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Abstract An iterative method with inertial extrapolation term for approximating the solution of multiple-
sets split feasibility problem in the infinite-dimensional Hilbert spaces is presented. In a recent paper,
Ogbuisi and Mewomo [1] introduced an iterative algorithm involving an inertial term and a step size
independent of the operator norm for approximating a solution to split variational inequality problem
in a real Hilbert space. We extend the algorithm introduced by Ogbuisi and Mewomo [1] for solving
multiple-set split feasibility problem, and we propose a self-adaptive technique to choose the stepsizes
such that the implementation of our algorithm does not need prior information about the operator norm.
We prove a weak convergence theorem to the proposed algorithm under some suitable conditions. Finally,
we give some numerical examples to illustrate the efficiency and implementation of our method compared

to some existing results.
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1. INTRODUCTION

Let Hy and Hs be two real Hilbert spaces. Let A : Hy — Hs be a bounded linear
operator. Let C' and @ be two nonempty, closed and convex subsets of H; and Hs,
respectively. The split feasibility problem (SFP) introduced by Censor and Elfving [2] is
formulated as follows:

find a point p* € C such that Ap* € Q. (1.1)

The SFP was first introduced in 1994 in finite-dimensional Hilbert spaces for modeling
inverse problems which arise from phase retrievals and in medical image reconstruction.
The SFP has broad theoretical applications in many fields such as approximation theory
[3], control [4], and so on, and the references therein. It also plays a fundamental role
in signal processing, intensity-modulated radiation therapy etc., see, e.g., [5-8]. Several
iterative methods including the popular and most celebrated CQ-method by Byrne [8]
have been introduced for solving the SFP, see [2, 6, 8-15] and the references therein.
Due to it’s practical applications, the SFP has received a great attention by many
researchers, and several generalizations of the SFP have been studied, like, the multiple-

set SFP (MSSFP) [16], the SFP with multiple output sets [17], the split common null
point problem (SCNPP) [18], the split common fixed point problem (SCFPP) [19], the
split variational inequality problem (SVIP) [20], just to mention a few.

Let Hy and Hs be two real Hilbert spaces. Given operators f: H; — H; and g : Hy —
H,, a bounded linear operator A : Hy — Hs, and nonempty, closed and convex subsets
C C Hy and Q C Ha, the split variational inequality problem (SVIP) [20] is formulated
as follows:

find a point p* € C such that (f(p*),z —p*) >0Vx € C (1.2)
and such that
the point y* = Ap* € @ and solves (g(y*),y —y*) > 0 Vy € Q. (1.3)

Recently, Ogbuisi and Mewomo [1] introduced the following iterative algorithm involving
an inertial term and a step size independent of the operator norm for approximating
solutions of the above SVIP in a real Hilbert space: Let g, z1 € Hy, then the sequence
{zn} is generated by

Yn = Tn + Bn(mn - fnfl)u
Tn+1 = (1 - an)yn + anzn, N > 17

where {f3,} and {«a,} are a non-decreasing and non-increasing sequences (0, 1), respec-
tively, f : Hy — H; and g : Ho — Hs are §- and o-inverse strongly monotone mappings,
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respectively, 0 < p < min{d, o}, the step size 7, is chosen in such a way that, for some

e>0,7, € (e, H‘fl‘(f;%g(;figi);?i;!2||2 —e) if Po(I—pg)—1I)Ay, # 0, and 7, = 7 otherwise

(7 being any nonnegative real number), I stands for the identity mapping in H; and Ho,
and Pc and Pg are the metric projections of H; and Hy onto C' and @), respectively.
It was proved that, under some suitable conditions the sequence {x,} generate by (1.4)
converges weakly to a solution point of the SVIP.

In this paper, we study the multiple-sets split feasibility problem (MSSFP) which is a
general way to characterize various inverse problems arising in many real-world applica-
tion problems, such as medical image reconstruction and intensity-modulated radiation
therapy. The MSSFP, which was introduced by Censor et al. [16] requires finding a point
closet to a family of closed convex sets in one space such that its image under a linear
transformation will be closest to another family of closed convex sets in the image space.

