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Abstract An iterative method with inertial extrapolation term for approximating the solution of multiple-

sets split feasibility problem in the infinite-dimensional Hilbert spaces is presented. In a recent paper,

Ogbuisi and Mewomo [1] introduced an iterative algorithm involving an inertial term and a step size

independent of the operator norm for approximating a solution to split variational inequality problem

in a real Hilbert space. We extend the algorithm introduced by Ogbuisi and Mewomo [1] for solving

multiple-set split feasibility problem, and we propose a self-adaptive technique to choose the stepsizes

such that the implementation of our algorithm does not need prior information about the operator norm.

We prove a weak convergence theorem to the proposed algorithm under some suitable conditions. Finally,

we give some numerical examples to illustrate the efficiency and implementation of our method compared

to some existing results.
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1. Introduction

Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H2 be a bounded linear
operator. Let C and Q be two nonempty, closed and convex subsets of H1 and H2,
respectively. The split feasibility problem (SFP) introduced by Censor and Elfving [2] is
formulated as follows:

find a point p∗ ∈ C such that Ap∗ ∈ Q. (1.1)

The SFP was first introduced in 1994 in finite-dimensional Hilbert spaces for modeling
inverse problems which arise from phase retrievals and in medical image reconstruction.
The SFP has broad theoretical applications in many fields such as approximation theory
[3], control [4], and so on, and the references therein. It also plays a fundamental role
in signal processing, intensity-modulated radiation therapy etc., see, e.g., [5–8]. Several
iterative methods including the popular and most celebrated CQ-method by Byrne [8]
have been introduced for solving the SFP, see [2, 6, 8–15] and the references therein.

Due to it’s practical applications, the SFP has received a great attention by many
researchers, and several generalizations of the SFP have been studied, like, the multiple-
set SFP (MSSFP) [16], the SFP with multiple output sets [17], the split common null
point problem (SCNPP) [18], the split common fixed point problem (SCFPP) [19], the
split variational inequality problem (SVIP) [20], just to mention a few.

Let H1 and H2 be two real Hilbert spaces. Given operators f : H1 → H1 and g : H2 →
H2, a bounded linear operator A : H1 → H2, and nonempty, closed and convex subsets
C ⊂ H1 and Q ⊂ H2, the split variational inequality problem (SVIP) [20] is formulated
as follows:

find a point p∗ ∈ C such that ⟨f(p∗), x− p∗⟩ ≥ 0 ∀x ∈ C (1.2)

and such that

the point y∗ = Ap∗ ∈ Q and solves ⟨g(y∗), y − y∗⟩ ≥ 0 ∀y ∈ Q. (1.3)

Recently, Ogbuisi and Mewomo [1] introduced the following iterative algorithm involving
an inertial term and a step size independent of the operator norm for approximating
solutions of the above SVIP in a real Hilbert space: Let x0, x1 ∈ H1, then the sequence
{xn} is generated by yn = xn + βn(xn − xn−1),

zn = PC(I − ρf)(yn + τnA
∗(PQ(I − ρg)− I)Ayn),

xn+1 = (1− αn)yn + αnzn, n ≥ 1,
(1.4)

where {βn} and {αn} are a non-decreasing and non-increasing sequences (0, 1), respec-
tively, f : H1 → H1 and g : H2 → H2 are δ- and σ-inverse strongly monotone mappings,
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respectively, 0 < ρ < min{δ, σ}, the step size τn is chosen in such a way that, for some

ϵ > 0, τn ∈
(
ϵ,

∥(PQ(I−ρg)−I)Ayn∥2

∥A∗(PQ(I−ρg)−I)Ayn∥2 −ϵ
)
if PQ(I−ρg)−I)Ayn ̸= 0, and τn = τ otherwise

(τ being any nonnegative real number), I stands for the identity mapping in H1 and H2,
and PC and PQ are the metric projections of H1 and H2 onto C and Q, respectively.
It was proved that, under some suitable conditions the sequence {xn} generate by (1.4)
converges weakly to a solution point of the SVIP.

In this paper, we study the multiple-sets split feasibility problem (MSSFP) which is a
general way to characterize various inverse problems arising in many real-world applica-
tion problems, such as medical image reconstruction and intensity-modulated radiation
therapy. The MSSFP, which was introduced by Censor et al. [16] requires finding a point
closet to a family of closed convex sets in one space such that its image under a linear
transformation will be closest to another family of closed convex sets in the image space.

Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H2 be a bounded linear
operator with adjoint operator A∗. Let {Ci}ri=1 and {Qj}sj=1 (where r and s are positive
integers) be two finite family of nonempty, closed and convex subsets of H1 and H2,
respectively, the MSSFP is formulated as follows:

find a point p∗ ∈ C =

r∩
i=1

Ci such that Ap∗ ∈ Q =

s∩
j=1

Qj . (1.5)

The MSSFP (1.5) with particular case where r = s = 1 is the SFP (1.1). Denote by Ω
the set of solutions for the MSSFP (1.5). For solving the MSSFP (1.5), several iterative
methods have been invented, see, e.g., [21–31] and references therein. Initiated by the
self-adaptive strategy given by He et al. [32] to solve the variational inequalities, Zhang
et al. [33] suggested a self-adaptive projection method for solving the MSSFP, which
has no need to estimate the spectral radius of the matrix A∗A. Inspired by Tseng’s
modified forward-backward splitting method for finding a zero of the sum of two maximal
monotone mappings [34], recently, Zhao et al. [35], first proposed a modification for
the CQ Algorithm for solving the SFP. Then, they gave a relaxation scheme for this
modification by replacing the orthogonal projections onto the sets C and Q by projections
onto two half-spaces Cn and Qn, respectively for solving the SFP. This relaxed algorithm
can be implemented easily since it computes projections onto half-spaces and has no need
to know a prior the spectral radius of the matrix A∗A. They also extend these modified
algorithms to solve the MSSFP.

