
Volume. 7 Number. 1 & 2 (2021)
Pages 92–101

THE SOLUTION EXISTENCE OF INTEGRAL

BOUNDARY VALUE PROBLEM INVOLVING

NONLINEAR IMPLICIT CAPUTO FRACTIONAL

DIFFERENTIAL EQUATIONS IN BANACH SPACES

Piyachat Borisut1, Thanatporn Bantaojai2,∗
1Faculty of Liberal Arts, Rajamangala University of Technology Rattanakosin, Samphanthawong, Bangkok
10100, Thailand
E-mails: piyachat.b@rmutr.ac.th
2Department of Mathematics (English Program), Faculty of Education, Valaya Alongkorn Rajabhat University
under the Royal Potronage, Pathumthani 13180, Thailand
E-mails: thanatporn.ban@vru.ac.th

*Corresponding author.

Received: 9 November 2021 / Accepted: 23 December 2021

Abstract In this paper, we study and consider the following fractional integral boundary value problems:

cDαu(t) = f(t, u(t)), t ∈ J = [0, T ]

u(k)(0) = ηk, u(T ) = τ

∫ T

0
u(s)ds

where n − 1 < α < n, n ∈ N, ηk ∈ R, k = 0, 1, ..., n − 2 and cDα is the Caputo fractional derivatives,

f : J × C([0, T ], E) → E and τ < n
T
. By using the Darbo’s fixed point theorem, we study the existence

of this problem. An example is include to show the applicability of our results.
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1. Introduction

Fractional differential equations have received much attention recently. They arise
in many engineering and scientific disciplines as the modelling of systems and processes
in viscoelasticity, electrochemistry, control, porousmedia, electromagnetic, etc.(See [1–
5].) A significant feature of a fractional order differential operator, in contrast to its
counterpart in classical calculus, is its non local behaviour. It means that the future state
of a dynamical system or process based on the fractional differential operator depends on
its current state as well its past states. Therefore, many papers and books on fractional
calculus, fractional differential equations and fractional integral equations have appeared.
Qualitative theory of differential equations is very useful in applications. So, recently
much attention has been focused on the study of the existence and multiplicity of solutions
of positive solutions for boundary and initial value problems of fractional differential
equations. There are many techniques to deal with the existence of solutions of fractional
differential equations such as fixed point theorems[6–8], upper and lower solutions method
[9], fixed point index [7, 10, 11], coincidence theory [12], etc. In [4, 5, 13], the authors
considered the existence of solutions of the following initial value problems

Dαu(t) = f(t, u(t), Dβu(t)), t ∈ (0, 1],

u(k)(0) = ηk, k = 0, 1, ...,m− 1,

where n − 1 < β < α < n, (n ∈ N), are the real number cDα,cDβ are the Caputo
fractional derivatives and f ∈ C([0, 1]× R) and [14]

cDα
0+y(t) = −f(t, y(t), Dαy(t)) t ∈ (0, 1], 1 < α < 2

ay(0)− by′(0) = 0, y(1) =

∫ 1

0

k(s)g(t, y(s))ds+ µ,

where cDα
0+ is the Caputo fractional derivative, (E, ∥ · ∥) is real Banach space, f :

J × C([0, 1], E)× E → E. g ∈ C(E,E), k ∈ C([0, 1], E), k ̸= 0,
motivated by the above works. In this paper, our object is to improve the situation. We
consider {

cDαu(t) = f(t, u(t), Dαu(t)), t ∈ J = [0, T ]

u(k)(0) = ηk, u(T ) = τ
∫ T

0
u(s)ds,

(1.1)

where n−1 < α < n, n ∈ N, ηk ∈ R, k = 0, 1, ..., n−2 and cDα is the Caputo fractional
derivatives, f : J × C([0, T ], E) × E → E and τ < n

T . By using the Darbo’s fixed point
theorem, we study the existence of this problem. An example is include to show the
applicability of our results.
The rest of the paper is organized as follows: In Section 2, we present some known results
and introduce some conditions to be used in the next section. The main results formulated
and proved in Section 3, also an example is presented to demonstrate the applications for
guarantee of the main results.

Please cite this article as: P. Borisut, et al., The solution existence of integral boundary value prob-
lem involving nonlinear implicit Caputo fractional differential equations in Banach spaces, Bangmod
Int. J. Math. & Comp. Sci., Vol. 7 No. 1 & 2 (2021) 92–101.
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2. Background materials

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper.
Let (E, ∥ . ∥) be a Banach space. We denoted by C(J,E) the space of E-valued continuous
function on J with the usual supremum norm

∥ y ∥∞= sup{∥ y(t) ∥ : t ∈ J} for every y ∈ C(J,E).

