= y∗. Then d(fx∗, gy∗) > 0 and so

F (d(x∗, y∗)) = F (d(fx∗, gy∗)) ≤ F (d(x∗, y∗))− τ < F (d(x∗, y∗)),

which is a contradiction. Thus, x∗ = y∗ and so f and g have a unique fixed point. This
completes the proof.

Now, we use our common fixed point theorem to solve the existence and uniqueness of
an α-coupled common fixed point as follows:

Corollary 3.3. Let S be a nonempty set, α : S → S and K,G : B(S) × B(S) → B(S)
be given mappings. Supppose that there are τ > 0 and a function F in F such that

τ + F (d(K(x, y), G(u, v))) ≤ F (max{d(x, u), d(y, v)}) (3.10)

for all x, y, u, v ∈ B(S) with d(K(x, y), G(u, v)) > 0. Then K and G have a unique
α-coupled common fixed point.
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Proof. Let ρ : B(S)×B(S) → [0,∞) be defined by

ρ((x, y), (u, v)) = max{d(x, u), d(y, v)}
for all x, y, u, v ∈ B(S). It is easy to see that (B(S)×B(S), ρ) is a complete metric space.

Define the mappings TK , TG : B(S)×B(S) → B(S) by

TK(A) = (F (x, y), F (x(α), y(α)))

and

TG(A) = (G(x, y), G(x(α), y(α)))

for all A = (x, y) ∈ B(S) × B(S). Let U, V ∈ B(S) × B(S), where U = (x, y) and
V = (u, v). Then

F (ρ(TK(U), TG(V )))

= F (ρ((K(x, y),K(x(α), y(α))), (G(u, v), G(u(α), v(α)))))

= F (max{d(K(x, y), G(u, v)), d(K(x(α), y(α)), G(u(α), v(α)))})
≤ max{F (d(K(x, y), G(u, v))), F (d(K(x(α), y(α)), G(u(α), v(α))))}
≤ max{F (max{d(x, u), d(y, v)})− τ, F (max{d(x(α), u(α)), d(y(α), v(α))− τ})}
= max{F (max{d(x, u), d(y, v)}), F (max{d(x(α), u(α)), d(y(α), v(α))})} − τ

≤ max{F (max{d(x, u), d(y, v)}), F (max{sup
s∈S

|x((α)(s))− u((α)(s))|, sup
s∈S

|y((α)(s))− v((α)(s))|})} − τ

≤ max{F (max{d(x, u), d(y, v)}), F (max{sup
s∈S

|x(s)− u(s)|, sup
s∈S

|y(s)− v(s)|})} − τ

= max{F (max{d(x, u), d(y, v)}), F (max{d(x, u), d(y, v)})} − τ

= F (max{d(x, u), d(y, v)})− τ

= F (ρ(d(x, u), d(y, v)))− τ

= F (ρ(U, V ))− τ.

Then TK and TG satisfy the inequality (3.2). By Theorem 3.2, TK and TG have a unique
common fixed point Z∗ = (x∗, y∗) ∈ B(S) × B(S), that is, TF (Z

∗) = TG(Z
∗) = Z∗.

Therefore, K(x∗, y∗) = G(x∗, y∗) = x∗ and K(x∗(α), y∗(α)) = G(x∗(α), y∗(α)) = y∗.
This completes the proof.

4. Application to a Dynamic Programming

In this section, we use the following notations.

• S is a state space;
• D is a decision space;
• γ : S ×D → S is a given mapping;
• p : S ×D → R is a given mapping;
• P,Q : S ×D × R× R → R are given mappings;
• α : S → S is a given mapping.

Now, we employ our main results to obtain a unique common solution of the following
coupled systems of functional equations arising in the dynamic programming:

u1(x) = sup
y∈D

{p(x, y) + P (x, y, u1(γ(x, y)), v1(γ(x, y))},

v1(x) = sup
y∈D

{p(x, y) + P (x, y, u1(α(γ(x, y))), v1(α(γ(x, y)))},
(4.1)
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u2(x) = sup
y∈D

{p(x, y) +Q(x, y, u2(γ(x, y)), v2(γ(x, y))},

v2(x) = sup
y∈D

{p(x, y) +Q(x, y, u2(α(γ(x, y))), v2(α(γ(x, y)))}
(4.2)

for all x ∈ S.

Theorem 4.1. Consider the systems of functional equations (4.1) and (4.2). Assume
that the following conditions are satisfied:

(i) p, P , and Q are bounded;
(ii) for each points x ∈ S, y ∈ D and h1, k1, h2, k2 ∈ R,

|P (x, y, h1, k1)−Q(x, y, h2, k2)|e|P (x,y,h1,k1)−Q(x,y,h2,k2)|

≤ max{|h1 − h2|, |k1 − k2|}e−τ+max{|h1−h2|,|k1−k2|}

where τ > 0.

Then the equations (4.1) and (4.2) have a unique common solution in B(S)×B(S).