In this paper, we extend the algorithm (scheme (1.4) for the SVIP) introduced by
Ogbuisi and Mewomo [1] for solving MSSFP, and we propose an iterative algorithm with
inertial extrapolation term for approximating the solution of the MSSFP in the framework
of infinite-dimensional Hilbert spaces, and we develop a self-adaptive technique to choose
the stepsizes such that the implementation of our algorithm does not need any prior
information about the operator norm. We prove a weak convergence theorem to the
proposed algorithm under some conditions.

The remaining part of this paper is organized as follows. We recall some basic defi-
nitions and lemmas in the next section. In Section 3, we present the description of the
proposed algorithm, and weak convergence of the iterative algorithm for the MSSFP is
proved. In the last section, we give a numerical example to illustrate the implementation
and efficiency of our proposed method compared to some existing algorithms.
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2. Preliminaries

Let H be a real Hilbert space. Let C be a nonempty closed convex subset of H. The
metric projection on C is a mapping PC : H → C defined by

PC(x) = argmin{∥y − x∥ : y ∈ C}, x ∈ H.

Lemma 2.1. Let C be a closed convex subset of H. Given x ∈ H and a point z ∈ C,
z = PC(x) if and only if

⟨x− z, y − z⟩ ≤ 0, ∀y ∈ C.

Definition 2.2. The mapping T : H → H is said to be firmly nonexpansive if

∥Tx− Ty∥2 ≤ ∥x− y∥2 − ||(I − T )x− (I − T )y∥2, ∀x, y ∈ H,

which is equivalent to

∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩, ∀x, y ∈ H.

If T is firmly nonexpansive, I − T is also firmly nonexpansive. The metric projection
PC on a closed convex subset C of H is firmly nonexpansive.

Definition 2.3. The subdifferential of a convex function f : H → R at x ∈ H, denote
by ∂f(x), is defined by

∂f(x) = {ξ ∈ H : f(z) ≥ f(x) + ⟨ξ, z − x⟩, ∀z ∈ H}.
If ∂f(x) ̸= ∅, f is said to be subdifferentiable at x. If the function f is continuously
differentiable then ∂f(x) = {∇f(x)}, this is the gradient of f .

Definition 2.4. The function f : H → R is called weakly lower semi-continuous at x0 if
for a sequence {xn} weakly converging to x0 one has

lim inf
n→∞

f(xn) ≥ f(x0).

A function which is weakly lower semi-continuous at each point of H is called weakly
lower semi-continuous on H.

Lemma 2.5. ([36]) Let H1 and H2 be real Hilbert spaces and f : H1 → R be given by
f(x) = 1

2∥(I − PQ)Ax∥2 where Q is a closed convex subset of H2 and A : H1 → H2 is a
bounded linear operator. Then

(i): the function f is convex and weakly lower semi-continuous on H1;
(ii): ∇f(x) = A∗(I − PQ)Ax, for x ∈ H1;
(iii): ∇f is ∥A∥2-Lipschitz, i.e., ∥∇f(x)−∇f(y)∥ ≤ ∥A∥2∥x− y∥, ∀x, y ∈ H1.

Lemma 2.6. ([37]) Let H be a real Hilbert space. Then, for all x, y ∈ H and α ∈ R,, we
have

(i): ∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2;
(ii): ∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x, y⟩;
(iii): ∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2⟨x, y⟩.

Lemma 2.7. ([38]) Let {cn} and {αn} be a sequences of nonnegative real numbers, {βn}
be a sequences of real numbers such that

cn+1 ≤ (1− αn)cn + βn, n ≥ 1,

where 0 < αn < 1.

(i): If βn ≤ αnL for some L ≥ 0, then {cn} is a bounded sequence.
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(ii): If
∑

αn = ∞ and lim sup
n→∞

βn

αn
≤ 0, then cn → 0 as n → ∞.

Definition 2.8. Let {Γn} be a real sequence. Then, {Γn} decrease at infinity if there
exists n0 ∈ N such that Γn+1 ≤ Γn for n ≥ n0. In other words, the sequence {Γn}
does not decrease at infinity, if there exists a subsequence {Γnt

}t≥1 of {Γn} such that
Γnt

< Γnt+1 for all t ≥ 1.

Lemma 2.9. ([39]) Let {Γn} be a sequence of real numbers that does not decrease at
infinity. Also consider the sequence of integers {φ(n)}n≥n0 defined by

φ(n) = max{k ∈ N : k ≤ n,Γk ≤ Γk+1}.
Then {φ(n)}n≥n0 is a nondecreasing sequence verifying lim

n→∞
φ(n) = ∞, and for all n ≥

n0, the following two estimates hold:

Γφ(n) ≤ Γφ(n)+1 and Γn ≤ Γφ(n)+1.

Lemma 2.10. ([40]) Let {ζn} and {πn} be nonnegative sequences of real numbers satis-

fying
∞∑

n=1
ζn ≤ ∞ and πn+1 ≤ πn + ζn, n = 1, 2, .... Then, {πn} is a convergent sequence.

Lemma 2.11. ([41]) Assume ϕn ∈ [0,∞) and γn ∈ [0,∞) satisfy

(i): ϕn+1 − ϕn ≤ βn(ϕn − ϕn−1) + γn,

(ii):
∞∑

n=1
γn < ∞,

(iii): {βn} ⊂ [0, β], where β ∈ [0, 1).