Let Hi and Hs be two real Hilbert spaces. Let A : Hy — Hs be a bounded linear
operator with adjoint operator A*. Let {C;}{_; and {Q;};_; (where r and s are positive
integers) be two finite family of nonempty, closed and convex subsets of H; and Ha,
respectively, the MSSFP is formulated as follows:

find a point p* € C = ﬂ C; such that Ap* € Q = ﬂ Q;. (1.5)

i=1 j=1

The MSSFP (1.5) with particular case where r = s = 1 is the SFP (1.1). Denote by Q
the set of solutions for the MSSFP (1.5). For solving the MSSFP (1.5), several iterative

methods have been invented, see, e.g., [21-31] and references therein. Initiated by the
self-adaptive strategy given by He et al. [32] to solve the variational inequalities, Zhang
et al. [33] suggested a self-adaptive projection method for solving the MSSFP, which

has no need to estimate the spectral radius of the matrix A*A. Inspired by Tseng’s
modified forward-backward splitting method for finding a zero of the sum of two maximal
monotone mappings [34], recently, Zhao et al. [35], first proposed a modification for
the CQ Algorithm for solving the SFP. Then, they gave a relaxation scheme for this
modification by replacing the orthogonal projections onto the sets C' and ) by projections
onto two half-spaces C), and Q,,, respectively for solving the SFP. This relaxed algorithm
can be implemented easily since it computes projections onto half-spaces and has no need
to know a prior the spectral radius of the matrix A*A. They also extend these modified
algorithms to solve the MSSFP.

In this paper, we extend the algorithm (scheme (1.4) for the SVIP) introduced by
Ogbuisi and Mewomo [1] for solving MSSFP, and we propose an iterative algorithm with
inertial extrapolation term for approximating the solution of the MSSFP in the framework
of infinite-dimensional Hilbert spaces, and we develop a self-adaptive technique to choose
the stepsizes such that the implementation of our algorithm does not need any prior
information about the operator norm. We prove a weak convergence theorem to the
proposed algorithm under some conditions.

The remaining part of this paper is organized as follows. We recall some basic defi-
nitions and lemmas in the next section. In Section 3, we present the description of the
proposed algorithm, and weak convergence of the iterative algorithm for the MSSFP is
proved. In the last section, we give a numerical example to illustrate the implementation
and efficiency of our proposed method compared to some existing algorithms.
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2. PRELIMINARIES

Let H be a real Hilbert space. Let C' be a nonempty closed convex subset of H. The
metric projection on C' is a mapping Po : H — C defined by
Po(z) =argmin{|ly —z| : y€ C}, = € H.
Lemma 2.1. Let C be a closed convex subset of H. Given x € H and a point z € C,
z = Po(x) if and only if
(xt—2z,y—2) <0, VyeC.

Definition 2.2. The mapping T : H — H is said to be firmly nonexpansive if
IT2 — Tyl < o — yll? — |I(I — T)a — (I — Tyll?, Va,y € A,
which is equivalent to
Tz — Ty|* < (T — Ty,x —y), Y,y € H.

If T is firmly nonexpansive, I — T is also firmly nonexpansive. The metric projection
Pc on a closed convex subset C' of H is firmly nonexpansive.

Definition 2.3. The subdifferential of a convex function f : H — R at x € H, denote
by 0f(z), is defined by

Of(x)={§€H: f(z) 2 f(x) +({,z—x), Vze€H}.
If 8f(x) # 0, f is said to be subdifferentiable at x. If the function f is continuously
differentiable then df(x) = {V f(x)}, this is the gradient of f.

Definition 2.4. The function f : H — R is called weakly lower semi-continuous at xq if
for a sequence {xz,} weakly converging to xy one has

liminf f(2,) > f(xo).

A function which is weakly lower semi-continuous at each point of H is called weakly
lower semi-continuous on H.

Lemma 2.5. ([36]) Let Hy; and Hs be real Hilbert spaces and f : Hi — R be given by
f(x) = ||(I — Pg)Axz||* where Q is a closed convex subset of Hy and A: Hy — Hj is a
bounded linear operator. Then

(i): the function f is convex and weakly lower semi-continuous on Hi;
(ii): Vf(x) = A*(I — Pg)Ax, for x € Hy;
(iii): Vf is ||A||?-Lipschitz, i.e., |V f(z) — Vf(y)|| < ||A|*|z —yl|, Vz,y € H;.
Lemma 2.6. ([37]) Let H be a real Hilbert space. Then, for all z,y € H and o € R,, we
have
(i): [laz + (12— Oé)yllz2 = 0<||JJ2||2 + (1 = a)llyll* — a(l —a)]lz — yl*;
(i): [0+ 9l = 2] + ly]? + 2(.0);
(iii): flz =yl = [lzlI* + [lyl® — 2(z, y).
Lemma 2.7. ([38]) Let {c,} and {an} be a sequences of nonnegative real numbers, {3, }
be a sequences of real numbers such that
Cn+41 S (1 - an)cn + ﬁn, n 2 17
where 0 < o, < 1.
(1): If Bn < anL for some L > 0, then {c,} is a bounded sequence.
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(ii): If > o = 00 and limsupg—" <0, then ¢, = 0 as n — oo.

n—oo

Definition 2.8. Let {I',,} be a real sequence. Then, {I',} decrease at infinity if there
exists ng € N such that I',,y; < T, for n > ng. In other words, the sequence {I'),}
does not decrease at infinity, if there exists a subsequence {I',, };>1 of {I',,} such that
I, <Ty,41 forallt>1.