Also a measurable function y : J → E is Bochner integrable if and only if ∥ y ∥ is Lebesgue
measure.
Let L1(J,E) denote the Banach space of measurable functions y : J → E which are
Bochner integrable normed by

∥ y ∥L1=

∫ T

1

∥ y(t) ∥ dt.

For properties of the Bochner integrable.

Definition 2.1. ([1, 3]). Let u : (0,∞) → R be a function and α > 0. The Riemann-
Liouville fractional integral of orders α of x is defined by

Iα0+u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds

provided that the integral exists. The Caputo fractional derivative of order α of u is
defined by

cDα
0+u(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1u(n)(s)ds

provided that the right side is point wise defined on (0,∞), where n = [α] + 1, n − 1 <
α < n, and Γ denotes the gamma function. If α = n, then cDα

0+u(t) = u(n)(t).

Lemma 2.2. ([1, 3]). Let n > α > n− 1. If u ∈ Cn([a, b]), then

Iα(cDαu)(t) = u(t) + c0 + c1t+ c2t
2 + · · ·+ Cn−1t

n−1

for some ci ∈ R, i = 0, 1, 2, · · · , n − 1, where n is the smallest integer greater than or
equal to α.

Moreover, for a given set V of functions v : J → E, let us denoted by V (t) = {v(t) :
v ∈ V }, t ∈ J and V (J) = {v(t) : v ∈ V, t ∈ J}. Next we give the definition of the concept
of measure of noncompactness and some auxiliary result, see for more details [4, 8, 9] and
the references therein.

Definition 2.3. ([15, 16]). Let E be a Banach space and ΩE the bounded subsets of
E. The Kuratowski measure of noncompactness is the map α : ΩE → [0,∞] defined by

α(B) = inf{ϵ > 0 : B ⊆
n∪

i=1

Bi and diam(Bi) ≤ ϵ}, here

diam(Bi) = sup{∥ x− y ∥: x, y ∈ Bi}.

The Kuratowski measure of noncompactness satifies the following properties.
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Lemma 2.4. ([15–17]). Let A and B are bounded sets,
(a) α(B) = 0 ↔ B̄ is compact (B is relatively compact), where B̄ denoted the closure of
B,
(b) nonsingularity; α is equal to zero on every one element set,
(c) α(B) = α(B̄) = α(convB), where convB is the convex hull of B,
(d) monotonicity; A ⊂ B → α(A) ⊂ α(B),
(e) algebraic semi-additively; α(A + B) ≤ α(A) + α(B), where A + B = {x + y : x ∈
A, y ∈ B},
(f) semi-homogencity; α(λA) =| λ | α(B), λ ∈ R, where λB = {λx : x ∈ B},
(g) semi-additivity; α(A ∪B) = max{α(A), α(B)}.
(h) invariance under translation; α(B + x0) = α(B) for any x0 ∈ E.

For our purpose we will only need the following fixed point theorem and important
lemma.

Theorem 2.5. (Darbo’s fixed point theorem)([18]).
Let X be a Banach space and C be bounded, closed, convex and nonempty subset of X.
Suppose a continuous mapping N : C → C is such that for all closed subsets D of C,

α(N(D)) ≤ kα(D),

where 0 ≤ k ≤ 1. Then N has a fixed point in C.

Lemma 2.6. ([19]) If V ⊂ C(J,E) is a bounded and equicontionuous set, then
(a) the function t → α(V (t)) is continuous on J , and αc(V ) = sup

1≤t≤T
α(v(t)).

(b) α(
∫ T

1
x(s)ds : x ∈ V ) ≤

∫ T

1
α(V (s))ds, where V (s) = {x(s);x ∈ V }, s ∈ J .

Lemma 2.7. (Ascoli-Arzela)([19]) Let A ⊂ C(J,E), A is relatively compact (i.e. , Ā is
compact) if;
(a) A is uniformly bounded, i.e., there exists M > 0 such that ∥ f(t) ∥≤ M for every
f ∈ A and t ∈ J .
(b) A is equicontinuous i.e., for every ϵ > 0, there exists δ > 0 such that for each
t, t̄ ∈ J, | t− t̄ |≤ δ implies ∥ f(t)− f(t̄) ∥≤ ϵ, for every f ∈ A.
(c) The set {f(t) : f ∈ A, t ∈ J} is relatively compact in E.