Then, the sequence {ϕn} is convergent with
∞∑

n=1
[ϕn+1−ϕn]+ < ∞, where [t]+ := max{t, 0},

for any t ∈ R.

Lemma 2.12. ([42, 43]) Let H1 be a real Hilbert space and {xn} a sequence in H1 such
that there exists a nonempty closed set Γ ⊂ H1 satisfying:

(i): For every x∗ ∈ Γ, lim
n→∞

∥xn − x∗∥ exists.

(ii): Any weak-cluster point of the sequence {xn} belongs in Γ.
Then, there exists a point x̂ ∈ Γ such that {xn} weakly converges to x̂.

In this paper, the symbol “ ⇀ ” and “ → ” stands for the weak and strong convergence,
respectively.

3. The Iterative Algorithm

In this section, we present convergence result using the inertial extrapolation method
for solving the MSSFP (1.5), which is the main result of this work.

We are interested to solve the MSSFP in which the involved sets {Ci}ri=1 and {Qj}sj=1

are given as sublevel sets of convex functions, i.e.,

Ci = {x ∈ H1 : ci(x) ≤ 0} and Qj = {y ∈ H2 : qj(y) ≤ 0}, (3.1)

where ci : H1 → R and qj : H2 → R are convex functions for all i ∈ {1, . . . , r} and for
all j ∈ {1, . . . , s}. We assume that both ci and qj are subdifferentiable on H1 and H2,
respectively, and that ∂ci and ∂qj are bounded operators. Now, we define the following
half-spaces at point xn by

Ci,n = {x ∈ H1 : ci(xn) ≤ ⟨ξi,n, xn − x⟩}, (3.2)
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where ξi,n ∈ ∂ci(xn), and

Qj,n = {y ∈ H2 : qj(Axn) ≤ ⟨εj,n, Axn − y⟩}, (3.3)

where εj,n ∈ ∂qj(Axn).
For approximating a solution of the MSSFP, we present an iterative algorithm with

extrapolated point assuming Ci and Qj are given as sublevel sets of convex functions (3.1)
where the projection onto half-spaces (3.2) and (3.3) is computed in parallel and prior
knowledge of the operator norm is not required. We introduce the extended form of the
way of selecting stepsize used by Lopez et al. [15] and we analyze the weak convergence of
our proposed algorithm. For this purpose, we define the following settings: for xn ∈ H1,

(1): for each i ∈ {1, . . . , r} and n ≥ 1, define

pi,n(xn) =
1

2
∥(I − PCi,n

)xn∥2 and ∇pi,n(xn) = (I − PCi,n
)xn,

(2): p(xn) and ∇p(xn) are defined as p(xn) = pix,n(xn) and so ∇p(xn) = ∇pix,n(xn)
where ix ∈ {1, . . . , r} is such that for each n ≥ 1,

ixn ∈ argmax{pi,n(xn) : i ∈ {1, . . . , r}},
(3): for each j ∈ {1, . . . , s} and n ≥ 1, define

hj,n(xn) =
1

2
∥(I − PQj,n)Axn∥2 and ∇hj,n(xn) = A∗(I − PQj,n)Axn.

We note that pi,n and hj,n are convex, weakly lower semi-continuous, and differentiable
functions ([36]). Assuming the solution set Ω of the MSSFP (1.5) is nonempty, the
suggested algorithm is given as follows.

Algorithm 1: Inertial Relaxed Algorithm for solving MSSFP

Let {βn}, {γj,n}sj=1, {ρn}, {αn} be real sequences. Choose initial points x0, x1 ∈ H1,
assume that the current iterate {xn} has been constructed, and
∇p(yn) +∇hj,n(yn) ̸= 0. Then, compute {xn+1} via the rule

yn = xn + βn(xn − xn−1),

zn = yn −
s∑

j=1

{
γj,nτj,n(∇hj,n(yn) +∇p(yn))

}
,

xn+1 = (1− αn)yn + αnzn,

(3.4)

where τj,n = ρn
hj,n(yn)+p(yn)

θ2
j (yn)

, and θj(yn) = max{1, ∥∇p(yn) +∇hj,n(yn)∥}.

The term βn(xn − xn−1) appeared in Algorithm 1 is the inertial term with an extrap-
olation factor βn. It is remarkable that the inertial terminology greatly improves the
performance of the algorithm and has a nice convergence properties [44–46].

Remark 3.1. In Algorithm 1 above, if ∇hj,n(yn) = ∇p(yn) = 0 and yn = xn, j ∈
{1, . . . , s}, then xn ∈ Ω and the iterative process stops. Otherwise, set n := n + 1 and
repeat the iteration.

Theorem 3.2. Let {αn} be a non-increasing real sequence in (0, 1) and {βn} be a non-
decreasing real sequence in (0, 1). If the parameters {βn}, {γj,n}sj=1, {ρn}, {αn} in Al-
gorithm 1 satisfy the following conditions:

(C1): 0 < α ≤ αn ≤ 1
2 ;

(C2): 0 ≤ βn ≤ 1−m
3 < 1

3 , for some m ∈ (0, 1);

Bangmod Int. J. Math. & Comp. Sci., 2021



AN ITERATIVE METHOD WITH INERTIAL EFFECT 59

(C3): 0 < lim inf
n→∞

γj,n ≤ lim sup
n→∞

γj,n < 1, ∀j ∈ {1, . . . , s}, and
s∑

j=1

γj,n = 1;

(C4): 0 < ρn < 4 and lim inf
n→∞

ρn(4− ρn) > 0;

then the sequence {xn} generated by Algorithm 1 converges weakly to p∗ ∈ Ω.