Lemma 2.9. ([39]) Let {T'y,} be a sequence of real numbers that does not decrease at
infinity. Also consider the sequence of integers {¢(n)}n>n, defined by
p(n) =max{k e N: k <n,T'y <Tyip1}.
Then {o(n)}n>n, 5 a nondecreasing sequence verifying nh_)n;o v(n) = o0, and for all n >
ng, the following two estimates hold:
Loy = Tomy+r and I < Tpmy41-
Lemma 2.10. ([10]) Let {¢,} and {m,} be nonnegative sequences of real numbers satis-

o0
fying > ¢ <00 and mpi1 < T+ Cny,n=1,2,.... Then, {m,} is a convergent sequence.

n=1
Lemma 2.11. ([11]) Assume ¢y, € [0,00) and v, € [0,00) satisfy
(1): ¢22~1 - ¢n < Bn(¢n - QSnfl) + Yn,
(ii): Z ’Y’I’L < 007

n=1

(iii): {B.} C [0, 8], where 5 € [0,1).

Then, the sequence {¢n} is convergent with Y [pnr1—¢n]+ < 00, where [t]4 := max{t,0},
n=1

for any t € R.

Lemma 2.12. ([12, 43]) Let Hy be a real Hilbert space and {x,} a sequence in Hy such

that there exists a nonempty closed set I' C Hy satisfying:

(1): For every z* € T', lim |lx, — x*| eists.
n—oo
(ii): Any weak-cluster point of the sequence {x,} belongs in T.
Then, there exists a point & € T’ such that {x,} weakly converges to &.

»

In this paper, the symbol “ —
respectively.

and “ — ” stands for the weak and strong convergence,

3. THE ITERATIVE ALGORITHM

In this section, we present convergence result using the inertial extrapolation method
for solving the MSSFP (1.5), which is the main result of this work.
We are interested to solve the MSSFP in which the involved sets {C;}_; and {Q;};_;
are given as sublevel sets of convex functions, i.e.,
Ci={r e Hy:ci(x) <0}and Q; ={y € Hs : q;(y) <0}, (3.1)

where ¢; : Hi — R and ¢; : H» — R are convex functions for all ¢ € {1,...,r} and for
all j € {1,...,s}. We assume that both ¢; and ¢; are subdifferentiable on H; and Ho,
respectively, and that dc¢; and Jq; are bounded operators. Now, we define the following
half-spaces at point x, by

Ci,n - {I S Hl : Cz(xn) S <£i,n; Tn — J)>}, (32)
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where &, € O¢;(xy,), and

Qj,n = {y € Hy: Qj(A-rn) < <‘€j,naA-rn - y>}a (33)

where ¢; , € 0¢;(Axy,).

For approximating a solution of the MSSFP, we present an iterative algorithm with
extrapolated point assuming C; and @); are given as sublevel sets of convex functions (3.1)
where the projection onto half-spaces (3.2) and (3.3) is computed in parallel and prior
knowledge of the operator norm is not required. We introduce the extended form of the
way of selecting stepsize used by Lopez et al. [15] and we analyze the weak convergence of
our proposed algorithm. For this purpose, we define the following settings: for x,, € Hy,

(1): for each i € {1,...,r} and n > 1, define

1
pi,n(xn) = 5”(1 - PCi,n)anQ and vPi,n(xn) =(I—- PCi,n)xn7

(2): p(z,) and Vp(z,) are defined as p(z,) = pi, n(zy) and so Vp(z,) = Vpi, n(Tn)
where i, € {1,...,r} is such that for each n > 1,
iy, € argmax{p;n(zn) i€ {1,...,7}},
(3): for each j € {1,...,s} and n > 1, define
1 *
hjm(@n) = ST = Py, . )Az,|? and Vh;,(z,) = A*(I — Py, ) Az,

We note that p; , and h;, are convex, weakly lower semi-continuous, and differentiable
functions ([36]). Assuming the solution set Q of the MSSFP (1.5) is nonempty, the
suggested algorithm is given as follows.

Algorithm 1: Inertial Relaxed Algorithm for solving MSSFP

Let {Bn}, {Vin}i=1> {pn}, {an} be real sequences. Choose initial points xo, z1 € Hi,
assume that the current iterate {z,} has been constructed, and
Vp(yn) + Vhjn(yn) # 0. Then, compute {z,41} via the rule

Yn = Tpn + Bn(xn - xnfl)a
2 = Un = 22 { Vi (Vhsn (0a) + Vp(a) |, (3.4)

j=1

Tntl = (]- - an)yn + apzn,

where 7;, = pnw, and 0;(y,) = max{1,||Vp(yn) + Vhjn(yn)| }-

The term B, (2, — ,—1) appeared in Algorithm 1 is the inertial term with an extrap-
olation factor (3,. It is remarkable that the inertial terminology greatly improves the
performance of the algorithm and has a nice convergence properties [44—46].