Proof. In the total of this proof, we define the mappings K,G : H(n) → H(n) for each
(u, v) ∈ B(S)×B(S) by

(K(u, v))(x) = sup
y∈D

{p(x, y) + P (x, y, u(γ(x, y)), v(γ(x, y))},

(G(u, v))(x) = sup
y∈D

{p(x, y) +Q(x, y, u(γ(x, y)), v(γ(x, y))}
(4.3)

for all x ∈ S. Then K and G are well defined since functions p, P and Q are bounded.
Next, we will show that the condition (3.10) in Corollary 3.3 holds with K, G, and the

supremum metric d. Let (u1, v1), (u2, v2) ∈ B(S)×B(S) with d(K(u1, v1), G(u2, v2)) > 0.
By (ii), we get

d(K(u1, v1), G(u2, v2))e
d(K(u1,v1),G(u2,v2))

= sup
x∈S

|K(u1, v1)(x)−G(u2, v2)(x)|e

sup
x∈S

|K(u1, v1)(x)−G(u2, v2)(x)|


≤ sup
x∈S

{
sup
y∈D

|A−B|
}
e
sup
x∈S

{
sup
y∈D

|A−B|
}

≤ sup
x∈S

{
sup
y∈D

{
max {C,D} e−τ+max{C,D}

}}
,

where

A = P (x, y, u1(γ(x, y)), v1(γ(x, y)) and B = Q(x, y, u2(γ(x, y)), v2(γ(x, y)),

C = |u1(γ(x, y))− u2(γ(x, y))| and D = |v1(γ(x, y))− v2(γ(x, y))|.
This yields that

d(K(u1, v1), G(u2, v2))e
d(K(u1,v1),G(u2,v2))

≤ max {d(u1, u2), d(v1, v2)} e−τ+max{d(u1,u2),d(v1,v2)}.
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From the above inequality, we have

ln (d(K(u1, v1), G(u2, v2))) + d(K(u1, v1), G(u2, v2))

≤ ln (max {d(u1, u2), d(v1, v2)})− τ +max {d(u1, u2), d(v1, v2)} .
By setting the mapping F ∈ F by F (t) = ln(t) + t for all t > 0, we have

τ + F (d(K(u1, v1), G(u2, v2))) ≤ F (max{d(u1, u2), d(v1, v2)}).
for all (u1, v1), (u2, v2) ∈ B(S) × B(S) with d(K(u1, v1), G(u2, v2)) > 0. This means
that the contractive condition (3.10) in Corollary 3.3 is satisfied. Hence, K and G have
a unique α-coupled common fixed point. That is, the equation (4.1) and (4.2) have a
unique common solution in B(S)×B(S).

Theorem 4.2. Consider the systems of functional equations (4.1) and (4.2). Assume
that the following conditions are satisfied:

(i) p, P , and Q are bounded;
(ii) for each points x ∈ S, y ∈ D and h1, k1, h2, k2 ∈ R,

|P (x, y, h1, k1)−Q(x, y, h2, k2)| ≤ n
√
e−τ (sup{|h1 − h2|, |k1 − k2|})n,

where τ > 0 and n ∈ N.
Then the equations (4.1) and (4.2) have a unique common solution in B(S)×B(S).

Proof. In the total of this proof, we define the mappings K,G : H(n) → H(n) for each
(u, v) ∈ B(S)×B(S) by

(K(u, v))(x) = sup
y∈D

{p(x, y) + P (x, y, u(γ(x, y)), v(γ(x, y))},

(G(u, v))(x) = sup
y∈D

{p(x, y) +Q(x, y, u(γ(x, y)), v(γ(x, y))}
(4.4)

for all x ∈ S. Then K and G are well defined since functions p, P and Q are bounded.
Next, we will show that the condition (3.10) in Corollary 3.3 holds with K, G, and the

supremum metric d. Let (u1, v1), (u2, v2) ∈ B(S)×B(S) with d(K(u1, v1), G(u2, v2)) > 0.
By (ii), we can show that

d(K(u1, v1), G(u2, v2)) ≤ n
√
e−τ (max{d(u1, u2), d(v1, v2)})n

and so

[d(K(u1, v1), G(u2, v2))]
n ≤ e−τ (max{d(u1, u2), d(v1, v2)})n.

This implies that

[d(K(u1, v1), G(u2, v2))]
n

(max{d(u1, u2), d(v1, v2)})n
≤ e−τ .

and then

ln
[d(K(u1, v1), G(u2, v2))]

n

(max{d(u1, u2), d(v1, v2)})n
≤ −τ.

This yields that

ln[d(K(u1, v1), G(u2, v2))]
n − ln(max{d(u1, u2), d(v1, v2)})n ≤ −τ,

that is,

τ + ln[d(K(u1, v1), G(u2, v2))]
n ≤ ln(max{d(u1, u2), d(v1, v2)})n.
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Therefore,

τ + F (d(K(u1, v1), G(u2, v2))) ≤ F (max{d(u1, u2), d(v1, v2)}).
for all (u1, v1), (u2, v2) ∈ B(S)×B(S) with d(K(u1, v1), G(u2, v2)) > 0. This means that
the contractive condition (3.10) in Corollary 3.3 is satisfied with the mapping F ∈ F
defined by F (t) = n ln t for all t > 0. Hence, K and G have a unique α-coupled common
fixed point, that is, the equations (4.1) and (4.2) have a unique common solution in
B(S)×B(S).

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally and significantly in writing this paper. All authors
read and approved the final manuscript.

Acknowledges

This work was supported by Thammasat University Research Unit in Fixed Points and
Optimization.

References

[1] S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux
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