Proof. Claim 1: For every p∗ ∈ Ω, lim
n→∞

∥xn − p∗∥ exists.

Let p∗ ∈ Ω. Since I − PCi,n and I − PQj,n are firmly nonexpansive, and since p∗ verifies
(1.5), we have for all x ∈ H1

⟨∇pi,n(x), x− p∗⟩ = ⟨(I − PCi,n
)x, x− p∗⟩

≥ ∥(I − PCi,n)x∥2 = 2pi,n(x)
(3.5)

and

⟨∇hj,n(x), x− p∗⟩ = ⟨A∗(I − PQj,n
)Ax, x− p∗⟩

= ⟨(I − PQj,n)Ax,Ax−Ap∗⟩
≥ ∥(I − PQj,n

)Ax∥2 = 2hj,n(x).

(3.6)

Now from the definition of yn, we get

∥yn − p∗∥ = ∥xn + βn(xn − xn−1)− p∗∥
≤ ∥xn − p∗∥+ βn∥xn − xn−1∥.

(3.7)

From (3.4) and Lemma 2.6 (ii), we obtain

∥zn − p∗∥2 =
∥∥yn −

s∑
j=1

{
γj,nτj,n(∇hj,n(yn) +∇p(yn))

}
− p∗

∥∥2
− 2

⟨ s∑
j=1

{
γj,nτj,n(∇hj,n(yn) +∇p(yn))

}
, yn − p∗

⟩
≤ ∥yn − p∗∥2 +

∥∥∥ s∑
j=1

{
γj,nτj,n(∇hj,n(yn) +∇p(yn))

}∥∥∥2.
(3.8)

Using convexity of ∥.∥2, definition of τj,n, and condition (C3), we have∥∥∥ s∑
j=1

{
γj,nτj,n(∇hj,n(yn) +∇p(yn))

}∥∥∥2
≤

s∑
j=1

{
γj,n

(
ρn

hj,n(yn) + p(yn)

θ2j (yn)

)2∥∥∇hj,n(yn) +∇p(yn)
∥∥2}

≤
s∑

j=1

{
γj,n

(
ρn

hj,n(yn) + p(yn)

θ2j (yn)

)2

θ2j (yn)
}

= ρ2n

s∑
j=1

γj,n
(hj,n(yn) + p(yn))

2

θ2j (yn)
. (3.9)

From (3.5) and (3.6), we have
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⟨ s∑
j=1

{
γj,nρn

hj,n(yn) + p(yn)

θ2j (yn)
(∇hj,n(yn) +∇p(yn))

}
, yn − p∗

⟩
=

s∑
j=1

{
γj,nρn

hj,n(yn) + p(yn)

θ2j (yn)

⟨
∇hj,n(yn) +∇p(yn), yn − p∗

⟩}
=

s∑
j=1

{
γj,nρn

hj,n(yn) + p(yn)

θ2j (yn)
(⟨∇hj,n(yn), yn − p∗⟩+ ⟨∇p(yn), yn − p∗⟩)

}
≥

s∑
j=1

{
γj,nρn

hj,n(yn) + p(yn)

θ2j (yn)
(2hj,n(yn) + 2p(yn))

}
≥ 2ρn

s∑
j=1

γj,n
(hj,n(yn) + p(yn))

2

θ2j (yn)
. (3.10)

From (3.8), (3.9) and (3.10), we obtain

∥zn − p∗∥2 ≤ ∥yn − p∗∥2 + ρ2n

s∑
j=1

γj,n
(hj,n(yn) + p(yn))

2

θ2j (yn)

− 4ρn

s∑
j=1

γj,n
(hj,n(yn) + p(yn))

2

θ2j (yn)

= ∥yn − p∗∥2 − ρn(4− ρn)

s∑
j=1

γj,n
(hj,n(yn) + p(yn))

2

θ2j (yn)
. (3.11)

From (3.11) and (C4), we have

∥zn − p∗∥ ≤ ∥yn − p∗∥. (3.12)

From the definition of xn+1, we have that

xn+1 − p∗ = yn − p∗ − αn(yn − zn).

By Lemma 2.6 (iii) and using (3.12), we have that

−2αn⟨yn − p∗, yn − zn⟩ = −αn∥yn − p∗∥2 − αn∥yn − zn∥2 + αn∥zn − p∗∥2

≤ −αn∥yn − p∗∥2 − αn∥yn − zn∥2 + αn∥yn − p∗∥2

= −αn∥yn − zn∥2.
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Therefore, since yn − zn = 1
αn

(yn − xn+1), we get

∥xn+1 − p∗∥2 = ∥(yn − p∗)− αn(yn − zn)∥2

= ∥yn − p∗∥2 + α2
n∥(yn − zn)∥2 − 2αn⟨yn − p∗, yn − zn⟩

≤ ∥yn − p∗∥2 + α2
n∥yn − zn∥2 − αn∥yn − zn∥2

= ∥yn − p∗∥2 − αn(1− αn)∥yn − zn∥2

= ∥yn − p∗∥2 − αn(1− αn)∥
1

αn
(yn − xn+1)∥2

= ∥yn − p∗∥2 − 1− αn

αn
∥yn − xn+1∥2

= ∥yn − p∗∥2 −
(1− αn

αn
− 1

)
∥yn − xn+1∥2 + ∥yn − xn+1∥2.