Remark 3.1. In Algorithm 1 above, if Vh;,(y,) = Vp(y,) = 0 and y, = z,, j €
{1,...,s}, then z,, € Q and the iterative process stops. Otherwise, set n := n + 1 and
repeat the iteration.

Theorem 3.2. Let {ay,} be a non-increasing real sequence in (0,1) and {8} be a non-
decreasing real sequence in (0,1). If the parameters {Bn}, {Vin}ti=1, {pn}, {an} in Al-
gorithm 1 satisfy the following conditions:

(Cl):0<a<a, < %;
(C2): 0< B, <152 < L for some m € (0,1);
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(C3): 0< hmmf% n <limsupy,;, <1,Vje{l,...;s}, and > vjn=1;
n—00 j=1

(C4): 0< p, <4 and liminf p,, (4 — p,,) > 0;

n—oo
then the sequence {x,} generated by Algorithm 1 converges weakly to p* € Q.
Proof. Claim 1: For every p* € , lim ||z, — p*|| exists.

n—oo

Let p* € Q. Since I — P¢,, and I — Pg, , are firmly nonexpansive, and since p* verifies
(1.5), we have for all x € Hy

(Vpin(z),2 = p") = (I = Pe, )z, 2 = p7)
> (I = P, )z|* = 2pin()
and
(Vhjn(z), 2 —p") = (A*(I = Pg, ) Az, z — p*)
= (I - Pg,,,)Az, Az — Ap") (3.6)
> |I(I — Pg,,)Az|* = 2h;n(2).
Now from the definition of y,,, we get
1yn = p*|l = llzn + Bn(2n — 2n1) = p7||
< [lzn =Pl + Bullzn — zn-al-

From (3.4) and Lemma 2.6 (i7), we obtain

S

o =PI = [l = D= { i Tin (P ) + Vo)) | =P

j=1

S

- 2< > {%nTj,n(th,n(yn) + Vp(yn))} Yn — p*> (3.8)

j=1

* (|12 - 2
< My =212 + || 32 {3 (Thsn () + Vo0 } |
i=1
Using convexity of ||.||?, definition of 7}, and condition (C3), we have

H zi: {’Yj,nTj,n(th’n(yn) + Vp(yn))} H2

> {2
”)
o

5 {2 G ) 00}

Jj=1

IN

) 1A ) + V()|

IN

)
_ - i (Yn) + D(yn))?
_ Z%n ) . (3.9)

From (3.5) and (3.6), we have
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Y

Y

< {’Yj,npnw(v}lj,n(yn) + Vp(yn))}, Yn — p*>

Yn) <th7n(yn) + Vp(yn), yn — p*>}

+ p(Yn) (<th,n(yn)7yn — ")+ (Vp(yn), yn —p*>)}

From (3.8), (3.9) and (3.10), we obtain

B (yn) + P(Yn))?

lzo =2 1” < lyn — 2" + 0 Z% n 02(5n)
_ 4Pn2%n hjn yég(;i?(yn))
=y — "I — pu(4 - pn)gvjm (hj’”(ygjz)(;z)o(y”))Q. (3.11)
From (3.11) and (C4), we have
20 = 2| < llyn —2*|- (3.12)

From the definition of x,1, we have that

Tpt1 =P =UYn — D" — an(Yn — 2n).

By Lemma 2.6 (iii) and using (3.12), we have that

_2an<yn _p*7yn - Z’ﬂ>

_an”yn —p*||2 - O‘n”yn - Zn||2 + O‘n”Zn —p*||2
—anllyn — ¥ = anllyn — 2ul® + anllyn — p*||°

_anHyn - Zn||2-

VAN

Bangmod Int. J. Math. & Comp. Sci., 2021



AN ITERATIVE METHOD WITH INERTIAL EFFECT 61

Therefore, since y,, — 2, = O%(yn — Tpt1), we get

1y = 1) = anlyn — 2a)II?