3. Main Results

In this section we investigate the existence of solutions for the integral boundary value
problem of nonlinear fractional differential equation. (1.1).

Definition 3.1. A function u ∈ C(J,E) is said to be solution of (1.1), if u satisfies the
equation cDα

0+u(t) = f(t, u(t),c Dα
0+u(t)) on J , and the conditions u(k)(0) = ηk, u(T ) =

τ
∫ T

0
u(s)ds, k = 0, 1, 2, · · · , n− 2.

To prove the existence of solution to (1.1), we need the following auxiliary lemma.

Lemma 3.2. Let u ∈ C([0, T ]) the linear fractional boundary value problem (BVP)
cDαu(t) = y(t), t ∈ J = [0, T ],

u(k)(0) = ηk, u(T ) = τ

∫ T

0

u(s)ds,
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where n− 1 < α < n, n ∈ N, ηk ∈ R, k = 0, 1, ..., n− 2 has a unique solution

u(t) =

∫ T

0

G(t, s)y(s)ds

+

n−2∑
k=0

ηk(T
n−1tk − T ktn−1(n− Tτ)(k + 1) + (Tn−1tk+1)n− T ktn(k + 1))

k!Tn−1(n− Tτ)(k + 1)

where

G(t, s) =

{
((t−s)α−1(n−Tτ)Tn−1α+tn−1[nτ(T−s−Tα)−α(n−Tτ)](T−s)α−1)

(n−Tτ)Tn−1αΓ(α) if 0 < s < t < T
tn−1[nτ(T−s−Tα)−α(n−Tτ)](T−s)α−1

(n−Tτ)Tn−1αΓ(α) if 0 < t < s < T .

Proof. From Lemmma (2.2), we have

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+ c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1.

By the boundary condition in BVP (1.1), we have

c0 = η0, c1 = η1, c2 =
η2
2!
, · · · , cn−2 =

ηn−2

(n− 2)!

so,

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+

n−2∑
k=0

ηkt
k

k!
+ cn−1t

n−1

and

cn−1 =
1

Tn−1

(
τ

∫ T

0

u(s)ds− 1

Γ(α)

∫ T

0

(T − s)α−1y(s)ds−
n−2∑
k=0

ηkt
k

k!

)
.

Thus,

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds

+

n−2∑
k=0

ηkt
k

k!

(
Tn−1tk − T ktn−1

)
+

tn−1

Tn−1Γ(α)

( ∫ T

0

(
τΓ(α)u(s)− (T − s)α−1y(s)

)
ds
)

∫ T

0

u(t)dt =
1

Γ(α)

∫ T

0

∫ t

0

(t− s)α−1y(s)dsdt

+

∫ T

0

n−2∑
k=0

ηkt
k

k!

(
Tn−1tk − T ktn−1

)
dt

+

∫ T

0

tn−1

Tn−1Γ(α)

( ∫ T

0

(
τΓ(α)u(s)− (T − s)α−1y(s)

)
ds
)
dt
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Let
∫ T

0
u(s)ds = A, we have∫ T

0

u(t)dt =
1

Γ(α)

∫ T

0

(T − s)α−1

α
y(s)ds

+

n−2∑
k=0

ηk
k!Tn−1

(Tn−1tk+1

k + 1
− T ktn

n

)
+

TτA

n
− T

Γ(α)

∫ T

0

(T − s)α−1y(s)ds

A =
n

n− Tτ

( 1

Γ(α)

∫ T

0

(T − s)α

α
y(s)ds− T

Γ(α)

∫ T

0

(T − s)α−1ds
)

+
n

n− Tτ

n−2∑
k=0

ηk
k!Tn−1

(Tn−1tk+1

k + 1
− T ktn

n

)
so,

u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds

+
tn−1

(n− Tτ)Tn−1αΓ(α)

∫ T

0

(
nτ(T − s− Tα)− α(n− Tτ)

)
(T − s)α−1y(s)ds

+

n−2∑
k=0

ηk
k!Tn−1

( (Tn−1tk − T ktn−1)(n− Tτ)(k + 1) + (Tn−1tk+1n− T ktn(k + 1))

(n− Tτ)(k + 1)

)
.

Hence,

u(t) =

∫ T

0

G(t, s)y(s)ds

+

n−2∑
k=0

ηk
k!Tn−1

( (Tn−1tk − T ktn−1)(n− Tτ)(k + 1) + (Tn−1tk+1n− T ktn(k + 1))

(n− Tτ)(k + 1)

)

Remark 3.3. Obviously, the G(t, s) function satisfies the following properties
(a) G(t, s) > 0, t, s ∈ [0, T ].