(3.13)

Hence, we have from (3.13) that

∥xn+1 − p∗∥2 +
(1− αn

αn
− 1

)
∥yn − xn+1∥ ≤ ∥yn − p∗∥2 − ∥yn − xn+1∥2. (3.14)

Now, using definition of yn, we get from (3.14) that

∥xn+1 − p∗∥2 +
(1− αn

αn
− 1

)
∥yn − xn+1∥

≤ ∥(xn − p∗) + βn(xn − xn−1)∥2 − ∥xn + βn(xn − xn−1)− xn+1∥2

=
(
∥xn − p∗∥2 + ∥βn(xn − xn−1)∥2 + 2⟨xn − p∗, βn(xn − xn−1)⟩

)
−(

∥xn − xn+1∥2 + 2βn⟨xn − xn+1, xn − xn−1⟩+ ∥βn(xn − xn−1)∥2
)

=
(
∥xn − p∗∥2 + 2βn⟨xn − p∗, xn − xn−1⟩+ ∥βn(xn − xn−1)∥2

)
−(

∥xn − xn+1∥2 + 2βn⟨xn − xn+1, xn − xn−1⟩+ ∥βn(xn − xn−1)∥2
)

=
(
∥xn − p∗∥2 + 2βn⟨xn − p∗, xn − xn−1⟩+ β2

n∥xn − xn−1∥2
)
−(

∥xn − xn+1∥2 + 2βn⟨xn − xn+1, xn − xn−1⟩+ ∥βn(xn − xn−1)∥2
)

= ∥xn − p∗∥2 + 2βn⟨xn − p∗, xn − xn−1⟩ − ∥xn − xn+1∥2 −
2βn⟨xn − xn+1, xn − xn−1⟩. (3.15)

From (3.15), we have

∥xn+1 − p∗∥2 +
( 1

αn
(1− αn)− 1

)
∥xn+1 − yn∥2

≤ ∥xn − p∗∥2 + 2βn⟨xn − p∗, xn − xn−1⟩ − ∥xn − xn+1∥2

−2βn⟨xn − xn+1, xn − xn−1⟩. (3.16)

Using the fact that 2cd ≥ −c2 − d2,∀c, d ∈ R, we get

2⟨xn − xn+1, xn − xn−1⟩ ≥ −∥xn − xn+1∥2 − ∥xn − xn−1∥2,
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which by (3.16) implies that

∥xn+1 − p∗∥2 − ∥xn − p∗∥2 − βn∥xn − xn−1∥2 + (1− βn)∥xn − xn+1∥2

+
(

1
αn

(1− αn)− 1
)
∥xn+1 − yn∥2 ≤ 2βn⟨xn − p∗, xn − xn−1⟩.

(3.17)

Using Lemma 2.6 (iii), we have from (3.17) that

∥xn+1 − p∗∥2 − ∥xn − p∗∥2 − βn∥xn − xn−1∥2 + (1− βn)∥xn − xn+1∥2

+
(

1
αn

(1− αn)− 1
)
∥xn+1 − yn∥2

≤ βn(−∥xn−1 − p∗∥2 + ∥xn − p∗∥2 + ∥xn − xn−1∥2).
(3.18)

Adding βn+1∥xn+1 − xn∥2 − βn+1∥xn+1 − xn∥2 to one side of (3.18), we have

∥xn+1 − p∗∥2 − ∥xn − p∗∥2 + 2βn+1∥xn+1 − xn∥2 − 2βn∥xn − xn−1∥2
+βn(∥xn−1 − p∗∥2 − ∥xn − p∗∥2) + (1− βn − 2βn+1)∥xn − xn+1∥2

+
(

1
αn

(1− αn)− 1
)
∥xn+1 − yn∥2 ≤ 0.

(3.19)

Since {βn} is non-decreasing and {αn} is non-increasing, we obtain

∥xn+1 − p∗∥2 − ∥xn − p∗∥2 + 2βn+1∥xn+1 − xn∥2
−2βn∥xn − xn−1∥2 − βn∥xn − p∗∥2
−βn−1∥xn−1 − p∗∥2 + (1− 3βn+1)∥xn − xn+1∥2

+
(

1
αn

(1− αn)− 1
)
∥xn+1 − yn∥2 ≤ 0.

(3.20)

Now, let

Ψn := ∥xn − p∗∥2 + 2βn∥xn − xn−1∥2 − βn−1∥xn−1 − p∗∥2.
Then, from (3.20) and using condition (C2), we have that

Ψn+1 −Ψn ≤ −(1− 3βn+1)∥xn − xn+1∥2 −
( 1

αn
(1− αn)− 1

)
∥xn+1 − yn∥2

≤ 0. (3.21)

Therefore, the sequence {Ψn} is non-increasing. Let ϕn = ∥xn − p∗∥2. Since βn < 1
3 , we

have

−1

3
ϕn−1 ≤ ϕn − 1

3
ϕn−1 ≤ Ψn ≤ Ψ1,∀n ≥ 1. (3.22)

This implies that

ϕn ≤
(1
3

)n

ϕ0 +Ψ1

n−1∑
k=0

(1
3

)k

≤
(1
3

)n

ϕ0 +
Ψ1

1− 1
3

,∀n ≥ 1.

We observe that

Ψn = ∥xn − p∗∥2 + 2βn∥xn − xn−1∥2 − βn−1∥xn−1 − p∗∥2

≥ ∥xn − p∗∥2 + 2βn∥xn − xn−1∥2 −
1

3
∥xn−1 − p∗∥2.