[y _p*”2 + ai”(yn - Zﬂ)||2 =200 (Yn — P, Yn — 2n)
[4n _p*H2 + ai”yn - an2 — anllyn — Zn||2

= |lyn —p*||2 —an(l —an)llyn — ZnH2

1 = 2"

IN

. 1
Iy = P11 = cn (1 = )| — (g = Tns1)]”

n
1-a,

Hyn _p*”Q - ||yn - $n+1H2

= g =12 = (

n
1—a,

= 1) llyn = @12+ g = 20|
(3.13)

n

Hence, we have from (3.13) that

1—a,

Jonss = p* 12+ (= = D)l = @il < g = 2" 12 = lym = 2asal. (3.14)

n
Now, using definition of y,, we get from (3.14) that

1—a,

J@nsr =PI+ (" = 1) o = s |

S | ( *)—Fﬁn(xn_xnfl)“z_ ‘|xn+ﬁn(xn_$nfl)_xn+1”2
& = P12+ 118 (20 = 2n-1)II? + 2(an = p*, Buln = 2n-1)) ) =

|

(

(Il = sl + 280 (0 = @usr, @0 = 2aca) + |Balan — 2a-)|?)
= (ln = 57117 + 28u (0 — 5,0 — 201} + |Bu(wn — 20-0)|1?) -

(

(

2 = @nsa I + 28020 = T, 20 = Tn1) + [Bn(@n = 1))

|zn —p ||2 + 2B (Tn — ", T — Tpo1) + 5721Hmn - xn71||2) -

(Hxn - xn+1H2 + 2Bn<xn — Tn+1,Tn — xn—1> + ”ﬂn(l'n - xn—1)||2>

= Hxn - p*||2 + 25n<xn - p*axn - $n71> - Hxn - -TnJrIH2 -
2ﬂn <xn — Tn+1,Tn — xn71>~ (315)
From (3.15), we have

N 1
s =17 + (=1 = an) =1) @1 = yal”

< ”xn *p*H2 + 26n<$n *p*>$n - xn—1> - ||$n - $n+1||2
_26n<1‘n — Tp+41,Tn — xn—1>~ (316)
Using the fact that 2cd > —c? — d?, Ve, d € R, we get

2<$n — Tp4+1,Tn — xn—1> Z _”xn - xn+1||2 - ||xn - xn—1||27

Bangmod Int. J. Math. & Comp. Sci., 2021



62 G. H. Taddele, A. G. Gebrie, J. Abubakar

which by (3.16) implies that

[Zn+1 _p*HQ = |z, _p*Hz — Bullzn — CCnle? + (1= Bn) |z — xn+1||2

3.17
+<%ﬂ(1_an)_1)”xn+l_yn”2 S2Bn<$n_p*7xn_$n—l>- ( )

Using Lemma 2.6 (4i7), we have from (3.17) that

Hwn-i-l - p*HQ - Hxn - p*HQ - ﬁonn - JCn—1||2 + (1 — ﬁn)Hmn - xn+1||2
(01— an) = 1) s — yal? (3.18)
< Bu(=llwn—1 = p*I1P + llzn = p*I1? + 20 — 20-1]l?).

Adding Bni1l|Tns1 — Tnll? = Brtil|Tni1 — 0||? to one side of (3.18), we have
|Zn+1 — p*HQ —lzn - p*Hz + 2Bns1l1Tnt1 — an2 = 2Bn|lzn — wn71||2
+Bn(|2n—1— p*HQ —lzn - p*HZ) + (1= Bn = 2Bn41) |70 — $n+1||2 (3.19)
(L= an) = 1)lenss = pal* 0.

Since {8y} is non-decreasing and {o,} is non-increasing, we obtain

|Zn+1 _p*HQ — [lzn _p*H2 +2Bn41l[Tny1 — InHQ
725n”$n - xn—le - ﬂonn 7p*H2

—Bn-allzn1 = p*|> + (1 = 3Bps1)[|2n — znya |
(&= an) = 1)enss = pal* < 0.

(3.20)

Now, let
\Pn = ||xn - p*||2 + 2,6»””.13” - 'rn—1||2 - ﬁn—l”xn—l - p*H2
Then, from (3.20) and using condition (C2), we have that

1
Ui =W < (1= 38120 = wnsa|* = (= (1 = an) = 1) 2ns1 = gl

< o. (3.21)
Therefore, the sequence {¥,,} is non-increasing. Let ¢, = ||z, — p*||?. Since 8, < %, we
have
1 1
_§¢n71 < n — §¢n71 <V, <V¥;,Vn>1 (3.22)