(b) G(t, s) ≤ Tα+n−2(n−Tτ)α+Tn−1nτ
(n−Tτ)Tn−1αΓ(α) , 0 ≤ t, s ≤ T .

First, we list the following hypotheses,
(H1) The function f : J × E × E → E are continuous.
(H2) There exists constants K > 0 and 0 < L < 1 such that

∥ f(t, u, v)− f(t, ū, v̄) ∥≤ K ∥ u− ū ∥ +L ∥ v − v̄ ∥

for any u, ū, v, v̄ ∈ E and t ∈ J . We are now in a position to state and prove our existence
result for the problem (1.1) based on concept of measures of noncompactness and Darbo’s
fixed point theorem.

Theorem 3.4. Suppose that (H1)-(H2) hold. If(
Tα+n−2(n− Tτ)α+ Tn−1nτ

)
KT

(n− Tτ)Tn−1αΓ(α)(1− L)
< 1 (3.1)

then, the BVP (1.1) has at least one solution on J .
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Proof. Transform the problem (1.1) into a fixed point problem. Consider the operator
F : C(J,E) → C(J,E) defined by

Fu(t) =

∫ T

0

G(t, s)y(s)ds

+

n−2∑
k=0

ηk
k!Tn−1

( (Tn−1tk − T ktn−1)(n− Tτ)(k + 1) + (Tn−1tk+1n− T ktn(k + 1))

(n− Tτ)(k + 1)

)
where y ∈ C(J,E) be such that y(t) = f(t, u(t), y(t)). Clearly, if operator F has a fixed
point if and only if the (1.1) has a solution. We shall show that F satisfies the assumption
of Darbo’s fixed point theorem. The proof will be give in several claims.
Claim 1: F is continuous.
Let {un} be a sequence such that un → u in C(J,E). If t ∈ J = [0, T ], we have

∥ F (un)(t)− F (u)(t) ∥ ≤
∫ T

0

| G(t, s) |∥ yn(s)− y(s) ∥ ds (3.2)

where yn, y ∈ C(J,E), such that yn(t) = f(t, un(t), yn(t)), y(t) = f(t, u(t), y(t)). By (H2),
we have

∥ yn(t)− y(t) ∥ = ∥ f(t, un(t), yn(t))− f(t, u(t), y(t)) ∥
≤ K ∥ un − u ∥ +L ∥ yn(t)− y(t) ∥

∥ yn(t)− y(t) ∥ ≤ K

1− L
∥ un − u ∥ .

Since un → u, then we get yn(t) → y(t) as n → ∞ for each t ∈ J . And let µ > 0 such
that for each t ∈ J , we have ∥ yn(t) ∥≤ µ, ∥ y(t) ∥≤ µ. Then we have

G(t, s) ∥ yn(s)− y(s) ∥ ≤ Tα+n−2(n− Tτ)α+ Tn−1nτ

(n− Tτ)Tn−1αΓ(α)
(∥ yn(s) ∥ + ∥ y(s) ∥)

≤ 2µ[Tα+n−2(n− Tτ)α+ Tn−1nτ ]

(n− Tτ)Tn−1αΓ(α)

For each t ∈ J , the function 2µ[Tα+n−2(n−Tτ)α+Tn−1nτ ]
(n−Tτ)Tn−1αΓ(α) is integrable on [0, t], then the

Lebesgue Dominaled convergence theorem and (3.2) imply that

∥ F (yn)(t)− Fy(t) ∥→ 0, as n → ∞

and hence,

∥ F (yn)(t)− Fy(t) ∥[0,T ]→ 0, as n → ∞.

Consequently, F is continuous. Let the constant R such that

∆f∗T+ | Ω | (1− L)

1− L−∆KT
≤ R

where f∗ = sup
t∈J

∥ f(t, 0, 0) ∥ , ∆ := Tα+n−2(n−Tτ)α+Tn−1nτ
(n−Tτ)Tn−1αΓ(α) ,

Ω :=

n−2∑
k=0

ηk
k!Tn−1

( (Tn−1tk − T ktn−1)(n− Tτ)(k + 1) + (Tn−1tk+1n− T ktn(k + 1))

(n− Tτ)(k + 1)

)
de-

fine DR = {u ∈ C(J,E) :∥ u ∥≤ R}. It is clear that DR is bounded, closed and convex
subset of C(J,E).
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Claim 2: F (DR) ⊂ DR.
Let u ∈ DR, we show that Fu ∈ DR. If t ∈ [0, T ] then ∥ Fu(t) ∥ that is, we have

∥ Fu(t) ∥ = max
t∈[0,T ]

|
∫ T

0

G(t, s)y(s)ds+Ω |

≤
∫ T

0

∆ ∥ y(s) ∥ ds+ | Ω | .