Thus, Ψ1 ≥ 0. It follows from (3.21) and (3.22) that

n∑
k=1

(1− 3βk+1)∥xk − xk+1∥2 ≤ Ψ1 −Ψn+1 ≤ Ψ1 +
1

3
ϕn ≤

(1
3

)n+1

ϕ0 +
3Ψ1

2
.
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This implies that
∑∞

n=1(1− 3βn+1)∥xn − xn+1∥2 ≤ ∞. By (C2), we have that

∞∑
n=1

∥xn − xn+1∥2 ≤ ∞. (3.23)

Furthermore, from (3.19), we get that

∥xn+1 − p∗∥2 − ∥xn − p∗∥2 − 2βn∥xn − xn−1∥2
+βn(∥xn−1 − p∗∥2 − ∥xn − p∗∥2) + (1− βn)∥xn − xn+1∥2 ≤ 0.

This implies that

∥xn+1 − p∗∥2 − ∥xn − p∗∥2 + βn(∥xn−1 − p∗∥2 − ∥xn − p∗∥2)
≤ 2βn∥xn − xn−1∥2 − (1− βn)∥xn − xn+1∥2.

Hence,

∥xn+1 − p∗∥2 ≤ ∥xn − p∗∥2 + βn(∥xn − p∗∥2 − ∥xn−1 − p∗∥2)
+2βn∥xn − xn−1∥2 − (1− βn)∥xn − xn+1∥2.

(3.24)

Using Lemma 2.10 in (3.24), we have that lim
n→∞

∥xn − p∗∥ exists.

Claim 2: Any weak-cluster point of the sequence {xn} belongs in Ω.
Now, for p∗ ∈ Ω, using Lemma 2.6 (i) in the definition of xn+1, we have

∥xn+1 − p∗∥2 = ∥(1− αn)yn + αnzn − p∗∥2

= ∥(1− αn)(yn − p∗) + αn)(zn − p∗)∥2

= (1− αn)∥yn − p∗∥2 + αn∥zn − p∗∥2 − αn(1− αn)∥zn − yn∥2

≤ ∥yn − p∗∥2 − αn(1− αn)∥zn − yn∥2. (3.25)

Also, using Lemma 2.6 (ii) in the definition of yn, we have

∥yn − p∗∥2 = ∥xn + βn(xn − xn−1)− p∗∥2

= ∥xn − p∗ − βn(xn−1 − xn)∥2

≤ ∥xn − p∗∥2 − 2βn⟨xn − p∗, xn−1 − xn⟩+ β2
n∥xn−1 − xn∥2.

(3.26)

Substituting (3.26) into (3.25) and using the fact that β2
n ≤ βn, βn ∈ [0, 1) , we have

∥xn+1 − p∗∥2 ≤ ∥xn − p∗∥2 − 2βn⟨xn − p∗, xn−1 − xn⟩+ β2
n∥xn−1 − xn∥2

− αn(1− αn)∥zn − yn∥2. (3.27)

Again, using Lemma 2.6 (i) in (3.27), we have

∥xn+1 − p∗∥2 ≤ βn(∥xn − p∗∥2 − ∥xn−1 − xn∥2) + 2βn∥xn−1 − xn∥2

− αn(1− αn)∥zn − yn∥2

≤ βn(∥xn − p∗∥2 − ∥xn−1 − xn∥2) + 2βn∥xn−1 − xn∥2.
(3.28)

Using Lemma 2.10 in (3.28), we have that

∞∑
n=1

[∥xn+1 − p∗∥2 − ∥xn − p∗∥2]+ < ∞. (3.29)
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By condition (C1) (noting that βn ∈ [0, 1)), we have from (3.28) that
∞∑

n=1

αn(1− αn)∥zn − yn∥2 ≤
∞∑

n=1

[∥xn − p∗∥2 − ∥xn+1 − p∗∥2]

+

∞∑
n=1

βn(∥xn − p∗∥2 − ∥xn−1 − p∗∥2)

+ 2

∞∑
n=1

βn∥xn−1 − xn∥2. (3.30)

Using (3.23) and (3.29) in (3.30), we obtain
∞∑

n=1

αn(1− αn)∥zn − yn∥2 < ∞.

By the condition (C1), we have

lim
n→∞

∥zn − yn∥ = 0. (3.31)

From (3.23), we have that lim
n→∞

∥xn−xn−1∥ = 0, which furthermore implies that lim
n→∞

βn∥xn−
xn−1∥ = 0. This implies from Algorithm 1 that lim

n→∞
∥yn − xn∥ = 0. Also from (3.29), we

have that lim
n→∞

[∥xn+1 − p∗∥2 − ∥xn − p∗∥2] = 0. From (3.11) and (3.31), we have

ρn(4− ρn)

s∑
j=1

γj,n
(hj,n(yn) + p(yn))

2

θ2j (yn)

≤ ∥yn − p∗∥2 − ∥zn − p∗∥2

= (∥yn − p∗∥ − ∥zn − p∗∥)(∥yn − p∗∥+ ∥zn − p∗∥)
≤ ∥yn − zn∥(∥yn − p∗∥+ ∥zn − p∗∥) → 0, n → ∞. (3.32)

Hence, we obtain

ρn(4− ρn)

s∑
j=1

γj,n
(hj,n(yn) + p(yn))

2

θ2j (yn)
→ 0, n → ∞. (3.33)

Using condition (C3), from (3.33), we have

(hj,n(yn) + p(yn))
2

θ2j (yn)
→ 0, n → ∞ (3.34)

for all j ∈ {1, . . . , s}. Now, using the definition of yn and (C2), we have

∥xn − yn∥ = ∥xn − xn − βn(xn − xn−1)∥ = βn∥xn − xn−1∥ → 0, n → ∞. (3.35)