This implies that

%S( ) ¢o+wlz() ()¢0+1‘I’l\m>1

3

We observe that

v, = [, —p*||2 +2Bn||2n — xn71||2 = Bn-allrn_1 — p*||2

v

* 1 *
|zn —p H2 + 2Bnll7n — xn71||2 - g”wnfl —D H2

Thus, ¥; > 0. It follows from (3.21) and (3.22) that

- 1 1\n+l 3
) o+ 21

> =3B llzn — e € U1 = Wo <+ 360 < (5
k=1
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This implies that > oo (1 = 3Bp41)||Zn — Tnt1]|* < 00. By (C2), we have that
oo
Z |z — Zni1]]* < oo (3.23)
n=1
Furthermore, from (3.19), we get that
[Zns1 = p*[1? = |20 — p*|1? = 2Bnllen — 2n_1 ||
+Bn(zn-1 = P*II” = llzn = p*[1*) + (1 = Bu) |20 — 04| < 0.
This implies that
lzns1 = p*I1” = 120 = p*1? + Bulllzn-1 = p*|I* = llzn — p*[1?)
< 2B l|xn — 1l = (1= Bp)llen — zna ||*.
Hence,
lZn+1 = P*I1P < 2w — p*112 + Bullzn — p*I* = l2n—1 — p*?)
2 2 (3.24)
+2Bnl|en — nal|* = (1= Bp)llen — znia |
Using Lemma 2.10 in (3.24), we have that lim ||z, — p*| exists.
n—oo
Claim 2: Any weak-cluster point of the sequence {z,} belongs in .
Now, for p* € Q, using Lemma 2.6 () in the definition of z,1, we have
Hxn+1 - p*HZ = ”(1 — Q) Yn + QnZn — p*HQ
= (1= an)(yn —p") + an)(zn — 0|
(1= an)llyn = 011 + anllza = |1 = an(l = an)llzn — ynll®
< lyn =217 = (1 = an)llzn — yall*. (3.25)
Also, using Lemma 2.6 (i) in the definition of y,,, we have
llyn — p*||2 = |lzn + Bu(®n — Tp-1) _p*ll2
= ||~73n _p* - ﬁn(mn—l - xn)||2
S ||1:n 7p*||2 - 2ﬂn<zn 7p*7xn—1 - zn> + 572;”1'71—1 - :En”2
(3.26)
Substituting (3.26) into (3.25) and using the fact that 52 < 8,3, € [0,1) , we have
[Znir —p*1* < Nz — P> = 2Bn(@n — ", 2no1 — Tn) + Ballzn—1 — za?
— an(l—an)llzn —yal*. (3.27)
Again, using Lemma 2.6 (i) in (3.27), we have
[Zn+1 _p*HQ < Bu(llzn _p*H2 —lzn—1— zn”Q) + 2Bnl|Tn—1 — xn||2
— an(l—an)llzn = yall?
< Bulllzn _p*”z —llzn-1— xn||2) + 2B l|zn—1— xn||2
(3.28)
Using Lemma 2.10 in (3.28), we have that
oo
D l@nts = p P = o = p|P]4 < oo. (3:29)
n=1
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By condition (C1) (noting that 8, € [0,1)), we have from (3.28) that

oo oo
doan(t=an)lzn —wal® < D llen =2l = lzns1 — p*|1%]
n=1 n=1

o0
+ Y Balllzn = 1P = @1 —p"[1*)
n=1

+ 2 Bullza-r — zall*. (3.30)
n=1
Using (3.23) and (3.29) in (3.30), we obtain
Z an(1 = )| zn — ynl|* < 0.

n=1

By the condition (C1), we have

nh_)n;o l|zn — ynll = 0. (3.31)
From (3.23), we have that lim |x,—2,—1|| = 0, which furthermore implies that lim B, ||z, —
n—oo n—oo

Zp—1] = 0. This implies from Algorithm 1 that lim ||y, — x,|| = 0. Also from (3.29), we
n—oQ
have that lim [||x,11 — p*[|? — ||zn — p*[|?] = 0. From (3.11) and (3.31), we have
n—oo

n(Yn +p(yn))
4 pn Z’an j 92(yn)

< llyn—p ||2 — 2w — "2
(lyn =" = 120 = 2D (lyn = 27l + 120 — P"[])

< Nlyn = zall(lyn — 2" + l20 = P*[]) = 0, n — oc. (3.32)
Hence, we obtain
(4= pn Z% i ye’“;(; f(y”)) 50, n— oo (3.33)

Using condition (C3), from (3.33), we have

(hjn(Yn) + p(yn))?

for all j € {1,...,s}. Now, using the definition of y, and (C2), we have

—0, n— oo (3.34)

|20 = ynll = 20 — T = Bu(@n — 1) || = Bullzn — -1l = 0, n — oco. (3.35)
By (3.24) and (3.25), we get
|20 — 2znll < |20 — ynll + |lyn — 2nll = 0, 1 — oo (3.36)

Using the definition of x,,11, (C1) and noting that {y,} and {z,} are bounded, we have
|Znt1 — znll = (1 — a)llyn — 2nll = 0, n — oo. (3.37)
(3.26) and (3.27) gives

lTnt1 — Znll < |Tng1 — 2nll + |20 — 20|l = 0, n — oco. (3.38)
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For each i € {1,...,r} and for each j € {1,...,s}, Vh;,(.) and Vp; ,(.) are Lipschitz
continuous with constant ||A||?> and 1, respectively. Since the sequence {z,} is bounded
and