By (H2), we have for each t ∈ J

∥ y(t) ∥ = ∥ f(t, u, y(t))− f(t, 0, 0) + f(t, 0, 0) ∥
≤ ∥ f(t, u, y(t))− f(t, 0, 0) ∥ + ∥ f(t, 0, 0) ∥
≤ K ∥ u ∥ +L ∥ y(t) ∥ +f∗

where f∗ =∥ f(t, 0, 0) ∥, ∥ u ∥≤ R,

∥ y(t) ∥ ≤ KR+ f∗

1− L
:= A

thus,

∥ Fu(t) ∥≤ ∆
(KR+ f∗)T

1− L
+ | Ω |≤ R.

Form which it follows that for each t ∈ [0, T ], we have ∥ Fu(t) ∥≤ R, which implies that
F (DR) ⊂ DR.
Claim 3: F (DR) is bounded and equicontinuous.
By Claim 2, we have F (DR) = {F (u) : u ∈ DR} ⊂ DR. Thus for each u ∈ DR, we have
∥ Tu ∥[0,T ]≤ R, which means that T (DR) is bounded. Let t1, t2 ∈ [0, T ], t1 < t2 and
u ∈ DR. Then,

∥ Tu(t2)− Tu(t1) ∥ ≤ ∥
∫ T

0

(
G(t2, s)−G(t1, s)

)
y(s)ds

+

n−2∑
k=0

ηk

(
(n− Tτ)(k + 1)(tk2 − tk1) + n(tk+1

2 − tk+1
1 )

)
k!(n− Tτ)(k + 1)

∥

≤ A

∫ T

0

(
G(t2, s)−G(t1, s)

)
ds

+

n−2∑
k=0

| ηk |
(
(n− Tτ)(k + 1)(tk2 − tk1) + n(tk+1

2 − tk+1
1 )

)
k!(n− Tτ)(k + 1)

As t2 → t1, the right hand side tends to zero. Hence F (DR) is equicontinuous.
Claim 4: The operator F : DR → DR is a strict set contraction. Let U ⊂ DR, if t ∈ J ,
we have

α(Fu(t)) = α((Fu)(t), u ∈ U)

≤ α
(∫ T

0

G(t, s)y(s)ds+Ω, u ∈ U
)
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then, by Lemma 2.4 implies that for each s ∈ J

α({y(s), u ∈ U}) = α({f(s, u(s), y(s)), u ∈ U})
≤ Kα{u(s), u ∈ U}+ Lα{y(s), u ∈ U}

α({y(s), u ∈ U}) ≤ K

1− L
α{u(s), u ∈ U}.

Then,

α(FU(t)) ≤ K

1− L

∫ T

0

G(t, s)ds{α(u(s)), u ∈ U}

≤ ∆KT

1− L
α(U).

Therefore,

αc(TU) ≤ ∆KT

1− L
αc(U).

So, the oprator F is set contraction. As a consequence of Theorem Darbo’s we deduce
that F has fixed point which is solution to the problem (1.1)

Example 3.5. Consider the following fractional boundary value problems{
cD

7
2

0+u(t) =
u

100 cos t+
t2

10
cD

7
2

0+u(t) + 1, t ∈ [0, e],

u(0) = −1, u′(0) = 0, u′′(0) = 1, u(e) = 1
3

∫ e

0
u(s)ds,

(3.3)

where

f(t, u, v) =
u

100
cos t+

t2

10
cD

7
2

0+u(t) + 1.

For any u, ū, v, v̄ ∈ E and t ∈ [0, e]

∥ f(t, u, v)− f(t, ū, v̄) ∥ ≤ 1

100
| cos t |∥ u− ū ∥ +

| t2 |
10

∥ v − v̄ ∥

≤ 1

100
∥ u− ū ∥ +

e2

10
∥ v − v̄ ∥ .

Hence condition (H1) and (H2) are satisfied with K = 1
5 ,L = e2

10 and condition(Tα+n−2(n− Tτ)α+ Tn−1nτ

(n− Tτ)Tn−1αΓ(α)(1− L)

)
KT < 1

are satisfied with α = 7
2 , τ = 1

3 . It follows from (3.1) that the problem (3.3) has at least
one solution.
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