By (3.24) and (3.25), we get

∥xn − zn∥ ≤ ∥xn − yn∥+ ∥yn − zn∥ → 0, n → ∞. (3.36)

Using the definition of xn+1, (C1) and noting that {yn} and {zn} are bounded, we have

∥xn+1 − zn∥ = (1− αn)∥yn − zn∥ → 0, n → ∞. (3.37)

(3.26) and (3.27) gives

∥xn+1 − xn∥ ≤ ∥xn+1 − zn∥+ ∥zn − xn∥ → 0, n → ∞. (3.38)
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For each i ∈ {1, . . . , r} and for each j ∈ {1, . . . , s}, ∇hj,n(.) and ∇pi,n(.) are Lipschitz
continuous with constant ∥A∥2 and 1, respectively. Since the sequence {zn} is bounded
and

∥∇hj,n(yn)∥ = ∥∇hj,n(yn)−∇hj,n(p
∗)∥ ≤ ∥A∥2∥yn − p∗∥, ∀j ∈ {1, . . . , s},

∥∇pi,n(yn)∥ = ∥∇pi,n(yn)−∇pi,n(p
∗)∥ ≤ ∥yn − p∗∥, ∀i ∈ {1, . . . , r},

we have the sequences {∥∇pi,n(yn)∥}∞n=1 and {∥∇hj,n(yn)∥}∞n=1 are bounded. Hence, we
have {θj(yn)}∞n=1 is bounded and hence {θj(ynk

)}∞k=1 is bounded. As a result by (3.34),
we have

lim
k→∞

hj,nk
(ynk

) = lim
k→∞

pnk
(ynk

) = 0, ∀j ∈ {1, . . . , s}. (3.39)

From the definition of pnk
(ynk

), we can have

pi,nk
(ynk

) ≤ pnk
(ynk

), ∀i ∈ {1, . . . , r}. (3.40)

Therefore, (3.39) and (3.40) gives

lim
k→∞

hj,nk
(ynk

) = lim
k→∞

pi,nk
(ynk

) = 0, ∀i ∈ {1, . . . , r},∀j ∈ {1, . . . , s}.

That is, for all i ∈ {1, . . . , r}, j ∈ {1, . . . , s}, we have

lim
k→∞

∥(I − PQj,nk
)Aynk

∥ = lim
k→∞

∥(I − PCi,nk
)ynk

∥ = 0. (3.41)

Therefore, since {yn} is bounded and from the boundedness assumption of the subdiffer-
ential operator ∂qj , the sequence {εj,n}∞n=1 is bounded. In view of this and (3.41), for all
j ∈ {1, . . . , s} we have

qj(Aynk
)≤ ⟨εj,nk

, Aznk
− PQj,nk

(Aynk
)⟩

≤ ∥εj,nk
∥∥(I − PQj,nk

)Aynk
∥ → 0, k → ∞.

(3.42)

Similarly, from the boundedness of {ξi,n}∞n=1 and (3.41), for all i ∈ {1, . . . , r}, we obtain

ci(ynk
)≤ ⟨ξi,nk

, ynk
− PCi,nk

(ynk
)⟩

≤ ∥ξi,nk
∥∥(I − PCi,nk

)ynk
∥ → 0, k → ∞.

(3.43)

Let x∗ be a weak cluster point of {xn}. Thus, by Lemma 2.12 there exists a subsequence
{xnk

} which weakly converges to x∗. Since lim
n→∞

∥yn − xn∥ = 0 and since xnk
⇀ x∗,

k → ∞, we have ynk
⇀ x∗,k → ∞ which implies Aynk

⇀ Ax∗, k → ∞.
The weak lower semi-continuity of qj(.) and (3.42) implies that

qj(Ax
∗) ≤ lim inf

k→∞
qj(Aynk

) ≤ lim sup
k→∞

qj(Aynk
) ≤ 0, ∀j ∈ {1, . . . , s}.

That is, Ax∗ ∈ Qj for all j ∈ {1, . . . , s}.
Likewise, the weak lower semi-continuity of ci(.) and (3.43) implies that

ci(x
∗) ≤ lim inf

k→∞
ci(ynk

) ≤ 0, ∀i ∈ {1, . . . , r}.

That is, x∗ ∈ Ci for all i ∈ {1, . . . , r}. Thus, x∗ ∈ Ω. Hence, every weak-cluster point of
the sequence {xn} belongs to Ω. Therefore, by Lemma 2.12, there exists a point p∗ ∈ Ω
such that {xn} weakly converges to p∗. This completes the proof.

For the particular case, where r=s=1, we note the following corollary regarding the
SFP (1.1), which is an immediate consequence of Theorem 3.2.
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Corollary 3.3. Let {αn} be a non-increasing real sequence in (0, 1) and {βn} be a non-
decreasing real sequence in (0, 1), and {ρn} is real parameter sequence. Consider the
iterative algorithm

x0, x1 ∈ H1,
yn = xn + βn(xn − xn−1),
zn = yn − τn(∇hn(yn) +∇p(yn)),
xn+1 = (1− αn)yn + αnzn,

(3.44)

where τn = ρn
hn(yn)+p(yn)

θ2(yn)
with θ(yn) = max{1, ∥∇p(yn) +∇hn(yn)∥}. If the parameters

{βn}, {ρn}, {αn} in the iterative algorithm (3.44) satisfy the following conditions:

(C1): 0 < α ≤ αn ≤ 1
2 ;

(C2): 0 ≤ βn ≤ 1−m
3 < 1

3 , for some m ∈ (0, 1);
(C3): 0 < ρn < 4 and lim inf

n→∞
ρn(4− ρn) > 0.