IV ()| = IV R () = Vi (@ < 1A Iy — 271, Vi € {1, s},

IVPin )l = IVPin(yn) = VDin () < lyn —p"|, Vi€ {1,...,r},
we have the sequences {||Vp; ,,(yn)||}72; and {||Vh;,(yn)|}22, are bounded. Hence, we
have {6,(y»)}5%; is bounded and hence {6;(yn,)}72; is bounded. As a result by (3.34),
we have

klilgo Ry (Yny) = klirgopnk (yn,) =0, Vje{1,...,s} (3.39)
From the definition of py, (yn, ), we can have

Ding Uni) < P (Yny), Vie{l,..., 7} (3.40)
Therefore, (3.39) and (3.40) gives

kli_)ngo Wy (Yny ) = kllngopi’”"(y”’“) =0, Vie{l,...,rh,Vje{1,...,s}.

That is, for all i € {1,...,r}, j € {1,..., s}, we have

Jim [[(I — P, ) Ay, || = Jim (1= Po,,, )y, =0. (3.41)
Therefore, since {y, } is bounded and from the boundedness assumption of the subdiffer-

ential operator dg;, the sequence {g;,}72, is bounded. In view of this and (3.41), for all
je{l1,...,s} we have

aj (Aynk)S <5]'7nk ) Aznk - PQj.nk (Aynk»

3.42
< Nermlll (T = P, .. S Ay, | =0, & — co. (342)

Similarly, from the boundedness of {§; ,}22, and (3.41), for all € {1,...,r}, we obtain
Ci (y”k)é <§i,nk yYny — Pci,nk (ymc)> (343)
< Hfi,nk ””(I - PCi,nk )ynk H =0, k— oo

Let z* be a weak cluster point of {x,}. Thus, by Lemma 2.12 there exists a subsequence

{Zn, } which weakly converges to z*. Since lim ||y, — x| = 0 and since z,, — z*,
n—r oo

k — oo, we have y,, — z*,k — oo which implies Ay, — Az*, k — oc.

The weak lower semi-continuity of ¢;(.) and (3.42) implies that

g;(Az™) < likminqu(Aynk) <limsup ¢;(Ayn,) <0, Vje{l,..., s}
—0o0 k—s o0

That is, Az* € Q; for all j € {1,...,s}.
Likewise, the weak lower semi-continuity of ¢;(.) and (3.43) implies that
ci(z®) < liminf ¢;(yn,) <0, Vie{1,...,r}.
k—o0
That is, z* € C; for all i € {1,...,r}. Thus, * € Q. Hence, every weak-cluster point of

the sequence {x,} belongs to §2. Therefore, by Lemma 2.12, there exists a point p* € Q
such that {x, } weakly converges to p*. This completes the proof. |

For the particular case, where r=s=1, we note the following corollary regarding the
SFP (1.1), which is an immediate consequence of Theorem 3.2.
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Corollary 3.3. Let {a,} be a non-increasing real sequence in (0,1) and {B,} be a non-
decreasing real sequence in (0,1), and {pn} is real parameter sequence. Consider the
iterative algorithm

Zo, L1 S Hlv

Yn = Tn + Bn<xn - xnfl)y

3.44
20 =~ 7(Vha(y) + Vp(5)), (349
Tn+1 = (1 - an)yn + anzn,

where T, = pn% with 0(yn) = max{1,||Vp(yn) + Vh,(yn)||}. If the parameters
{Bn}; {pn}, {an} in the iterative algorithm (5.44) satisfy the following conditions:
(Cl): 0<a<a,< %;

(C2): 0< 5, < “Tm < %, for some m € (0,1);

(C3): 0< pp <4 and linrr_1>i£fpn(4 — pn) > 0.

Then, the sequence {x,} generated by (5.//) converges weakly to p* € Q = {p* € C :
Ap* € Q}.

4. NUMERICAL RESULTS

In this section, we present some numerical experiments to illustrate the implementation
and efficiency of our proposed method and we compare it with [17, Algorithm 3.1 ] (say
He et al. Alg.), [27, Algorithm 3.1 ](say Suantai et al. Alg.), and [18, Scheme (18) |(say
Tang et al. Alg.) by solving sa MSSFP problem. The numerical results are completed on
a standard TOSHIBA laptop with Intel(R) Core(TM) i5-2450M CPU@2.5GHz 2.5GHz
with memory 4GB. The code is implemented in MATLAB R2020a. In our numerical
experiments, Iter.(n) stands for the number of iterations and C'PU(s) is Elapsed time in
seconds.