Then, the sequence {xn} generated by (3.44) converges weakly to p∗ ∈ Ω̄ = {p∗ ∈ C :
Ap∗ ∈ Q}.

4. Numerical Results

In this section, we present some numerical experiments to illustrate the implementation
and efficiency of our proposed method and we compare it with [47, Algorithm 3.1 ] (say
He et al. Alg.), [27, Algorithm 3.1 ](say Suantai et al. Alg.), and [48, Scheme (18) ](say
Tang et al. Alg.) by solving sa MSSFP problem. The numerical results are completed on
a standard TOSHIBA laptop with Intel(R) Core(TM) i5-2450M CPU@2.5GHz 2.5GHz
with memory 4GB. The code is implemented in MATLAB R2020a. In our numerical
experiments, Iter.(n) stands for the number of iterations and CPU(s) is Elapsed time in
seconds.

Example 4.1. Consider two Hilbert spaces H1 = RN , H2 = RM . The goal is to find a
point p∗ ∈ RN such that

p∗ ∈
r∩

i=1

Ci such that Ap∗ ∈
s∩

j=1

Qj , (4.1)

where A : RN → RM is a linear bounded operator whose representing elements are
randomly generated in the closed interval [−0.5, 0.5], and the closed convex subsets Ci

(i = 1, 2, . . . , r) of RN are given by

Ci =

{
x ∈ RN :

N∑
k=i

10(
k−1
N−1 )x2

k ≤ 1

}
,

where k is positive integer and i = 1, 2, . . . , r = N , and the closed convex subsets Qj

(j = 1, 2, . . . , s) of RM are given by

Qj =

{
y ∈ RM :

M∑
k=j

10(
k−1
M−1 )y2k ≤ 1

}
,

where k is positive integer and j = 1, 2, . . . , s = M . Obviously, Ci and Qj are both
ellipsoids [49]. So such a MSSFP can be solved by the proposed algorithms. In this
example, we study the numerical behaviour of our proposed Algorithm 1, He et al. Alg.,
Suantai et al. Alg., and Tang et al. Alg. by solving (4.1) for different choices of the
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dimensions N and M . For the sake of convenience, we denote e1 = (1, 1, . . . , 1)T ∈ RN .
For Algorithm 1, we take x0 = 3e1, x1 = 10e1, θn = 0.9, ρn = n

2n+1 , αn = 1
12 + 1

6n ,

γj,n = j∑M
m=1 m

for j = 1, 2, . . . , s = M . For He et al. Alg., we take u = rand(N, 1),

x0 = 3e1, ρn = n
2n+1 , αn = 1

n+1 , ιi = i∑N
m=1 m+

∑M
m=1 m

for i = 1, 2, . . . , r = N , and

λj = j∑N
m=1 m+

∑M
m=1 m

for j = 1, 2, . . . , s = M . For Suantai et al. Alg., we take u =

rand(N, 1), x0 = 3e1, x1 = 10e1, β = 0.9, βn = β̄n, ωn = 1
(n+1)2 , ρn = n

2n+1 , αn =
1

n+1 , ιi = i∑N
m=1 m+

∑M
m=1 m

for i = 1, 2, . . . , r = N , and λj = j∑N
m=1 m+

∑M
m=1 m

for j =

1, 2, . . . , s = M . For Tang et al. Alg., we take x0 = 3e1, ρk1 = 0.09 = ρk2 , αi =
i∑N

m=1 m+ΣM
m=1m

for i = 1, 2, . . . , r = N , and βj = j∑N
m=1 m+

∑M
m=1 m

for j = 1, 2, . . . , s =

M . In the implementation, we take error = ∥xn+1 − xn∥2 < 10−6 as the stopping
criterion. The numerical results of the compared algorithms in terms of the number of
iterations (Iter.(n)) and the time of execution in seconds (CPU(s)), are described in
Table 1 and Figure 1. In Figure 1, we give error versus the Iter.(n) for different choices
of N and M . It is readily seen from Table 1 and Figure 1 that our proposed Algorithm
1 has a better performance than the compared algorithms.

Table 1. Comparison of Algorithm 1 with Suantai et al. Alg., He et al.
Alg., and Tang et al. Alg.

Algorithm 1 Suantai et al. Alg. He et al. Alg. Tang et al. Alg.
(N,M) Iter.(n) CPU(s) Iter.(n) CPU(s) Iter.(n) CPU(s) Iter.(n) CPU(s)
(10, 20) 114 0.278821 139 0.278319 150 0.391167 151 0.233414
(20, 30) 141 0.445766 172 0.47222 199 0.562628 217 0.519087
(30, 20) 164 0.458431 227 0.535639 264 0.606438 425 0.959047
(30, 40) 166 0.801689 228 0.946397 200 0.72992 288 1.144844
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(a) N = 10,M = 20
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(b) N = 20,M = 30
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(c) N = 30,M = 20
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Figure 1. Comparison of Algorithm 1 with Suantai et al. Alg., He et
al. Alg., and Tang et al. Alg. for different choices of N and M

Conclusions

In this work, we studied the multiple-sets split feasibility problem in the framework
of real Hilbert spaces. A self-adaptive inertial relaxed technique that does not need
prior information about the operator norm is proposed to solve MSSFP. A weak conver-
gence theorem to the proposed algorithm is established and proved under some suitable
conditions. Our numerical experiments showed that the proposed method is easily im-
plementable and better performance that the compared algorithms interms of iteration
numbers and elapsed time taken.
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