Example 4.1. Consider two Hilbert spaces H; = RN, Hy = RM. The goal is to find a
point p* € RY such that

T S
p* e m C; such that Ap* € ﬂ Qj, (4.1)
i=1 j=1
where A : RV — RM is a linear bounded operator whose representing elements are
randomly generated in the closed interval [—0.5,0.5], and the closed convex subsets C;
(i=1,2,...,7) of RV are given by

N
C; = {x eRVN: Zlo(%)xi < 1},

k=i
where k is positive integer and ¢ = 1,2,...,7 = N, and the closed convex subsets @;
(=1,2,...,8) of RM are given by

M
Q; = {y e RM S 100 r)y2 < 1},
k=j
where k is positive integer and j = 1,2,...,s = M. Obviously, C; and @; are both
ellipsoids [19]. So such a MSSFP can be solved by the proposed algorithms. In this
example, we study the numerical behaviour of our proposed Algorithm 1, He et al. Alg.,
Suantai et al. Alg., and Tang et al. Alg. by solving (4.1) for different choices of the
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dimensions N and M. For the sake of convenience, we denote e; = (1,1,...,1)T € RV,

For Algorithm 1, we take x¢g = 3ey, 1 = 10ey, 6, = 0.9, p, = ﬁ, an = % + é,

Vin = ﬁ for j =1,2,...,s = M. For He et al. Alg., we take u = rand(N,1),
m=1 .

— _ n _ _1 _ i
Ty = 361, Pn = 2n+1° Op = nti’ li = N

) m=1 M+t
Aj = m for j = 1,2,...,5s = M. For Suantai et al. Alg., we take u =

rand(N,1), zo = 3e1, 1 = 10e1, B = 0.9, By = B, Wn =
1 T S P — — R N
EES TR o iy . gy fori=1,2,...,r = N, and \; = T o e
1,2,...,s = M. For Tang et al. Alg., we take z9 = 3e, pb =009 = pb, a; =
i fori=1,2,...,r =N, and 3; =

ST ST P T = L2 =
M. In the implementation, we take error = ||x,11 — z,|> < 107% as the stopping
criterion. The numerical results of the compared algorithms in terms of the number of
iterations (Iter.(n)) and the time of execution in seconds (C'PU(s)), are described in
Table 1 and Figure 1. In Figure 1, we give error versus the Iter.(n) for different choices
of N and M. Tt is readily seen from Table 1 and Figure 1 that our proposed Algorithm

1 has a better performance than the compared algorithms.

L - fori = 1,2,...,r = N, and

m=1

1 _ n —
2 Pn = 2p51) On =
for j =

TABLE 1. Comparison of Algorithm 1 with Suantai et al. Alg., He et al.
Alg., and Tang et al. Alg.

Algorithm 1 Suantai et al. Alg. He et al. Alg. Tang et al. Alg.
(N,M) TIter.(n) CPU(s) Iter.n) CPU(s) Iter.(n) CPU(s) Iter.(n) CPU(s)

(10, 20) 114 0.278821 139 0.278319 150 0.391167 151 0.233414
(20, 30) 141 0.445766 172 0.47222 199 0.562628 217 0.519087
(30, 20) 164 0.458431 227 0.535639 264 0.606438 425 0.959047
(30, 40) 166 0.801689 228 0.946397 200 0.72992 288 1.144844
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10* 10* ; i
—+— Algorithm 1 E —+— Algorithm 1
, Suantai et al. Alg. , Suantai et al. Alg.
10§ % —+—Heetal. Alg. —+—Heet al. Alg.
il hw% —&— Tang et al. Alg. m —<—Tanget al. Alg.
10° 10" F
2 02} w07
5 s
104k 104k
10°F 10°F
10°® : ; : : : : ; 10°% ; - : :
0 20 40 60 80 100 120 140 160 0 50 100 150 200 250
Iter.(n) Iter.(n)
(A) N=10,M =20 (B) N=20,M =30
10* : : ; 10*
—+— Algorithm 1 —#— Algorithm 1
it Suantai et al. Alg. Suantai et al. Alg.
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Iter.(n) Iter.(n)
(c) N=30,M =20 (D) N=30,M =40
F1Gure 1. Comparison of Algorithm 1 with Suantai et al. Alg., He et
al. Alg., and Tang et al. Alg. for different choices of N and M
CONCLUSIONS

In this work, we studied the multiple-sets split feasibility problem in the framework
of real Hilbert spaces. A self-adaptive inertial relaxed technique that does not need
prior information about the operator norm is proposed to solve MSSFP. A weak conver-
gence theorem to the proposed algorithm is established and proved under some suitable
conditions. Our numerical experiments showed that the proposed method is easily im-
plementable and better performance that the compared algorithms interms of iteration
numbers and elapsed time taken.
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